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Abstract. This paper introduces a method for controlling the trajectory of a manipulator robot 

with uncertainty, using reinforcement learning. The control is designed to work even when there 

are limitations on the inputs to the system. Reinforcement learning and neural networks are 

employed alongside standard robust control techniques to enhance the fixed-time convergence 

of the system state. A novel algorithm is proposed to develop a reinforcement learning-based 

approach. This approach utilizes radial basis function neural networks and nonsingular fast 

terminal sliding mode control to ensure error convergence within a predetermined time. This 

paper presents the task of monitoring the intended path followed by robotic arms in the presence 

of uncertain and unfamiliar disruptions. The experimental results validate that the suggested 

approach substantially improves both the stability and accuracy of trajectory tracking, making it 

more feasible for real-world applications in robotic systems. 

Keywords: Fixed-time control, reinforcement learning, neural networks, nonsingular fast 

terminal sliding mode control, extended applications. 

1.  Introduction 

Robotic arms are widely employed in the military, manufacturing, medical, and other industries that 

involve high levels of risk. Research on trajectory-tracking technology for robotic arms has been 

significant. Accomplishing complex tasks in a robotic system relies heavily on accurately following 

predetermined joint trajectories. However, the robotic arm encounters difficulties in precisely and 

rapidly following the intended path because of uncertainties in the dynamics model, coupling effects, 

and unknown external disturbances. Therefore, it is crucial to examine a control method that is 

exceptionally effective.[1][2]The paper introduces a new control strategy for uncertain robotic 

manipulators with input saturation called "Reinforcement Learning-Based Fixed-Time Trajectory 

Tracking Control". This control law combines the principles of reinforcement learning and neural 

networks. The paper improves the attainment of fixed-time convergence of the system state by 

incorporating conventional robust control techniques. This results in notable advancements in the 

management of robotic systems, taking into account practical constraints.[3][4][5][6]The article focuses 

on developing a control design that accurately follows a pre-defined path for a robotic arm. The 

dynamics of the arm are unpredictable, and it is also prone to input saturation. The technique employs a 
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recently created reinforcement learning algorithm that relies on radial basis function neural networks. It 

specifically employs advanced non-singular fast terminal sliding mode control to achieve the 

convergence of errors within a predetermined time period. Furthermore, it includes a nonlinear anti-

jitter compensator that effectively handles actuator saturation.[7][8]The article centers around the 

difficulty of maneuvering through unknown surroundings in the field of robotics. Robotic arms are 

essential in a wide range of applications, especially in dangerous environments where precise control is 

required despite uncertainties in the system and external disturbances.[9]This study examines the 

interrelated issues of tracking and saturation, which are important for improving the performance and 

reliability of robots in real-world environments. This ensures that the convergence time is not influenced 

by the initial state of the system; in technical terms, it introduces the advantage of fast convergence 

times.[10]The control strategy outlined in the article improves the efficiency and feasibility of robotic 

systems in real-life situations by tackling the difficulties associated with trajectory tracking accuracy 

and actuator saturation resistance. This would mainly be applicable to robotics applications, and a 

flexible framework that integrates machine learning could have broader applicability. While the main 

focus is on robotic arms, these methodologies and discoveries have the potential to be applied to other 

dynamic systems facing similar challenges, thereby broadening the impact of the research. For example, 

it is essential to incorporate pursuit and dimensional stability control in complex environments that are 

defined by second-order arithmetic control equations. 

2.  Formatting the title, authors and affiliations 

To gain an intuitive understanding of the control law concept, we initially isolate the neural network 

(NN) to examine the overarching control law. 

2.1.  Control law without neural networks 

 τ = -
1

v1
(Ktiled + K) ⋅ sig(e2, 2-v1) + ddxd-dmax ⋅ sig(s) (1) 

The control law, which does not incorporate neural networks (NNs), solely depends on traditional 

control techniques, such as PD control (proportional-differential control). The values of the gains K and 

Ktiled are determined by an error-based adaptive gain matrix. The effectiveness of the control law is 

highly dependent on the designer's ability to determine and fine-tune these gains, as well as potentially 

other parameters, in order to achieve desirable control performance. Neural networks may not be well-

suited for unknown or changing dynamic environments due to their limited self-learning and adaptation 

capabilities.  

2.2.  Implementation of control laws for neural networks 

 τ = -
1

v1
(Ktiled + K) ⋅ sig(e2, 2-v1)-

1

v1
⋅ |e2|(1-v1) ⋅ 

  (sig ((σ1 ⋅ sig(s, v2) + σ2 ⋅ sig(s, v3)), v4) + ζ + Ks ⋅ s) 

                     +ddxd-fnn-dmax ⋅ sig(s) (2) 

The incorporation of NN neural networks introduces a self-learning aspect (fnn stands for Feedforward 

Neural Network, which is used to anticipate future events. zeta refers to the integration component of a 

system, which is responsible for correcting persistent deviations) to the control law. The control behavior 

relies on the prognostication of the actuator neural network, while the integral component aids in 

rectifying persistent deviations. This adaptive mechanism enables the control system to acquire 

knowledge and adapt to disturbances, while maximizing performance in a perpetually evolving dynamic 

environment. The neural network has the ability to dynamically adjust its weights in real-time while 

performing control tasks, thereby improving the accuracy of trajectory tracking and the overall stability 

of the system. 
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2.3.  Consequences and Distinctions 

Within the control law, the gain matrices K and Ktiled can be either fixed or adaptively adjusted using 

heuristic rules, without the inclusion of neural networks. However, these adjustments are typically pre-

designed and do not rely on real-time feedback of system performance. The control law implemented in 

the neural network calculates the gain in real-time. The effect of weights, specifically in the context of 

the output of the Actor's neural network, is to either replace or enhance a portion of the conventional 

control law, thereby serving as a control action that is dynamically adjusted. In the absence of neural 

networks (NN), this specific aspect of the control action may require prior calculation or be determined 

by alternative control logic. While optimizing the control actions using a learning process can enhance 

their adaptability to the specific behavior and dynamics of the system, the presence or implementation 

of the integral part or state variable may not be necessary in control laws that do not involve neural 

networks, or it can be achieved through alternative mechanisms. For instance, the integral component 

of PID control is commonly employed to eliminate steady-state errors. zeta updating is employed in 

control laws that incorporate neural networks to improve the adaptability and robustness of the controller, 

particularly when addressing persistent systematic deviations. The implementation of neural networks 

has an impact on the function of the gain matrix in traditional control laws. Neural networks offer an 

adjustable gain mechanism that can be customized to match the real-time performance of the system. 

They can respond more dynamically to changes in the system state compared to gains that are static or 

change slowly. By adopting this approach, the control strategy of the system gains enhanced flexibility 

and the ability to independently acquire the knowledge necessary to efficiently guide the system towards 

a desired trajectory. 

 

 

 

Figure 1. The position curve of arm 1 
 

Figure 2. The position curve of arm 2 

 

 

 

Figure 3. Velocity profile of arm 1 
 

Figure 4. Velocity profile of arm 1 
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Figure 5. Input torque of control 
 

Figure 6. State error vector (combination of 

position error and velocity error) 

3.  Advancement 

Given the advancing automation and robotics, the demand for precise and dependable robotic systems 

is growing significantly across different industries. Ensuring accurate trajectory control is crucial in 

various fields, such as advanced manufacturing and delicate surgical procedures, even in the presence 

of system uncertainties and external disturbances. The innovative study on "RL.etc" has achieved a 

significant advancement in trajectory tracking by integrating sophisticated reinforcement learning 

algorithms with robust control techniques. This breakthrough is crucial for applications that demand 

precise and efficient performance, serving a wide range of application scenarios. 

There are still opportunities for enhancing this control algorithm, and while the current control 

strategy already incorporates reinforcement learning, it primarily depends on pre-learned strategies for 

decision-making. While it excels in numerous applications, there is still room for improvement in its 

capacity to learn and adapt to new situations in real-time. In order to accomplish this, incorporating 

online learning mechanisms or incremental learning strategies into the control framework would allow 

the system to consistently acquire new knowledge and adjust its behavioral strategies in real-time to 

adapt to ongoing environmental changes. 

Another possible avenue for improvement is to augment the interpretability and transparency of the 

algorithms. Reinforcement learning algorithms, particularly those based on neural networks, are 

commonly perceived as "black boxes," which restricts their usage in specialized fields (such as 

healthcare or aviation) that demand stringent safety standards. Enhancing users' trust and understanding 

of the system's behavior can be achieved by developing algorithms that are more transparent or by 

visualizing the decision-making process. 

Nevertheless, the primary focus is on enhancing the precision of the source data or transitioning from 

force-displacement fields to alternative fields in order to enhance accuracy and practicality, which is 

highly intriguing. 

3.1.  System Flexibility 

Due to the intricate and dynamic nature of robot operating systems, it is often necessary for a single 

force-displacement field to encompass all relevant information about the environment. Incorporating 

data from additional physical domains, such as temperature and vibration, can enhance the overall 

understanding of the environmental operating conditions and enable the system to adapt more effectively. 

When operating in extreme temperature environments, temperature data can be used to regulate the 

robot's power output and prevent performance degradation caused by overheating or overcooling. 

However, irregular mechanical vibrations can be harnessed and regulated through electrical signals that 

are converted using the piezoelectric effect. 
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3.2.  Enhanced Precision of Control Strategies 

Modifying data resources can enhance the modeling and prediction of robot behavior, resulting in more 

precise control. The integration of multi-dimensional data enables the robot to effectively handle 

uncertainty, particularly in situations involving input saturation or other extreme operating conditions. 

3.3.  Enhancement of system robustness is achieved in section 

Utilizing data from multiple sources enhances the system's resilience against individual sensor failure 

or data distortion. In the event of a force sensor malfunction, the system can rely on alternative sensor 

data, such as position, temperature, or vibration, to ensure operational stability and safety. 

3.4.  Broadening the Scope of Robot Applications 

By incorporating diverse physical data, robotic operators can be employed in conventional industrial 

settings and extended to novel domains that demand sophisticated environmental perception, such as 

disaster response, deep-sea exploration, or operations in extreme weather conditions. 

3.5.  Encouraging the Collaboration of Different Academic Disciplines in Research 

The integration of machine learning and control theory with research in physics, materials science, and 

other disciplines not only fosters the advancement of robotics, but also enables breakthroughs in these 

fields, drives the development of novel sensing technologies and materials, and further improves the 

performance and versatility of robots. 

4.  Conclusion 

This study focuses on the implementation and optimization of a reinforcement learning-based fixed-

time trajectory tracking control algorithm for robot arms with uncertain dynamics. Our methodology 

integrates commenter and actor neural networks to minimize tracking errors and achieve a resilient level 

of performance. 

At first, we established a constant learning rate for updating the weights of the neural network. 

Nevertheless, the system exhibited subpar performance, characterized by notable variations in the 

control input tau and unpredictable error convergence. These problems indicate that the learning rate 

should be meticulously adjusted in order to achieve a balance between the speed of convergence and the 

stability of the system. 

Through multiple iterations, we refined our control during the optimization process by making 

incremental adjustments to the learning rate. In the initial attempt, a high learning rate is established, 

resulting in noticeable oscillations and instability in the system. Consequently, we systematically 

decreased the learning rate with the expectation of attaining smoother and more stable control outcomes. 

After multiple iterations of fine-tuning, we ultimately selected a reduced learning rate, resulting in a 

notable enhancement in the system's ability to accurately follow trajectories. The control input tau 

exhibits enhanced smoothness, resulting in accelerated and more stable convergence of errors. 

The findings highlight the crucial importance of accurately adjusting the learning rate in a 

reinforcement learning control system. By conducting multiple experiments and implementing 

optimization techniques, we have effectively enhanced the overall control performance of the system. 

As a result, we have achieved precise trajectory tracking even in uncertain and nonlinear environments. 

Ultimately, through meticulous adjustment of the learning rate, we achieved substantial 

enhancements in both the stability and accuracy of trajectory tracking for robotic systems with uncertain 

characteristics. Subsequent studies could investigate more sophisticated optimization methods, such as 

incorporating the Adam optimizer, to further improve the system's performance. 

References 

[1] Zuo, Z., Defoort, M., Tian, B., & Ding, Z. (2020). Distributed consensus observer for multiagent 

systems with high-order integrator dynamics.IEEE Transactions on Automatic Control, 65(4), 

1771–1778. https://doi.org/10.1109/TAC.2019.2936555 

Proceedings of  the 2nd International  Conference on Applied Physics and Mathematical  Modeling 
DOI:  10.54254/2753-8818/56/20240119 

23 



 

 

[2] Hirai, K., Hirose, M., Haikawa, Y., & Takenaka, T. (1998). The development of Honda humano

id robot.In Proceedings of the 1998 IEEE International Conference on Robotics and Automat

ion (Cat. No.98CH36146), 1321–1326, Leuven, Belgium: IEEE. https://doi.org/10.1109/RO

BOT.1998.677288 

[3] Yang, C., Li, Z., Cui, R., & Xu, B. (2014). Neural network-based motion control of an 

underactuated wheeled inverted pendulum model.IEEE Transactions on Neural Networks and 

Learning Systems, 25(11), 2004–2016. https://doi.org/10.1109/TNNLS.2014.2302475 

[4] Zhang, P., Wu, Z., Dong, H., Tan, M., & Yu, J. (2020). Reaction-wheel-based roll stabilization 

for a robotic fish using neural network sliding mode control.IEEE/ASME Transactions on 

Mechatronics, 25(4), 1904–1911. https://doi.org/10.1109/TMECH.2020.2992038 

[5] He, W., Ge, S. S., Li, Y., Chew, E., & Ng, Y. S. (2015). Neural network control of a rehabilitation 

robot by state and output feedback.Journal of Intelligent & Robotic Systems, 80(1), 15–31. 

https://doi.org/10.1007/s10846-014-0150-6 

[6] Yang, C., Jiang, Y., Li, Z., He, W., & Su, C.-Y. (2017). Neural control of bimanual robots with 

guaranteed global stability and motion precision.IEEE Transactions on Industrial Informatics, 

13(3), 1162–1171. https://doi.org/10.1109/TII.2016.2612646 

[7] Sun, L., & Liu, Y. (2020). Extended state observer augmented finite-time trajectory tracking 

control of uncertain mechanical systems.Mechanical Systems and Signal Processing, 139, 

106374. https://doi.org/10.1016/j.ymssp.2019.106374 

[8] Zhao, L., Zhang, B., Yang, H., & Wang, Y. (2017). Finite-time tracking control for pneumatic 

servo system via extended state observer.IET Control Theory & Applications, 11(16), 2808–

2816. https://doi.org/10.1049/iet-cta.2017.0327 

[9] Cao, S., Sun, L., Jiang, J., & Zuo, Z. (2023). Reinforcement learning-based fixed-time trajectory

 tracking control for uncertain robotic manipulators with input saturation.IEEE Transactions 

on Neural Networks and Learning Systems, 34(8), 4584–4595. https://doi.org/10.1109/TNNL

S.2021.3116713 

[10] Bhat, S. P., & Bernstein, D. S. (2000). Finite-time stability of continuous autonomous systems.S

IAM Journal on Control and Optimization, 38(3), 751–766. https://doi.org/10.1137/S036301

2997321358 

 

Proceedings of  the 2nd International  Conference on Applied Physics and Mathematical  Modeling 
DOI:  10.54254/2753-8818/56/20240119 

24 


