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Abstract. Time series forecasting has a large number of applications in daily life, for instance 

the prediction of stock prices, electricity consumption, exchange rate changes etc. However, the 

existing time series prediction methods have limitations. The most significant one is that when 

all the prediction models get the predicted value, a new round of iteration starts after the loss 

function is calculated with the corresponding real data. This may cause the accumulation of 

errors, since there is only one loss function to measure the difference between the predicted value 

and the ground truth, it will make the connection weak and mainly depend on the accuracy of 

the prediction model. Unfortunately, there are few time series prediction models with high 

accuracy in reality. To solve the issue, in this paper, we propose a new time series forecasting 

model – Adversarial Temporal Pattern Attention Mechanism (ATPAM), which based on 

Generative Adversarial Nets (GANs). ATPAM adopts a Temporal Pattern Attention model as 

the generator to learn time-invariant temporal patterns, and use a discriminator to improve the 

prediction performance and do auxiliary adversarial training. Extensive experiments on several 

real-world datasets show the effectiveness of our method.  

Keywords: time series forecasting, neural networks, generative adversarial networks, temporal 

pattern attention. 

1.  Introduction 

Time series forecasting (TSF) models are widely used in business, finance and engineering. Lots of 

classical approaches are proposed to solve these time series forecasting problems, the two main types 

are statistics and deep learning. Autoregressive Integrated Moving Average [1] etc. is the first type 

which has well performance in linear time series prediction. However, when the dimension of time series 

data increases and the relationship between features becomes complicated, the model has a bottleneck. 

So, deep learning network like Long short-term Memory (LSTM) [2], Gate Recurrent Unit (GRU) [3] 

etc. are used frequently in most specific time series forecasting problems. 

In recent years, with the improvement of computer hardware resources and the popularization of 

neural networks, more and more time series forecasting models are built with deep neural networks. [4] 

[5,6] mainly use Recurrent Neural Network (RNN) to achieve TSF, others like [7-10] have using 

attention mechanism to do. However, all these models get the final results by optimizing only one 

objective function, like MSE loss. So, this may degrade the performance of the predictive model. 

Therefore, we should appropriately increase number of objective function while selecting a suitable one 

to achieve better prediction results. 
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In 2014, Generative Adversarial Networks (GANs) [11] were proposed and first applied in the field 

of image processing. This is a landmark research achievement by having neural networks play against 

with each other rather than human intervention. Motivated by GANs, TPA-LSTM [10] and [6], in this 

paper, we propose Adversarial Temporal Patterns Attention (ATPAM). It combines the ideas of both 

GANs and TPA-LSTM. 

The main contribution of our paper are as follow: 

We propose an effective time series forecasting model – Adversarial Temporal Patterns Attention 

based on Generative Adversarial Nets and Temporal Patterns Attention. Extensive experiments on 

different real-world time series datasets show the effectiveness of our model, moreover, auxiliary 

adversarial training improves the robustness and generalization of model. To capture both past and 

future features in the time series sequence, we replace regular long-and short term memory network 

(LSTM) to bidirectional LSTM (BiLSTM). BiLSTM combine two hidden states, and has a better 

performance than LSTM. To extract features in hidden matrix step by step, we use dilation convolution 

to achieve it. In fact, adopting the dilation rate can slow down feature loss, and improve forecasting 

accuracy. The rest of this paper is organized as follows. Section 2 gives a related work about our 

proposed model. Section 3 presents the problem formulation and background. Section 4 introduces the 

framework of our model. Section 5 aims at demonstrating the effectiveness of our methods on real-word 

time series datasets. Finally, we draw a conclusion in Section 6. 

2.  Related work 

Time Series Forecasting (TSF) task is one of the most significant branches of data mining, The classical 

TSF model is autoregressive(AR) which proposed by British statistician G.U.Yule [12]. The output of 

AR model are linearly dependent on their previous values and random bias, other AR model like moving 

average (MA) model [13] and autoregressive moving average model are proposed successively. 

However, all above models lack ability to deal with non-stationary time series data. Due to this reason, 

the Autoregressive Integrated Moving Average model (ARIMA) [1] is proposed later. Then, Thissen, 

UVBR and Van Brakel et al. and Gui, Bin and Wei et al. put forward a new model which based on 

support vector machine (SVM), it also can handle TSF problems called support vector regression (SVR). 

SVR maps time series data from original space to high dimensional space. Although it has a better 

performance than ARIMA, we expect the model to be far more accurate than that. 

Recent years, deep neural network have proposed for TSF. Model based on deep neural network has 

great advantages in solving nonlinear problems. To alleviate this issue, Lai, Guokun and Chang et al. [5] 

give a Long and Short-Term Temporal Patterns model (LSTNet). they propose a novel recurrent-skip 

component which leverages the periodic pattern in real-word sets. Nonetheless, LSTNet has some major 

shortcomings: 

• First is that 𝑝 is an empirical parameter, it is not universal in specific tasks. 

• Next, due to 𝑝, this model is more likely designed for periodic data while in real life, not all time 

series data are periodic. 

• Last, LSTNet selects a relevant hidden state as in typical attention mechanism. 

Based on LSTNet, Shih, Shun-Yao and Sun et al. [6] remove the hyperparameter 𝑝 and make the 

entire model more suitable for general time series data. 

Since Generative Adversarial Net (GAN) was proposed by Goodfellow, Ian and Pouget-Abadie et al. 

[11], it first shines in the field of image generation. This is a landmark research achievement by having 

neural networks play against with each other rather than human intervention. After that, various variants 

of GAN have emerged and so on. Although GANs have powerful generation capabilities, the application 

field of GANs is limited to the image field, and it is unable to do anything in time series prediction until 

the emergence of C-RNN-GAN . C-RNN-GAN applies the GANs architecture to generate sequential 

melody data. Yoon, Jinsung and Jarrett et al. first utilize GANs to generate time series which called 

timeGAN. However, these time series data are only generated to get as close as possible to the history 

data, and cannot forecast future steps. Motivated by them, we improve the TPA-LSTM model, change 
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its LSTM layers to GRU layers, and then, attach a discriminator to the output of our proposed model, it 

becomes a TSF model with adversarial training. Experiments show that our model has better 

performance than original TPA-LSTM and timeGAN. 

3.  Background 

3.1.  Problem definition 

Suppose that we have a task of Multivariate Time Series Forecasting(MTSF), the input of MTSF is 𝑋 =
{𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1}, where 𝑥𝑖 ∈ 𝑅𝑛 represents the observed values at time 𝑖, we are going to predict the 

values of 𝑥𝑡−1+𝛥, where 𝛥 is a appropriate horizon in different situations. At the same time, we let 

𝑦𝑡−1+𝛥  be the ground truth, and let 𝑦̂𝑡−1+𝛥  be the predicted values, which means 𝑦̂𝑡−1+𝛥 = 𝑥𝑡−1+𝛥 . 

Besides, we predict the next one step by the first (𝑡 − 𝑤) steps, where 𝑤 is a window size [5]. 

3.2.  Temporal Patterns Attention  

We refer to TPA-LSTM by taking advantage of Temporal Patterns Attention mechanism. To capture 

both long-term and short-term dependencies in the time series sequence, Shih et al. and Lai, Guokun et 

al. utilize a Long short-term memory (LSTM) to handle long-term dependencies in sequence which 

defined as following: 

𝐼𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑖 + 𝐻𝑡−1𝑊ℎ𝑖 + 𝑏𝑖) (1) 

𝐹𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑓 + 𝐻𝑡−1𝑊ℎ𝑓 + 𝑏𝑓) (2) 

𝑂𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑜 + 𝐻𝑡−1𝑊ℎ𝑜 + 𝑏𝑜) (3) 

𝐶̃𝑡 = tanh(𝑋𝑡𝑊𝑥𝑐 + 𝐻𝑡−1𝑊ℎ𝑐 + 𝑏𝑐) (4) 

𝐶𝑡 = 𝐹𝑡𝐶𝑡−1 + 𝐼𝑡𝐶̃𝑡 (5) 

𝐻𝑡 = 𝑂𝑡 tanh(𝐶𝑡) (6) 

where 𝑊𝑥𝑖, 𝑊𝑥𝑓 , 𝑊𝑥𝑜 , 𝑊𝑥𝑐 ∈ 𝑅𝑑×ℎ denote input weight parameters, 𝑏𝑖, 𝑏𝑓, 𝑏𝑜 , 𝑏𝑐 ∈ 𝑅1×ℎ denote bias 

parameters, 𝑊ℎ𝑖 , 𝑊ℎ𝑓  , 𝑊ℎ𝑜  , 𝑊ℎ𝑐 ∈ 𝑅ℎ×ℎdenote hidden state parameters, 𝐶𝑡 , 𝐶̃𝑡  and 𝐻𝑡 ∈ 𝑅𝑛×ℎ  , 𝜎 

denotes activate function, and ⊙ denotes element-wise multiplication. 

Next, to capture short-term dependencies and enhance the learning ability of the model, Shih et al. 

use 2-D CNN to convolve the hidden state of the sequence, which we show in Figure 1 and define as 

following: 

 

Figure 1. Convolution to extract features from hidden states 

𝐻𝑖,𝑗
𝐶 = ∑ 𝐻𝑖,(𝑡−𝑤−1+𝑙)

𝑤

𝑙=1

× 𝐶𝑗,𝑇−𝑤+𝑙 (7) 

where 𝐻𝑖,𝑗
𝐶  is the convolved values, 𝑇 is the maximum length we intend to observe, 𝑤 is window size, 

𝐶𝑖 is filters. 

Last but not the least, using Temporal Patterns Attention mechanism to get the final output. Here is 

a brief introduction shown in Figure 2, and refer to [6] to get more details: 
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Figure 2. Prediction process in Temporal Pattern Attention. 

𝛼𝑖 = 𝜎 ((𝐻𝑖
𝐶)

𝑇
𝑊𝛼ℎ𝑡) (8) 

𝑣𝑡 = ∑ 𝛼𝑖𝐻𝑖
𝐶

𝑛

𝑖=1

(9) 

ℎ
′
𝑡 = 𝑊ℎℎ𝑡 + 𝑊𝑣𝑣𝑡 (10) 

𝑦̂𝑡−1+∆ = 𝑊
ℎ
′ℎ
′
𝑡 (11) 

where 𝐻𝑖
𝐶  is the 𝑖𝑡ℎ row of matrix 𝐻𝐶,𝑊𝛼𝜖𝑅𝑘×𝑚, ℎ𝑡𝜖𝑅𝑚×1, ℎ𝑡,ℎ

′
𝑡 ∈ 𝑅𝑚,𝑊ℎ ∈ 𝑅𝑚×𝑚,𝑊𝑣 ∈ 𝑅𝑚×𝑘 , and 

𝑊
ℎ
′ ∈ 𝑅𝑛×𝑚 and 𝑦̂𝑡−1+∆ ∈ 𝑅𝑛. 

Equation 8 to 11, we utilize convolved matrix from hidden states and obtain attention weight 𝛼 by 

scoring function. After getting context vector, we integrate the output and last time step hidden state to 

get predicted values. 

4.  Framework of ATPAM 

4.1.  Model Architecture 

We first elaborate on the general framework of our model. As illustrated in Figure 3, The proposed 

model is a Temporal Patterns Attention with adversarial training. The adversaries are two different 

recurrent neural models, a generator (G) and a discriminator(D). We consider the entire Temporal 

Patterns Attention as G. After getting the predicted value by G, we compare it with the real data to get 

the loss of the generator. Then, we utilize the D to distinguish the similarity between the generated fake 

data and the real data, getting the discriminator loss, that is, adversarial loss. The target of G is to 

generate fake data that is indistinguishable from real data, while D needs to accurately discriminate the 

fake data generated by G. The process of adversarial training becomes a zero-sum game until both G 

and D reach the Nash equilibrium. In other words, G produces data that infinitely close to the real data, 

and D cannot distinguish between the data generated by G and the real data, it tends to be a random 

judgment. We define the following loss function 𝐿𝐷 and  𝐿𝐺 : 

𝐿𝐺 =
1

𝑚
∑ log (1 − 𝐷 (𝐺(𝑧(𝑖)  )))

𝑚

𝑖=1

(12) 

𝐿𝐷 =
1

𝑚
∑ [− log 𝐷(𝑥(𝑖)) − (log (1 − 𝐷 (𝐺(𝑧(𝑖)  ))))]

𝑚

𝑖=1

(13) 

where 𝑧(𝑖) is training data, and 𝑥(𝑖) is real data, 𝑚 is the num of samples. 

4.2.  Dilation Convolution on Hidden States 

In Section 4.1, we have an overview of Adversarial Temporal Pattern Attention. Through Gated 

Recurrent Units (GRU), we get all 𝑡 sequence step hidden states from ℎ1 to ℎ𝑡. In TPA-LSTM, model 

utilizes convolution to extract features from matrix 𝐻𝑖𝑑𝑑𝑒𝑛(mentioned in Section 3), which directly 

change channels from ℎ𝑖𝑑𝑑𝑒𝑛𝑢𝑛𝑡𝑖𝑠 to 1. This strategy can extract features rapidly, however, each 
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sliding window compress all features into 1 dimension will sacrifice the accuracy of the representation. 

In our model, we modify it to dilation convolution, by controlling dilation rate, we extract the features 

of the latent variable matrix multiple times within a sliding window which illustrated in Figure 3. Due 

to dilation convolution, we can learn better feature representations in  the same sliding window, which 

means that we can better capture the feature information of past moments, improve the accuracy of 

prediction, and increase the prediction effect of the model. 

 

Figure 3. The framework of Adversarial Temporal Patterns Attention. ℎ𝑡 represents the hidden state of 

the Bidirectional Long-and short term Memory Network at time step t. We use 2-D CNN filters to 

convolve features of hidden states, and get a matrix 𝐻𝐶. Next, using Attention mechanism calculates 

each row of 𝐻𝐶 to generate 𝑉𝑡. Then, we concatenate 𝑉𝑡 and ℎ𝑡 to generate 𝑦̂𝑡−1+𝜏 as output of generator. 

Finally, we get generator loss by utilized L1Loss and calculate adversarial loss by using BCELoss. This 

adversarial training becomes a zero-sum game until both Generator and Discriminator reach the Nash 

equilibrium. 

4.3.  Discriminator 

As illustrated in Figure 3, the discriminator consists of a two layer bidirectional recurrent network, three 

groups of linear dense and activate function [10]. In the model, the recurrent network utilized is the 

Long short-term Memory Network [2] and groups of linear dense add nonlinear fitting capability of the 

model. The output of the generator is fed into the discriminator together with the ground truth, while 

passing through the bidirectional LSTM layers, the discriminator take context in both directions into 

account for its decisions. The discriminator consists of tow parts, the first one is that distinguish fake 

data generated by G to False, and the second one is that the real data needs to be discriminated as True. 

To implement this simple binary classification problem, we choose the Binary Cross-Entropy Loss 

(BCELoss) as adversarial function, defined as following: 

 𝐿̂𝐷1 =
1

𝑚
∑ −𝜆 ⋅ [𝑍𝑟𝑒𝑎𝑙⋅ log 𝐷(𝑥(𝑖)) + (1 − 𝑍𝑟𝑒𝑎𝑙) ⋅ log(1 − 𝑥(𝑖))]𝑚

𝑖=1  (14) 

𝐿̂𝐷2 =
1

𝑚
∑ −𝜆 ⋅ [𝑍𝑓𝑎𝑘𝑒⋅ log 𝐷 (𝐺(𝑧(𝑖))) + (1 − 𝑍𝑓𝑎𝑘𝑒) ⋅ log (1 − 𝐺(𝑧(𝑖)))]

𝑚

𝑖=1

(15) 

 𝐿̂𝐷 = 𝐿̂𝐷1 + 𝐿̂𝐷2 (16) 

where 𝑥(𝑖)is real data, 𝑧(𝑖)is training data, 𝒁𝒓𝒆𝒂𝒍 is a vector of all ones with the same shape as 𝐷(𝑥(𝑖)), 

𝒁𝒇𝒂𝒌𝒆 is a vector of all zeros with the same shape as 𝐺(𝑧(𝑖)). 𝜆 is a hyperparameter, for single-label 

binary classification tasks, it does not matter to set 𝜆 or not.Finally, we add 𝐿̂𝐷1 and 𝐿̂𝐷2 to get the 
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complete objective function of the discriminator, as shown in eq.5, and our goal is to minimize this 

equation. 

5.  Experimental studies 

In this experimental section, we first introduce the datasets which used. Next, we show other baseline 

methods compared with our model. Then, we give the metrics to evaluate the model. Last but not least, 

we describe some experiment details. Finally, we discuss the ablation study on our model. 

5.1.  Data 

We use four publicly available benchmark datasets Exchange Rate: The exchange rates for eight 

countries from 1990 to 2016 (Australia, British, Canada, China, Japan, New Zealand, Singapore, and 

Switzerland). 

5.2.  Baseline Methods for Comparison 

We compare our proposed model with several baseline models on typical MTS datasets: 

•  TPA-LSTM: Temporal Patterns Attention with LSTM layer, an improvement on the LSTNet model. 

• ATPAM: our proposed model base on TPA-LSTM with GRU layer and adversarial training. 

5.3.  Metrics 

We use two traditional evaluation metrics defined as following: 

• Root Relative Squared Error (RSE): 

𝑅𝑆𝐸 =
√∑ (𝑦𝑖𝑡 − 𝑦̂𝑖𝑡)2

𝑖𝑡𝜖𝛺𝑣𝑎𝑙𝑖𝑑

√∑ (𝑦𝑖𝑡 − 𝑦̅)2
𝑖𝑡𝜖𝛺𝑣𝑎𝑙𝑖𝑑

(17) 

• Relative Absolute Error (RAE): 

𝑅𝐴𝐸 =
|∑ (𝑦𝑖𝑡 − 𝑦̂𝑖𝑡)𝑖𝑡𝜖𝛺𝑣𝑎𝑙𝑖𝑑

|

|∑ (𝑦𝑖𝑡 − 𝑦̅)𝑖𝑡𝜖𝛺𝑣𝑎𝑙𝑖𝑑
|

(18) 

where 𝛺𝑣𝑎𝑙𝑖𝑑 is validation set in the source datasets, 𝑦̅ is mean of 𝛺𝑣𝑎𝑙𝑖𝑑 , and 𝑦̂𝑖𝑡 is predictive values, 

𝑦𝑖𝑡  is ground truth in 𝛺𝑣𝑎𝑙𝑖𝑑  . In order to understand which model perform best in experiments, we 

observe and record the values of RAE and RSE. From equation 15 and 16, we know that, if predicted 

value is near to the real data, in other words, 𝑦𝑖𝑡 − 𝑦̂𝑖𝑡 is closer to zero, 𝑅𝐴𝐸 and 𝑅𝑆𝐸 will be smaller, 

and the model have a better performance. 

5.4.  Results 

Due to the improvement on Temporal Pattern Attention with dilation, our model is better at extracting 

features from the time series in long intervals. Moreover, we find that when the horizon intervals 

becomes very long, we need a larger batch size to update, such as 256, 512 or larger. However, when 

the horizon is small, we only need to update through each tiny batch size. And the loss value in training 

stage shown in Figure 4. 

Table 1. Forecasting result of ATPAM. 

Methods Metrics 
horizon   

48 72 96 120 

TPA-LSTM RAE 0.110 0.120 0.132 0.138 

TPA-LSTM RSE 0.112 0.122 0.135 0.140 

ATPAM RAE 0.078 0.098 0.111 0.124 

ATPAM RSE 0.095 0.114 0.130 0.136 

Proceedings of  the 2nd International  Conference on Applied Physics and Mathematical  Modeling 
DOI:  10.54254/2753-8818/53/20240150 

95 



 

 

Figure 4. Training Loss under different epochs on exchange rate with ATPAM. 

6.  Conclusions 

In this paper, we present ATPAM, a model based on TPA-LSTM with replace LSTM layer to GRU 

layer and attach adversarial training. Extensive experiments in Section 5 on several real-world datasets 

show the effectiveness of our method. However, due to the large gap in structural complexity between 

the generator and the discriminator, it is hard for the G and the D to converge at the same time. Moreover, 

improved model involves two neural network, which has high time complexity. 

Next, we will simplify the structure of the generator, and pay more attention to the data preprocess. 
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