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Abstract. Physics-Informed Neural Networks (PINNs) have been recently utilised to solve forward and
backward partial differential equation problems. In this paper, we explore an alternative approach by using
Physics-Informed Extreme Learning Machines (PIELM) to address the Euler-Bernoulli beam problem. We
experiment with different types of functions combined with various numbers of hidden layers to identify the
most effective techniques and conditions for solving partial differential equations with greater efficiency and
accuracy. Both the traditional PINN and PIELM methods are applied, and their results are compared. Our
findings demonstrate that PIELM offers more efficient computation while maintaining comparable accuracy
in the results.

Keywords: Beam theory, partial differential equations, physics-informed neural networks, extreme learning
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1. Introduction
Partial differential equations (PDEs) is always a complex but fundamental task in science and engineering.
Recent solutions of PDE are usually based on analytical and numerical ways. For simple problems, the
analytical method can be employed to get a strong form solution of certain PDEs. However, the strong
form simulation embedded in analytical methods also restricts the solvable domain of PDEs [1]. To solve
generalized PDEs, weak form formulations are usually adopted to solve PDE problems numerically. The
Weighted Residual Method is one of the most useful method for the weak form formulations which its
representatives include the Collocation Method [2], Subdomain method [3] and also Galerkin Method [4]
where the Galerkin method outcomes the best accuracy. Weak formulations has been utilized in many
numerical implementations such as the Finite Difference Method (FDM)[5], Finite Volume Method [6]
and the Finite Element method [7]. For techniques of separation variables, its quite straightforward but its
limited to specific problems and not applicable to non-linears PDEs.

In alternative to traditional numerical method, the Physics-Informed Neural Networks (PINNs) has
recently been proposed and served as a new method to solve PDEs[8]. Different from traditional numerical
solutions which usually requires discretization of certain solving domains, PINNs solve PDEs by the
neural network representations which gives a continuous solution to certain functional problems [9]. Its
application involves solving both backward and forward PDE problems as implemented by researchers[10].
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Their results show the superiority of PINNs in some aspects,e.g.: (a) theoretically cheaper computations
in certain problems and much more friendly memory required by the solution representatives than the
traditional numerical methods; and (b) feasibility in solving inverse problems which vague boundary
conditions that are difficult to be solved by numerical methods[11].

Beam theory is a fundamental aspect of structural engineering and mechanics that deals with the
behavior of beams under various loads. Key features including small deformations, neglecting shear
deformation and homogeneous material [12] can favour the uses of beam theory in mechanical engineering
[13] such as designing and analysising bridge structures and also in aerospace engineering [14] such as
designing of aircraft wings, fuselages and other structural components to ensure adequate strength and
stiffness during flight.

In the context of beam theory, Physics-Informed Neural Networks (PINNs) can be also effective for
modelling and solving problems related to the behavior of beams under various loading. beam theory
is a mathematical simulation of beam model, which is faster and more concise than the traditional fully
discrete model. Timoshenko beam theory [15] give us the description of beam theory PDE which gives
us the method and theoretical support for solving the beam problem.The finite element methods are
usually employed to solve complex beam problems where analytical methods fall short. Alternatively,
there are also works focusing on solving the beam problem by PINNs [16]. PINNs offer a powerful
approach to solve beam problems, which can be adapted to solve both static and dynamic beam problems.
In addition to the traditional PINNs, it has proposed the Physics-Informed Extreme Learning (PIELM)
Machines which can approximate complex functions and have been applied to various regression and
classification problems based on the combination of the extreme learning machine architecture with the
physical information [17]. From using PINN model combine with ELM, we can exchange different
variables, such as types of functions and size of the layer, using hidden layer which is an inverse matrix to
increase the efficiency as well as the accuracy of the solutions. PIELM has higher accuracy and faster
speed compared to the techniques above [17].

In this paper, we utilised the PIELM (Physics-Informed Extreme Learning Machines) to solve beam
problems. We exchange different independent variables including types of function, number of hidden
layers and measure the prediction time and training time error respectively , using diagrams to represent
the trend which find that the sigmoid function requires relatively less time and give higher precision and
accuracy. Moreover, the extreme learning machine can hugely increase the efficiency.

2. Euler-Bernoulli beam theory and FE Formulation
Beam theory, particularly the Euler-Bernoulli beam theory, is a cornerstone in the field of structural
engineering and mechanics. This classical theory provides a simplified approach to analysing the
behaviour of slender, prismatic beams under various loading conditions. Developed in the 18th century by
Leonhard Euler and Daniel Bernoulli, the theory reduces the complex three-dimensional stress state in a
beam to a one-dimensional problem, facilitating easier analysis.

The Euler-Bernoulli beam theory is governed by a fourth-order partial differential equation (PDE) that
relates the beam’s deflection w(x) to the applied load q(x). The governing equation is given by:

EI
d4w(x)

dx4
= q(x), (1)

where E is the Young’s modulus of the beam material, I is the second moment of area of the beam’s
cross-section, and x is the longitudinal coordinate along the beam’s length. This equation assumes that
plane sections remain plane and perpendicular to the neutral axis, and that the deflections are small.

While the Euler-Bernoulli beam theory provides a robust analytical tool for simple beam configurations
and loading conditions, real-world engineering problems often involve complex geometries, material
properties, and loading scenarios that are difficult to solve analytically. This is where the Finite Element
Method (FEM) becomes invaluable.
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The Finite Element Method (FEM) is a powerful numerical technique used in the field of structural
engineering for solving complex problems that are difficult to address analytically. Its application to beam
problems involves several key steps, starting from the classical beam theory and progressing through to
the discretization of the beam into finite elements.

The classical Euler-Bernoulli beam theory is encapsulated by a fourth-order partial differential equation,
which describes the relationship between the beam’s deflection and the applied loading:

EI
d4w(x)

dx4
= q(x), (2)

where EI represents the flexural rigidity of the beam, combining the Young’s modulus E and the
second moment of area I , w(x) denotes the deflection of the beam at position x, q(x) is the distributed
load per unit length acting on the beam.

The weak form is obtained by integrating the strong form of the equation by parts. This method reduces
the continuity requirements for the solution, making it more amenable to numerical approximation. The
process involves integrating the product over the domain of the beam:∫ L

0
EI

d4w

dx4
v(x) dx =

∫ L

0
q(x)v(x) dx, (3)

where L is the length of the beam, and applying integration by parts to the left-hand side of the equation,
reducing the order of derivatives on w(x). This results in:∫ L

0

d2w

dx2
d2v

dx2
EI dx =

∫ L

0
q(x)v(x) dx+ boundary terms, (4)

where the boundary terms depend on the specific boundary conditions applied to the beam.
By the introduced weak formulation of the Euler-Bernoulli beam equation, in the Finite Element

Method, the continuous domain of the beam is discretised into a finite number of elements. Each element
is treated as an individual entity with its own local approximation of the displacement field, typically using
polynomial basis functions. The global system of equations is assembled from the contributions of all
elements, and the resulting system of algebraic equations is solved to obtain the approximate deflections
across the beam. Within each element, the displacement w(x) and the rotation θ(x) are approximated
using shape functions Ni(x). Typically, cubic polynomials are used for w(x) because they can sufficiently
model the curvature due to bending:

w(x) ≈
n∑

i=1

wiNi(x), (5)

θ(x) ≈
n∑

i=1

θiNi(x), (6)

where wi and θi are the nodal values of displacement and rotation, respectively.

3. Physics-informed Extreme Learning Machine
3.1. Physics-informed neural networks
Physics Informed Neural Networks (PINNs) integrate deep learning with physical laws described by
differential equations. This method is particularly useful in scenarios where traditional numerical methods
are computationally expensive or infeasible. PINNs can be effectively applied to solve the Euler-Bernoulli
beam theory, which is governed by a fourth-order differential equation.

The Euler-Bernoulli equation for beam deflection is expressed in Eq.1. To apply PINNs to this problem,
one constructs a neural network N whose output approximates the deflection w(x). The network is
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trained to minimize a loss function that typically includes several terms to ensure both accuracy and
adherence to physical laws:

L(θ) = Ldata(θ) + LPDE(θ) + LBC(θ) (7)

where θ denotes the neural network parameters. In Eq.7, Ldata(θ) represents the data loss:

Ldata(θ) =
1

N

N∑
i=1

|wpredicted(xi)− wactual(xi)|2, (8)

LPDE(θ) denotes the PDE loss which in this case represents the residual of the Euler-Bernoulli equation
computed at several points along the beam:

LPDE(θ) =
1

M

M∑
i=1

∣∣∣∣EI
d4wN
dx4

(xi; θ)− q(xi)

∣∣∣∣2 , (9)

LBC(θ) is the boundary condition loss.

3.2. Physics-informed Extreme Learning Machine (PIELM)
The Extreme Learning Machine (ELM) is a fast learning algorithm for single-hidden layer feedforward
neural networks (SLFNs). This method uniquely assigns input weights and biases randomly and determines
the output weights analytically, circumventing common issues found in gradient-based learning algorithms
like slow convergence and the local minima problem.

ELM is designed to train single-hidden layer feedforward neural networks efficiently. It initializes
the weights and biases of the hidden layer randomly and fixes them throughout the learning process.
The training then involves calculating the output weights that link the hidden layer to the output layer,
significantly simplifying and speeding up the learning process.

For a given training set {(xi, ti)}Ni=1, where xi is an input vector and ti is the corresponding target
output, the operation of the hidden layer in ELM can be represented as follows:

Hβ = T (10)

where H is the hidden layer output matrix, β represents the output weights, and T is the matrix of
target values. The output weights β are typically determined by finding the Moore-Penrose generalized
inverse of H , providing an optimal least-squares solution to this equation:

β = H−1T (11)

The Physics Informed Extreme Learning Machine (PI-ELM) extends the ELM by incorporating
physical laws directly into the learning algorithm, enhancing its application in scientific computing and
engineering disciplines where compliance with physical laws is essential.

In actual implementations, the loss function given in Eq.7 is usually modified to the following
expression,

L(θ) = λ1Ldata(θ) + λ2LPDE(θ) + λ3LBC(θ), (12)

where λs denote the weight of each loss to be considered. Therefore, a basic step to use PIELM to solve a
beam theory is stated as follows:

(i) Assign the input layer weights randomly;
(ii) Get the input layer outputs based on the data, PDE and boundary conditions defined in the problem;

(iii) Assemble the three sets of equations in the form of Hβ = T ;
(iv) Output layer weight vector is given by pseudo-inverse of H .
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Figure 1. Beam Problem

4. Results
We focus on the problem that a beam model, one end is fixed, apply a uniform load on the beam, to solve
for its displacement, with the partial equations:

EI
d2y

dx2
= P (L− y), (13)

which E represents Young Modulus, I represent Second moment of the cross section, P represent Applied
load and L represent the length of the beam. And the boundary conditions y(0) = 0, y′(0) = 0 is also
given. Fig.1 shows the beam problem to be solved. The code for running the PIELM to solve the studies
beam problem is given in the appendix.

For the prediction time shown in Fig.2, for the Extreme Learning Machine (ELM), the three activation
functions exhibit similar trends, with approximately 2 × 10−4 seconds. However, an anomalous point
occurs when the hidden size is 70. Thus, choosing a smaller hidden size may make the sigmoid function
a better option. On the other hand, when it comes to prediction time in the Physics-Informed Neural
Network (PINN) model, the time needed is consistently higher compared to the ELM, indicating that
the ELM is more efficient for solving problems. Additionally, the hyperbolic tangent (tanh) function
consistently takes the longest time to compute. Despite an outlier at a hidden size of 20, both the Rectified
Linear Unit (ReLU) and sigmoid functions are viable options. However, the error margin for the ReLU
function is broader compared to the sigmoid function, indicating more fluctuation. For larger hidden sizes,
the sigmoid function might be preferable. In summary, the Extreme Learning Machine (ELM) is more
efficient than the Physics-Informed Neural Network (PINN) model, and the sigmoid function is effective
for both techniques .
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Figure 2. Prediction time for (a) PINN and (b) PIELM.
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With respect to the data in Fig.3 about the training time of the PIELM, all three activation functions
show an increasing trend. The sigmoid function always requires the most time, the tanh function is second,
and the ReLU function is the most efficient, taking around 0.2 seconds for a hidden size of 80. In the
Physics-Informed Neural Network (PINN) model, the trend and ranking of the activation functions are
similar to those in the ELM, but the training times are significantly longer. For the ReLU function with a
hidden size of 80, the PINN model takes around 25 seconds for training.
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Figure 3. Training time for (a) PINN and (b) PIELM.

Fig.4 gives the errors of the two models compared to the analytical solutions. In the case of the
Extreme Learning Machine (ELM), the tanh function shows a very large error that cannot be displayed
on the graph. On the other hand, the ReLU function exhibits fluctuating errors, varying from 1× 10−9

to 4× 10−9, while the sigmoid function has negligible error. In the Physics-Informed Neural Network
(PINN) model, the ReLU function has a very large error, the tanh function has negligible error, and the
sigmoid function has a small error when dealing with lower hidden sizes, around 0.2.

As demonstrated by Fig.4, the sigmoid function shows the least error in both methods, and the error in
ELM is less than in PINN, making ELM the more accurate approach.
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Figure 4. Prediction errors for (a) PINN and (b) PIELM.

Considering training time, prediction time, and error, the sigmoid function requires relatively less time
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and produces more accurate results. Additionally, the Extreme Learning Machine significantly increases
efficiency.

5. Conclusion
In this study, we examined the efficiency and accuracy of the Physics-Informed Extreme Learning
Machines (PIELM) in solving the Euler-Bernoulli beam problem, comparing its performance against the
traditional Physics-Informed Neural Networks (PINNs). Our results indicate that PIELM consistently
outperforms PINNs in terms of computational efficiency, requiring significantly less time for both training
and prediction tasks.

Among the activation functions tested, the sigmoid function emerged as the most effective,
demonstrating the least error and maintaining stability across different hidden layer sizes. Although the
ReLU function was more efficient in terms of training time, it exhibited larger fluctuations in error, making
the sigmoid function a more reliable choice.

Overall, the PIELM method not only achieves higher computational efficiency but also maintains
accuracy, making it a superior alternative to PINNs for solving partial differential equations, particularly
in the context of beam deflection problems. The findings suggest that PIELM, coupled with the sigmoid
activation function, offers a promising approach for future applications requiring both speed and precision.
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Appendix
Code of the PIELM method:

i m p o r t t o r c h
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i m p o r t t o r c h . nn . f u n c t i o n a l a s F
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
i m p o r t t o r c h . a u t o g r a d as a u t o g r a d
i m p o r t t o r c h . nn as nn
from t o r c h . a u t o g r a d i m p o r t V a r i a b l e
from t i m e i t i m p o r t d e f a u l t t i m e r

i n p u t d a t a = t o r c h . l i n s p a c e ( 0 , 1 , 1 0 0 )
t a r g e t d a t a = i n p u t d a t a **2

d e f c o m p u t e e l m o u t p u t w e i g h t s ( i n p u t d a t a , t a r g e t d a t a , \
h i d d e n l a y e r w e i g h t s , h i d d e n l a y e r b i a s ) :

# Forward p a s s t h r o u g h t h e h id de n l a y e r
# Note : Assuming a s igmoid a c t i v a t i o n f u n c t i o n h e r e
h i d d e n l a y e r o u t p u t = F . s igmoid ( t o r c h . matmul ( i n p u t d a t a , \
h i d d e n l a y e r w e i g h t s ) + h i d d e n l a y e r b i a s )

# C a l c u l a t e p s e u d o i n v e r s e o f h id de n l a y e r o u t p u t
p s e u d o i n v e r s e = t o r c h . p i n v e r s e ( h i d d e n l a y e r o u t p u t )

# Compute o u t p u t l a y e r w e i g h t s
o u t p u t w e i g h t s = t o r c h . matmul ( p s e u d o i n v e r s e , t a r g e t d a t a )

r e t u r n o u t p u t w e i g h t s

# P a r a m e t e r s
i n p u t s i z e = 1
h i d d e n s i z e = 300
o u t p u t s i z e = 1

# Randomly i n i t i a l i z e w e i g h t s and b i a s e s f o r t h e h i dde n l a y e r
h i d d e n l a y e r w e i g h t s = t o r c h . r andn ( i n p u t s i z e , h i d d e n s i z e )
h i d d e n l a y e r b i a s = t o r c h . r andn ( h i d d e n s i z e )

# Assume i n p u t d a t a and t a r g e t d a t a a r e g i v e n as t o r c h .
i n p u t d a t a = t o r c h . l i n s p a c e ( 0 , 1 , 3 0 0 ) [ : , None ]
t a r g e t d a t a = i n p u t d a t a **2

# Compute t h e o u t p u t l a y e r w e i g h t s
o u t p u t l a y e r w e i g h t s = c o m p u t e e l m o u t p u t w e i g h t s ( i n p u t d a t a , \
t a r g e t d a t a , \
h i d d e n l a y e r w e i g h t s , h i d d e n l a y e r b i a s )

# PDE p a r a m e t e r s
E = 1 . 0 # E l a s t i c modulus
I = 1 . 0 # Second moment o f t h e c r o s s s e c t i o n
P = −1.0 # App l i ed l o a d
L = 2 . 0 # l e n g t h o f t h e beam

# P a r a m e t e r s
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i n p u t s i z e = 1
h i d d e n s i z e = 40
o u t p u t s i z e = 1

# Randomly i n i t i a l i z e w e i g h t s and b i a s e s f o r t h e h i dde n l a y e r
h i d d e n l a y e r = nn . L i n e a r ( i n p u t s i z e , h i d d e n s i z e )

p d e p o i n t s = 100
PDE input = t o r c h . l i n s p a c e ( 0 , 1 , p d e p o i n t s )
PDE input = V a r i a b l e ( PDE input [ : , None ] . f l o a t ( ) , \
r e q u i r e s g r a d =True )
BC inpu t = V a r i a b l e ( t o r c h . z e r o s ( 1 ) [ : , None ] . f l o a t ( ) , \
r e q u i r e s g r a d =True )

# T r a i n i n g
t 1 = d e f a u l t t i m e r ( )
# BC t r a i n i n g
o u t b c = t o r c h . t a n h ( h i d d e n l a y e r ( BC inpu t ) )
# PDE t r a i n i n g
o u t p d e = t o r c h . t a n h ( h i d d e n l a y e r ( PDE input ) )
# D i f f e r e n t i a t i o n o f BC p o i n t s
d o u t b c d x = t o r c h . z e r o s ( 1 , h i d d e n s i z e )
f o r i i n r a n g e ( h i d d e n s i z e ) :

d o u t b c d x [ : , i ] = ( a u t o g r a d . g r ad ( o u t b c [ : , i ] , BC input , \
t o r c h . o n e s l i k e ( o u t b c [ : , i ] ) , \
r e t a i n g r a p h =True , c r e a t e g r a p h =True ) [ 0 ] ) . s q u e e z e ( )

# D i f f e r e n t i a t i o n o f PDE p o i n t s
d o u t p d e d x = t o r c h . z e r o s ( p d e p o i n t s , h i d d e n s i z e )
d o u t p d e d x x = t o r c h . z e r o s ( p d e p o i n t s , h i d d e n s i z e )
f o r i i n r a n g e ( h i d d e n s i z e ) :

d o u t p d e d x [ : , i ] = \
( a u t o g r a d . g r ad ( o u t p d e [ : , i ] , PDE input , t o r c h . o n e s l i k e ( \
o u t p d e [ : , i ] ) , \
r e t a i n g r a p h =True , c r e a t e g r a p h =True ) [ 0 ] ) . s q u e e z e ( )
d o u t p d e d x x [ : , i ] = ( a u t o g r a d . g r ad ( d o u t p d e d x [ : , i ] , \
PDE input , \
t o r c h . o n e s l i k e ( d o u t p d e d x [ : , i ] ) , \
r e t a i n g r a p h =True , c r e a t e g r a p h =True ) [ 0 ] ) . s q u e e z e ( )

H bc1 = o u t b c * 50000
K bc1 = t o r c h . z e r o s ( 1 , 1 )

H bc2 = d o u t b c d x * 1000
K bc2 = t o r c h . z e r o s ( 1 , 1 )

H pde = E * I * d o u t p d e d x x
K pde = P *(L− PDE input )

H = t o r c h . c a t ( ( H bc1 , H bc2 , H pde ) , dim =0)
K = t o r c h . c a t ( ( K bc1 , K bc2 , K pde ) , dim =0)
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# C a l c u l a t e p s e u d o i n v e r s e o f h id de n l a y e r o u t p u t
p s e u d o i n v e r s e = t o r c h . p i n v e r s e (H)

# Compute o u t p u t l a y e r w e i g h t s
o u t p u t w e i g h t s = t o r c h . matmul ( p s e u d o i n v e r s e , K)
t 2 = d e f a u l t t i m e r ( )

# P r e d i c t i o n
# Groud t r u t h
g r o u d t r u t h = P* PDE input * * 2 / ( 6 * E* I ) * ( 3 * L− PDE input )
# Forward p a s s t h r o u g h t h e h id de n l a y e r
i n p u t p r e d = t o r c h . l i n s p a c e ( 0 , 1 , p d e p o i n t s ) [ : , None ]

t 1 p = d e f a u l t t i m e r ( )
p r e d i c t i o n = t o r c h . matmul ( t o r c h . s igmoid ( \
h i d d e n l a y e r ( i n p u t p r e d ) ) \
, o u t p u t w e i g h t s )
t 2 p = d e f a u l t t i m e r ( )

e r r o r = t o r c h . mean ( abs ( p r e d i c t i o n − g r o u d t r u t h ) ) / \
t o r c h . max ( abs ( g r o u d t r u t h ) )
p r i n t ( ’ T r a i n i n g Time : ’ , t2 − t1 , ’ P r e d i c t i o n Time : ’ , t2p − \
t1p , ’ E r r o r : ’ , e r r o r . d e t a c h ( ) . i t em ( ) , \
’ Number o f P a r a m e t e r s : ’ , h i d d e n s i z e *2)
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