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Abstract. This paper is based on the optimization of machine learning models such as SVM 

(Support Vector Machine) and LightGBM through the application of PSO (Particle Swarm 

Optimization) and combines shared platform recovery data to provide training material for 
machine models. The goal is to accelerate the parameter configuration of machine learning 

models and enhance the rigor of feature selection through the application of algorithmic models. 

The experimental results show that PSO performs well in optimizing parameters for machine 

learning models like SVM and LightGBM, achieving high levels in evaluation metrics such as 

accuracy, recall, precision, and F1 score. Based on this, a framework is proposed for embedding 

the PSO algorithm into a shared platform architecture, including layers for data collection and 

preprocessing, algorithm integration and optimization, decision support and service, and 

feedback and optimization. This framework allows for precise predictions of user behavior, 

market demand, and other factors, achieving automated scheduling of machine model parameters. 

Keywords: PSO, SVM (Support Vector Machine), LightGBM, Feature Selection. 

1.  Introduction  

With the advent of the big data era, vast amounts of data have generated numerous high-dimensional 

datasets, which are prevalent across various industries. To maintain data integrity and prevent the loss 

of important information during transmission or utilization, the raw data presented to decision-makers 
as reference often contains a large amount of redundant information and attributes unrelated to the 

current decision-learning task. These redundant data and irrelevant attributes not only reduce the 

accuracy of decision-making but also increase the time and spatial complexity of learning algorithms. 

Therefore, before conducting effective research using these high-dimensional datasets, it is necessary to 
perform dimensionality reduction on their attributes and features. The purpose of feature selection is to 

select a subset of relevant features from the original dataset that are related to the study, thereby 

constructing a new feature subset. This reduces learning time while ensuring that the set performance 
indicators are optimized [1]. As a data preprocessing technique, feature selection algorithms have been 

widely applied across various industries. Their integration with industries has solved numerous practical 

problems, such as traffic classification in the smart Internet of Things [2], band selection in remote 
sensing images [3], wide-area motion image registration in aviation [4], and video semantic recognition 

[5]. 

Due to its ability to explore optimal or near-optimal solutions through global search strategies, 

evolutionary feature selection has become a popular technique for solving feature selection problems in 
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recent years [6]. Among many algorithms, the Particle Swarm Optimization (PSO) algorithm, as a 

relatively novel evolutionary optimization technique, has been applied to feature selection problems due 

to its simplicity, ease of implementation, and fast convergence speed [7,8]. 
The PSO algorithm was developed by Kenney and Eberhart in the 1990s, inspired by bird flocking 

behavior. The basic principle of the algorithm is to define a vector space for decision-making, then 

randomly distribute the individual particles (samples) within this space. These particles simulate the 
foraging behavior of birds, searching for optimal solutions by flying through the space based on specific 

mechanisms. In each iteration, particles calculate their fitness based on a fitness function, and through 

ranking, the best position in space is determined to find the optimal solution. Due to its convenience and 

few parameters, PSO has been widely applied in academia. However, when seeking global optimal 
solutions in practice, it is crucial to consider both global and local search capabilities. To enhance the 

applicability of the PSO algorithm, various improvement strategies have been proposed. Notable 

variants include the KPSO algorithm, DPPSO algorithm, among others. In 2002, Agrafiotis [9] was the 
first to apply PSO to feature selection problems, and since then, many PSO-based feature selection 

algorithms have emerged. With the rapid growth of big data and the sharing economy, evolutionary 

optimization with global search capabilities has been applied to distributed feature selection, 
significantly improving the algorithm's global search performance. 

Given the limitations of the PSO algorithm in some scenarios, and to address the needs of this study, 

we introduced the PSO-SVM algorithm. 

The PSO-SVM algorithm was developed by Cortes and Vapnik in 1995 [10] as a supervised learning 
model rooted in statistical learning theory. It has become an important tool for solving classification and 

regression problems in the fields of machine learning and data mining. The core concept of the SVM is 

to identify and establish the optimal classification boundary, achieving efficient classification with 
excellent generalization capabilities and high accuracy. 

Building on this, Suykens further developed the Least Squares Support Vector Machine (LS-SVM) 

in 2001 [11]. This variant innovatively replaced the traditional inequality constraints in SVM with 

equality constraints, significantly simplifying the solution process, albeit at the cost of sacrificing some 
of the model's sparsity. 

Internationally, financial risk prediction has become one of the prominent applications of LS-SVM. 

Kim (2003) [12] successfully introduced SVM into stock price index prediction, validating the 
feasibility and potential of SVM in financial forecasting. Subsequently, Lee (2006) [13] expanded its 

application to corporate credit rating prediction, showcasing the wide application prospects of SVM in 

credit evaluation. Ahn et al. (2010) [14] used the SVM algorithm in constructing a financial crisis early 
warning system, and their research confirmed the effectiveness and value of SVM as a financial risk 

warning model. 

Compared to the PSO algorithm, introducing SVM enhances parameter optimization, eliminating the 

complexity and subjectivity of manually adjusting parameters and thereby improving prediction 
accuracy. Additionally, SVM reduces the search space, and combined with parallel computing, it boosts 

algorithm efficiency and accelerates model training. Thanks to the inherent flexibility and adaptability 

of the SVM algorithm, these improvements lead to automated parameter tuning, achieving a higher level 
of intelligence and automation. 

To further extract the importance of feature variables, LightGBM machine learning model was 

introduced. 
LightGBM is a machine learning model based on gradient boosting decision trees. Its key advantages 

include fast training speed, low memory consumption, and high accuracy. LightGBM uses a split-based 

benchmark and a histogram algorithm, which optimizes the time complexity of the splitting process, 

allowing the model to efficiently learn and handle large datasets. By integrating local histogram 
optimization and exclusive feature bundling techniques, LightGBM can more intelligently manage and 

process features, enhancing the model’s overall performance. 

The main principles of LightGBM can be divided into two aspects: finding the optimal split point 
and learning the tree structure using a leaf-wise growth strategy. In finding the optimal split point, 
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LightGBM uses a histogram technique that classifies data based on features, with each class storing a 

set of samples. For each class, internal sample statistics are collected, and gradient information is used 

to construct histograms. The accumulated histograms are then used to calculate the gradient information 
sum for the left and right classes at a given point, reducing computational complexity. Additionally, 

difference acceleration is used to improve the running speed. After constructing the child leaf histograms, 

LightGBM performs a subtraction operation between the parent and child histograms to obtain the 
histograms for other child leaves. 

The leaf-wise growth strategy refers to how LightGBM grows the tree. Unlike the commonly used 

layer-wise growth algorithm, LightGBM adopts a leaf-wise growth algorithm with depth constraints. In 

this algorithm, only the leaf with the highest split gain is split, unlike layer-wise growth where all nodes 
are split. To prevent potential overfitting, a maximum depth constraint is added when splitting the leaf. 

As a result, compared to the layer-wise growth algorithm, the leaf-wise growth strategy can improve the 

model’s accuracy with the same number of splits. 

2.  Research Design 

2.1.  Data Source 

The data for this study is sourced from user reviews automatically collected by an online platform system. 
In the PSO algorithm, each particle is considered an independent search entity within the search space. 

When a particle is located at the best historical position, assisting the swarm in finding the global optimal 

position, it dynamically adjusts its velocity. Based on this algorithm, platform-sharing economy 

consumption characteristics are identified through the following dimensions: Perceived Transaction 
Cost (CP), Breach Penalty (CB), Convenience (CC), Willingness to Pay (BP), Personal Privacy (SP), 

and Civility (MP). The predicted variable is the willingness to participate in the sharing economy (where 

0 represents no willingness and 1 represents willingness). The advantage of the PSO algorithm lies in 
its ability to comprehensively consider the interactions between different feature units, simulating the 

movement between multiple features to achieve global optimization, thereby producing more accurate 

results. The basic description of the experimental data is shown in Table 1. 

Table 1. Data Source 

Variable Obs Mean Std. Dev. Min Max 

CP 554 3.799639 1.017709 1 5 

CB 554 3.812274 1.097817 1 5 

CC 554 3.945848 1.055748 1 5 

BP 554 3.951264 1.051722 1 5 

SP 554 3.745487 1.125983 1 5 

MP 554 3.882671 1.020029 1 5 

2.2.  Methods 

2.2.1.  PSO-SVM 

The introduction of SVM is primarily based on its ability to effectively classify data while ensuring that 
the separating hyperplane maintains the maximum possible distance from other features. The penalty 

parameter C and the kernel function parameter σ significantly influence the final prediction results. 

In the PSO-SVM hybrid algorithm, multiple particles are first randomly generated, represented by 
m, forming the initial population X = (X1, X2, …, Xm). X represents vectors in the N-dimensional 

Euclidean space, and each particle corresponds to a class label yi, where yi ∈ {−1, 1}, thus forming 

the training set (xi, yi). xi represents the input vector features, including CP, CB, CC, BP, SP, and MP, 
while yi represents the output value associated with xi. A linear regression function is established in the 

high-dimensional feature space: 
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y(x) = WTΦ(x) + b 

Where W is the weight vector of the hyperplane, Φ(x) represents the sample data points, and b is the 

bias term. After initializing a set of particles, they become random particles. During the iterative search 

process, particles adjust their states based on individual best values and global best values to find the 
global optimum. The formula for this adjustment is as follows: 

{
𝑉𝑖,𝑛+1 = 𝜔𝑉𝑖,𝑛 + 𝐶1𝑟1(𝑝𝑖,𝑛 − 𝑥𝑖,𝑛) + 𝐶2𝑟2(𝐺𝑖,𝑛 − 𝑥𝑖,𝑛)(𝑖 = 1,2, … , 𝑚)

𝑥𝑖,𝑛+1 = 𝑥𝑖,𝑛 + 𝑉𝑖,𝑛
 

The fitness of each particle is calculated using the following formula: 

S(x) = min (
yj−y¯j

yj
) (j = 1,2, … , J) 

2.2.2.  LightGBM 

The LightGBM model has been widely applied in various fields. For instance, Amin et al. used the 

LightGBM model in the construction industry, while Kim combined LightGBM with XGBoost to build 

a ship electricity demand forecasting model. Zhong J. utilized the LightGBM model to predict PM2.5 
levels at different times of the day. The successful application of the LightGBM model in these fields 

demonstrates its effectiveness and success. 

LightGBM Model Building Process is as follows: 
The initialization process begins with the following formula: 

f0(x) = argcmin∑L(yi, c)

N

i=1

 

Negative Gradient Residual of the Loss Function: 

rmi = −{
∂L[yi,f(xi)]

∂f(xi)
}
f(x)=fm−1(x)

 

Minimization of the Loss Function: 

cmj=argcmin ∑ L[yi, fm−1(xi) + c]

xi∈Rmj

 

Update of Regression Tree: 

fm(x) = fm−1(x) +∑cmjI

J

j=1

 

After completing the iterations, the final LightGBM model can be expressed as: 

∑fM(x) = ∑ ∑cmjI

J

j=1

M

m=1

 

3.  Results 

3.1.  PSO-SVM Model Prediction 

The training ratio was first set to 0.7, and the number of iterations for the Particle Swarm Optimization 
(PSO) algorithm was set to 1000. Using RMSE (Root Mean Square Error) as the fitness function, the 

PSO algorithm was employed to search for the optimal cost and gamma parameters for the SVM model. 

The best RMSE was found to be 0.07844671, with a corresponding cost of 5.3092488 and a gamma of 
0.5643647. The performance of the model on the training set is illustrated in Figure 1. 
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Figure 1. PSO-SVM Model Prediction Performance 

3.2.  PSO-LightGBM Model Prediction and Feature Extraction 

Since the SVM model cannot directly measure the importance of extracted feature variables, the PSO 

algorithm was used again with RMSE as the fitness function to search for optimal configuration 
parameters for the LightGBM model. The prediction performance of the model is shown in Table 2. 

Table 2. PSO-LightGBM Model Prediction Performance 

 Accuracy Recall Precision F1 

Training Set 0.961 0.961 0.961 0.961 

Test Set 0.928 0.928 0.928 0.928 

 

Figure 2. The Importance of Feature Variables in Predicting the Results 

The data from Figure 2 indicates the importance ranking of each influencing factor as follows: SP 
(Personal Privacy), CB (Breach Penalty), MP (Civility), CC (Convenience), BP (Willingness to Pay), 

and CP (Perceived Transaction Cost). It can be seen that users are most concerned about personal privacy, 
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followed by breach penalties, civility, convenience, willingness to pay, and perceived transaction costs. 

When designing and implementing the platform in the future, the infrastructure should consider this 

order when setting platform functionalities to improve adaptability, user acquisition, and usage rates. 
Privacy should be prioritized as a key focus in development, followed by the design of the breach penalty 

system. The remaining functional modules should be developed in sequence, with attention to the 

platform's overall collaborative development. 

3.3.  PSO Robustness of the PSO Algorithm 

To verify the robustness of the PSO algorithm, a similar process was applied using a random forest 

model to predict feature variables. The prediction results are shown in Table 3, and the feature extraction 

of the random forest model is illustrated in Figure 3. 

Table 3. PSO-Random Forest Model Prediction Performance 

 Accuracy Recall Precision F1 

Training Set 0.979 0.979 0.979 0.979 

Test Set 0.892 0.892 0.892 0.892 

 

Figure 3. The Feature Extraction for the PSO-Random Forest Model 

By using the PSO algorithm for parameter optimization, the random forest model also achieved good 
prediction performance, with only slight differences in the extraction of key features. 

4.  Practical Implications 

By embedding the PSO algorithm into the various layers of a shared platform architecture, it is possible 

to achieve accurate predictions of user behavior and market demand while automating the adjustment 
of machine model parameters. The key elements include high-quality data collection and processing, 

effective algorithm integration and optimization, real-time decision support, and continuous feedback 

and improvement. Following these steps can enhance the platform's intelligence, optimize resource 
allocation, and improve user experience. 

4.1.  Data Collection and Preprocessing Layer 

The first step is to collect and process data related to user behavior and market demand for subsequent 

analysis and optimization. First, collect data from multiple sources, such as user interaction records, 
market transaction data, and sensor data, ensuring that the data is comprehensive and has a sufficient 

sample size. Second, handle missing values, outliers, and noise to ensure data quality. Third, Standardize 
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and normalize the data, perform feature engineering (e.g., feature selection, feature extraction), to 

enhance the model's accuracy. 

4.2.  Algorithm Integration and Optimization Layer 
The goal of this layer is to integrate the PSO algorithm into the shared platform and optimize its 

parameters to improve prediction and scheduling performance. The first step is to define the PSO 

algorithm’s objective function. For example, the objective function for user behavior prediction could 
be minimizing prediction error, while market demand prediction could aim to maximize forecast 

accuracy. Set the parameters for the PSO algorithm, including the number of particles, iterations, and 

learning factors. The second step is to use the processed data to train predictive models (e.g., regression 

models, time-series models). Employ the PSO algorithm to optimize model parameters, such as tuning 
hyperparameters to improve prediction accuracy. The PSO algorithm continuously updates model 

parameters and iterates until the predefined optimization goal is reached. Last, once optimized, integrate 

the PSO algorithm into the platform’s computational framework to ensure that it can run in real-time or 
on a scheduled basis to update model parameters continuously. 

4.3.  Decision Support and Service Layer 

The purpose of this layer is to utilize the optimized model for predictions and to provide decision support 
services. First, use the optimized model to predict user behavior, market demand, etc. Generate 

prediction reports or real-time dashboards displaying data. And provide decision support functionalities, 

such as recommendation systems or demand forecasting analyses. Based on prediction results, 

automatically adjust machine parameters or resource allocation strategies. Implement an automated 
scheduling system that transforms the predictions into actionable operational instructions. 

4.4.  Feedback and Optimization Layer 

The Feedback and Optimization Layer is designed to monitor the results of predictions and scheduling 
while continuously optimizing the algorithm and model. First, collect real performance data from the 

predictions and scheduling outcomes, and evaluate their effectiveness. Periodically gather user feedback 

and market responses to assess the real-world impact of the predictions and scheduling. The second step 

is model adjustment. Based on actual performance and feedback, adjust the parameters of the PSO 
algorithm and the model structure. This may involve reprocessing data and retraining models. Iteratively 

optimize the PSO algorithm to further improve prediction accuracy and scheduling efficiency. The last 

step is continuous improvement. Regularly evaluate the performance of the model and optimize the 
algorithm to adapt to changing market conditions and user behavior. 

A system architecture diagram based on the above design is shown in Figure 4: 

 

Figure 4. System Architecture Diagram 
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5.  Conclusion 

The use of the PSO algorithm significantly accelerates the training speed of machine learning models 

by improving the speed of parameter optimization, allowing the optimal parameter combination to be 
quickly identified. Since the performance of machine learning models heavily depends on parameter 

selection, traditional methods such as grid search and random search, while straightforward, tend to be 

inefficient. When faced with a large parameter space, the PSO algorithm, by simulating bird flock 
foraging behavior and utilizing information sharing and collaboration between particles, can more 

rapidly find the optimal parameter combination, thus speeding up the training process and significantly 

reducing training time. In addition to accelerating the training process, PSO improves model 

performance by enhancing both accuracy and generalization capability. The application of the PSO 
algorithm also greatly saves computational resources, which is especially important for embedded 

systems or mobile devices, optimizing energy usage efficiency. For large-scale data analysis and 

computational systems, this means a substantial reduction in energy consumption and operational costs. 
The algorithm's flexibility and broad applicability also improve when embedded in such systems. Since 

the SVM model cannot perform feature extraction, the LightGBM model was introduced to handle 

feature extraction. LightGBM, a highly efficient gradient boosting framework, helps reduce memory 
consumption, enabling the system platform to operate with high efficiency and low memory usage. 

However, the PSO algorithm has limitations, such as a tendency to fall into local optima rather than 

finding the global optimum, which can affect final decision-making outcomes. Additionally, the 

sensitivity of parameter tuning can increase the difficulty of integrating the algorithm into the platform 
and, as the data volume increases, it may lead to increased computational complexity, affecting the 

platform’s real-time capabilities and response speed. These challenges highlight key areas for future 

research and improvement. 
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