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Abstract. This paper focuses on the introduction and proof of the fundamental properties of 𝜻(𝒛), 

i.e. Riemann zeta function and explores its applications in algebra. We begin with a systematic 

derivation and proof of the basic characteristics of the zeta function. Following this, we examine 

its application in algebra, including the use of the Dirichlet L-function to prove Dirichlet’s 

theorem. Furthermore, we show the classical result for the subgroup growth rate of 𝓙-groups and 

the enumeration of n-dimensional irreducible representations of Heisenberg groups. 
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1.  Introduction 

The discovery of zeta function can be traced back to around 1350, French mathematician Nicole Oresme 

identified the divergence of harmonic series.∑
1

𝑘
∞
𝑘=1   

Several methods can be employed to prove this result: 

Riemann sum: Transform the series into ∫
1

𝑥

1

0
𝑑𝑥 

Scaling: 

∑
1

𝑛

∞

𝑛=1

= 1 +
1

2
+ (

1

3
+

1

4
) + (

1

5
+

1

6
+

1

7
+

1

8
) + ⋯

≥ 1 +
1

2
+ (

1

4
+

1

4
) + (

1

8
+

1

8
+

1

8
+

1

8
) + ⋯

= 1 +
1

2
+

1

2
+ ⋯ = +∞

 

Scaling again: 
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∑
1

𝑛

∞

𝑛=1

= (1 +
1

2
+ ⋯ +

1

9
) + (

1

10
+

1

11
+ ⋯ +

1

99
) + ⋯

> (
1

10
+

1

10
+ ⋯ +

1

10
) + (

1

100
+

1

100
+ ⋯ +

1

100
) + ⋯

=
9

10
+

9

10
+ ⋯ = +∞

 

Using the inequality 𝑥 > ln(𝑥 + 1): 

In 1644, Pietro Mengoli posed the Basel problem: calculating the sum ∑
1

𝑛2
∞
𝑛=1 .It was first addressed 

by Euler in 1735 using identity 

𝑠𝑖𝑛𝑥

𝑥
= 1 −

𝑥2

3!
+

𝑥4

5!
+ ⋯ = ∏ [1 −

𝑥2

(𝑛𝜋)2
]

∞

𝑛=1

 

Compare the coefficients of the term 𝑥2, it follows that 

∑
1

𝑛2

∞

𝑛=1

=
𝜋2

6
 

Moreover, Parseval’s identity can be applied to solve this problem: 

∑ |𝐶𝑛|2

∞

𝑛=−∞

=
1

2𝜋
∫ |𝑓(𝑥)|2

𝜋

−𝜋

𝑑𝑥 

where 𝐶𝑛 =
1

2𝜋
∫ 𝑓

𝜋

−𝜋
(𝑥)𝑒−𝑖𝑛𝑥𝑑𝑥 denotes the Fourier coefficient. 

𝑓(𝑥) = 𝑥 = 2 ∑(−1)𝑘+1

∞

𝑘=1

sin𝑘𝑥

𝑘
 

We obtain 4 (1 +
1

22 +
1

32 + ⋯ ) =
1

𝜋
∫ 𝑥2𝜋

−𝜋
𝑑𝑥 =

2𝜋2

3
, leading to the solution ∑

1

𝑛2
∞
𝑛=1 =

𝜋2

6
 

The Basel problem can also be addressed using complex analysis. Let 

𝐼 = ∫ ln(2cosx)

𝜋
2

0

𝑑𝑥 

Since 2cos𝑥 = 𝑒𝑖𝑥 + 𝑒−𝑖𝑥, 

𝐼 = ∫ ln

𝜋
2

0

(𝑒𝑖𝑥 + 𝑒−𝑖𝑥) = ∫ ln

𝜋
2

0

[𝑒𝑖𝑥(1 + 𝑒−2(𝑖𝑥))] =
𝑖𝜋2

8
+ ∫ ln

𝜋
2

0

(1 + 𝑒−2(𝑖𝑥))𝑑𝑥 

Expanding ln(1 + 𝑒−2𝑖𝑥) into a Taylor series, we have 

∫ ln

𝜋
2

0

(1 + 𝑒−2𝑖𝑥) =
1

𝑖
∑

1

(2𝑘 + 1)2

∞

𝑘=0

=
3

4𝑖
𝜁(2) 

Consequently, we find 

𝐼 = 𝑖 (
𝜋2

8
−

3

4
𝜁(2)) 

Since 𝐼 is a real number, it follows that 

(
𝜋2

8
−

3

4
𝜁(2)) = 0 ⇒ 𝜁(2) =

𝜋2

6
 

Building on the divergent harmonic series and the classical Bessel problem, we now turn our attention 

to the research of zeta function: 

Definition 1.1. 𝜁(𝑧) = ∑ 𝑛−𝑧∞
𝑛=1  

The zeta function not only generalizes the concept of series but also encapsulates profound 

connections between various mathematical fields, including number theory and algebra. In the following 
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chapters, we will first prove the preliminary properties of the zeta function, which were initially 

proposed by Riemann and have since been rigorously formalized by generations of mathematicians. We 

will also explore the applications of the zeta function in series calculation and algebra. 

2.  Basic Property of Riemann Zeta function 

When discussing the 𝜁(𝑧), an essential characteristic is the Euler Product Formula. Euler initially 

discovered that 𝜁(𝑧) can be represented as a product of factors corresponding to prime numbers. 

Proposition 2.1. For 𝑧 > 1, 𝜁(𝑧) = ∏ (1 −
1

𝑝𝑧)
−1

p is prime  

Proof. 

∏ (1 −
1

𝑝𝑧)
−1

p is prime = (1 −
1

2𝑧)
−1

(1 −
1

3𝑧)
−1

⋯

= (1 +
1

2𝑧 +
1

22𝑧 + ⋯ ) (1 +
1

3𝑧 +
1

32𝑧 + ⋯ ) ⋯

= ∏ ∑
1

𝑝𝑖𝑧
∞
𝑖=0p is prime

  

∀𝑁 ∈ ℤ, let 𝑁 = 𝑝1
𝑎1 ⋯ 𝑝𝑛

𝑎𝑛. Then 
1

𝑁𝑧 = ∏
1

𝑝
𝑖

𝑎𝑖
𝑛
𝑖=1 , ∑

1

𝑁𝑧𝑁≥1 = ∏ ∑
1

𝑝𝑖𝑧
∞
𝑖=0p is prime   

In fact, this formula can be generalized to apply to multiplicative functions: 

Theorem 2.2. (Smith, 1983) Consider 𝐿(𝑥) ∈ ℓ1 that respects the property 𝐿(𝑥𝑦) = 𝐿(𝑥)𝐿(𝑦), then 

∑ 𝐿∞
𝑥=1 (𝑥) = ∏ (1 + 𝐿(𝑝) + 𝐿(𝑝2) + ⋯ )p is prime  

Proposition 2.1 gives an approximate characterization for the roots of 𝜁(𝑧). If 𝜌 is a root for 𝜁(𝑧), 

then for some prime 𝑞, (1 −
1

𝑞−𝑧)
−1

= 0, which implies that Re(𝑧) ≤ 1. In other words, the function 

𝜁(𝑧) is free of zeron in the half-plane where Re(𝑧) > 1. 

Conversely, by taking the logarithm of both sides, we derive an alternate expression of the Euler 

Product Formula: 

Corollary 2.3. Let 𝛬(𝑛) = {
ln𝑝, 𝑛 = 𝑝𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, then∑ 𝛬∞

𝑛=1 (𝑛)
1

𝑛𝑧 = −
𝜁′(𝑧)

𝜁(𝑧)
 

Proof. Applying a logarithmic transformation followed by differentiation, it follows that 

−
𝜁′(𝑧)

𝜁(𝑧)
= ∑

ln𝑝

𝑝𝑧−1p is prime = ∑ ∑ (ln𝑝)∞
𝑗=1p is prime

1

𝑝𝑗𝑧

= ∑ ∑ (ln𝑝)p is prime
∞
𝑗=1

1

𝑝𝑗𝑧

= ∑ 𝛬∞
𝑗=1 (𝑗)

1

𝑗𝑧

  

Understanding 𝜁(𝑧) near 𝑧 = 1 is crucial, as 𝜁(1) diverges to infinity. Additionally, 

Proposition 2.4. lim
𝑧→1

𝜁(𝑧)

(𝑧−1)−1 = 1 

Proof. Since the function 𝑡−𝑧 decreases monotonically as 𝑡 increases for a fixed z, it follows that 
1

(𝑛+1)𝑧 < ∫
1

𝑡𝑧

𝑛+1

𝑛
 𝑑𝑡 <

1

𝑛𝑧 By summing this inequality over 1 to ∞, 𝜁(𝑧) − 1 < ∫
1

𝑡𝑧

∞

1
 𝑑𝑡 < 𝜁(𝑧) Since 

∫
1

𝑡𝑧

∞

1
 𝑑𝑡 = (𝑧 − 1)−1 ⇒ 1 <

𝜁(𝑧)

(𝑧−1)−1 < 𝑧. As 𝑧 approaches 1, we find that lim𝑧→1(𝑧 − 1)𝜁(𝑧) = 1.  

Through some transformations and calculations, we can obtain another form of this proposition: 

Corollary 2.5. lim
𝑧→1

ln𝜁(𝑧)

−ln(𝑧−1)
= 1 

Typically, the Riemann zeta function is not used with 𝑧 as a real number where 𝑧 > 1, but rather by 

treating 𝑧 as a complex number and considering the region where 𝑅𝑒(𝑧) ≤ 1. Consequently, extending 

𝜁(𝑧) analytically to cover the entire complex plane is crucial, as highlighted in: 

Theorem 2.6. 𝜁(𝑧) can be extended to the entire ℂ. Its only singularity is at 𝑧 = 1, where the residue 

is 1 
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The elementary techniques employed in this proof are partial summation and the Stieltjes integral. 

The former transforms sums into more manageable sums or integrals, while the latter does the opposite 

by converting sums into integrals. One can find the proof in Book (lvic, 1949) 

The analytic extension of 𝜁(𝑧) is crucial for exploring the distribution of its zeros. J. Hadamard once 

proved that 𝜁(𝑧) does not vanish on {𝑧 ∈ ℂ|Re(𝑧) = 1}: 

Proposition 2.7. ∀𝑦 ∈ ℝ, 𝜁(1 + 𝑖𝑦) ≠ 0 

Proof. 

Assuming that 1 + 𝑖𝑦 is a m-order zero. Theorem 7 implies that 1 + 𝑖𝑦 is a first-order pole with 

residue 𝑚 ≥ 1 for the function 
𝜁′(𝑧)

𝜁(𝑧)
. Consequently, for 𝛼 > 1 but sufficiently close to 1, we obtain 

𝜁′(𝛼+𝑖𝑦)

𝜁(𝛼+𝑖𝑦)
=

𝑚

𝛼−1
+ 𝑜 (

1

𝛼−1
) Given that 1 is a pole of 𝜁(𝑧) with residue 1, we get 

𝜁′(𝛼)

𝜁(𝛼)
=

−1

𝛼−1
+ 𝑜 (

−1

𝛼−1
) 

Let 
𝜁′(𝛼+2𝑖𝑦)

𝜁(𝛼+2𝑖𝑦)
=

𝑘

𝛼−1
+ 𝑜 (

𝑘

𝛼−1
) Where 𝑘 = 0 if 𝜁(1 + 2𝑖𝑦) ≠ 0, 𝑘 ≥ 1 if 𝜁(1 + 2𝑖𝑦) = 0. Therefore, 

𝑅𝑒 (
𝜁′(𝛼+2𝑖𝑦)

𝜁(𝛼+2𝑖𝑦)
+

3𝜁′(𝛼)

𝜁(𝛼)
+

4𝜁′(𝛼+𝑖𝑦)

𝜁(𝛼+𝑖𝑦)
) =

𝑘−3+4𝑚

𝛼−1
+ 𝑜 (

𝑘−3+4𝑚

𝛼−1
) > 0  On the other hand, by 4, 

𝑅𝑒 (
𝜁′(𝛼+2𝑖𝑦)

𝜁(𝛼+2𝑖𝑦)
+

3𝜁′(𝛼)

𝜁(𝛼)
+

4𝜁′(𝛼+𝑖𝑦)

𝜁(𝛼+𝑖𝑦)
) = − ∑ 𝛬∞

𝑗=1 (𝑗)
1

𝑗𝛼 (cos(2𝑡ln𝑗) + 3 + 4cos(𝑡ln𝑗))

= − ∑ 2∞
𝑗=1 𝛬(𝑗)

1

𝑗𝛼
(1 + cos(𝑡ln𝑗)2) ≤ 0

  

This is contradiction. Thus 𝜁(1 + 𝑖𝑦) ≠ 0 for all 𝑦 ∈ ℝ.  

In the next part, we will introduce a symmetric form of the zeta function based on its functional 

equations. These are fundamental results in zeta function theory, originally proven by Riemann. The 

three equivalent functional equations are given by: 

Proposition 2.8. (cf. (Smith, 1983), Theorem 1.6) For all complex 𝑧, let 𝑍(𝑧) =
1

𝜋𝑧/2 𝛤 (
𝑧

2
) 𝜁(𝑧), then 

𝑍(𝑧) = 𝑍(1 − 𝑧) 

This equation for the zeta function implies that ∀𝑠 ∈ ℂRe(𝑠)<0, 𝑠 is not a root for 𝜁(𝑧). Because if 𝜌 

is a root of 𝜁(𝑧), then 1 − 𝜌 is also a root. In summary, we conclude that the strip 0 ≤ Re(𝜌) < 1 

contain every nontrivial zero of 𝜁(𝑧) 

Next, we will explore specific values of 𝜁(𝑧) and examine how to compute series associated with it. 

The zeta function’s values at positive even integers can be determined using the recurrence relation 

provided below: 

Proposition 2.9. 𝜁(2𝑛) = ∑
(−1)𝑘+1𝜋2𝑘𝜁(2𝑛−2𝑘)

(2𝑘+1)!
𝑛
𝑘=1  

The validity of this formula can be easily demonstrated with mathematical induction.Or we can just 

compare the coefficients of the terms in the Taylor series and product expansion of 
sin𝑥

𝑥
 and obtain it by 

inference. 

Zeta function’s value at negative integers can be obtained using the following expression of zeta 

function(One can prove it readily by proving that the definite integral in the formula equals 𝜁(𝑧)𝛤(𝑧)): 

Proposition 2.10. 𝜁(𝑧) =
1

𝛤(𝑧)
∫

𝑥𝑧−1

𝑒𝑥−1

∞

0
𝑑𝑥 

Corollary 2.11. 𝜁(−𝐾) = (−1)𝐾 𝐵𝐾+1

𝐾+1
, ∀𝐾 ∈ ℤ+ 𝐵𝐾 denotes the Bernoulli number 

Ramanujan also offered a simple method to calculate 𝜁(−𝐾),that is: Let 𝐴 = 1𝐾 + 2𝐾 + ⋯ and 𝐵 =
1𝐾 − 2𝐾 + ⋯, then A adds B and B adds itself by dislocation for a few times,but in contrast, the 

aforementioned method is much more persuasive. 

The following results from Aries in Zhihu shows the series related to zeta function: 

Proposition 2.12. ∑ 𝑥2𝑘∞
𝑘=1 𝜁(2𝑘) =

1

2
−

𝜋

2
𝑥cot𝜋𝑥 

Proof. 

sin𝜋𝑥

𝜋𝑥
= ∏ (1 −

𝑥2

𝑛2)

∞

𝑛=1

⇒ lnsin𝜋𝑥 − ln𝜋𝑥 = ∑ ln

∞

𝑛=1

(1 −
𝑥𝑛

𝑛2) 
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Take the derivative, we have 

𝜋𝑥cot𝜋𝑥 = 1 − 2 ∑ 𝑥2𝑘

∞

𝑘=1

𝜁(2𝑘) ⇒ ∑ 𝑥2𝑘

∞

𝑘=1

𝜁(2𝑘) =
1

2
−

𝜋

2
𝑥cot𝜋𝑥 

Corollary 2.13. ∑
𝜁(2𝑘)

4𝑘
∞
𝑘=1 =

1

2
, ∑

𝜁(2𝑘)

16𝑘
∞
𝑘=1 =

1

2
−

𝜋

8
 

Proof. Just take x =
1

2
 and x =

1

4
 in Proposition 2.13, we will arrive at the answer.  

Corollary 2.14. ∑
𝜁(4𝑘)

4𝑘
∞
𝑘=1 =

𝜋

4√2
(cot

𝜋

√2
+ coth

𝜋

√2
) 

Proof. Substitute 𝑖𝑥 for 𝑥 in Proposition 13, we have 

∑(−1)𝑘

∞

𝑘=1

𝑥2𝑘𝜁(2𝑘) =
1

2
−

𝜋

2
𝑥coth𝜋𝑥 

Adding 2.12 and [4], then taking 𝑥 =
1

√2
, we have 

∑
𝜁(4𝑘)

4𝑘

∞

𝑘=1

=
𝜋

4√2
(cot

𝜋

√2
+ coth

𝜋

√2
) 

Corollary 2.15. ∑ [𝜁(2𝑘) − 1]∞
𝑘=1 =

3

4
 (a) 

Proof. Using the identity 

∑ 𝑥2𝑘

∞

𝑘=1

=
𝑥2

1 − 𝑥2
 

Then By Proposition 13 and take the limit 𝑥 → 1, we can prove the result. ◻ 

Corollary 2.16. ∑ [𝜁(2𝑘) − 𝜁(2𝑘 + 1)]∞
𝑘=1 =

1

2
  

∑ [𝜁(2𝑘 + 1) − 1]∞
𝑘=1 =

1

4
  

∑ [𝜁(𝑘) − 1]∞
𝑘=1 = 1  

Proof. Denote the three series with (b),(c) and (d) from top to bottom. (b) is quite simple, we just 

calculate it directly with 𝜁(𝑧) = ∑
1

𝑛𝑧
∞
𝑛=1  (c)=(a)-(b) and (d)=(a)+(c) 

Following are the amazing conclusions which demonstrate that zeta function is also related to 

trigonometric functions. 

Proposition 2.17. 
∑

cos𝑛

𝑛2𝑘
∞
𝑛=1 = (−1)𝑘 𝜋

2(2𝑘−1)!
+ ∑ (−1)𝑖∞

𝑎=0
𝜁(2𝑘−2𝑎)

(2𝑎)!

∑
sin𝑛

𝑛2𝑘+1
∞
𝑛=1 = (−1)𝑘 𝜋

2(2𝑘)!
+ ∑ (−1)𝑖∞

𝑎=0
𝜁(2𝑘−2𝑎)

(2𝑎+1)!

 

Obviously, the formula of Fourier Series is a nice proof for the aforementioned two series. We can 

also take several fixed positive integer k and it will be quite easy to conclude the formula by inference. 

3.  Dirichlet Theorem 

This section aims to prove the Dirichlet Theorem by the technique of zeta function: 

Theorem 3.1. Assume 𝑎 and 𝑚 are coprime integers. Define 𝑃(𝑎, 𝑚) as the set of prime numbers 𝑝 

that satisfy 𝑝 ≡ 𝑎 𝑚𝑜𝑑 𝑚. Then 𝑃(𝑎, 𝑚) contains infinitely many elements. 

Based on the generalization of the zeta function, we can approach the proof. In general, for an 

arithmetic function, the Dirichlet L-function associated with 𝜆 is defined by 

𝐿(𝑧, 𝜆) = ∑ 𝜆

∞

𝑛=1

(𝑛)𝑛−𝑧 

Proposition 2.1 holds for 𝐿(𝑧, 𝜆) if 𝜆 is multiplicative, we have 

Proposition 3.2. Let 𝐿(𝑧, 𝜆) be the Dirichlet L-function with respect to 𝜆, then 𝐿(𝑧, 𝜆) = ∏p is prime

1

(1−𝜆(𝑝)𝑝−𝑧)

−1
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More importantly, we investigate the properties of ln𝐿(𝑧, 𝜆). By taking the logarithm of the above 

expression, we obtain: 

Proposition 3.3. ln𝐿(𝑧, 𝜆) = ∑ 𝜆p is prime (𝑝)
1

𝑝𝑧 + 𝑅(𝑧) Where 𝑅(𝑧) remains bounded as 𝑧 → 1 

Proof. Only need to prove ln𝜁(𝑧) = ∑
1

𝑝𝑧p is prime + 𝑅(𝑧)  By proposition 2, Let 𝜁(𝑧) = ∏𝑝≤𝑀

(1 −
1

𝑝𝑧)
−1

𝜆𝑀(𝑧),  𝜆𝑀(𝑧) → 1,  𝑀 → ∞  

So ln𝜁(𝑧) = ∑ −𝑝≤𝑀 ln (1 −
1

𝑝𝑧) + ln𝜆𝑀(𝑧)  Since 𝑝−𝑧 < 1 , we have ln (1 −
1

𝑝𝑧) =

− ∑
1

𝑛𝑝−𝑛𝑧
∞
𝑛=1 Thus as 𝑀  approaches infinity, 

ln𝜁(𝑧) = ∑ ∑
1

𝑘
∞
𝑘=1𝑝

1

𝑝𝑘𝑧 = ∑ ∑
1

𝑘𝑝𝑘𝑧
∞
𝑘=1𝑝 = ∑

1

𝑝𝑝 + ∑ ∑
1

𝑘𝑝𝑘𝑧
∞
𝑘=2𝑝

= ∑
1

𝑝2𝑧𝑝 (1 −
1

𝑝𝑧)
−1

≤ (1 − 2−𝑧)−1 ∑
1

𝑝2𝑧𝑝 ≤
𝜋2

3

 Therefore, ln𝜁(𝑧) ∼ ∑𝑝

1

𝑝𝑧 Since 𝜆 is a character of ℤ/𝑚ℤ, for 𝑝 ∣ 𝑚, 𝜆(𝑝) = 0. Therefore the above product is equals to 

ln𝐿(𝑧, 𝜆) = ∑ 𝜆

𝑝∤𝑚

(𝑝)𝑝−𝑧 + 𝑅(𝑧) 

From Proposition 3.2 and Corollary 2.5, we can define a meaningful quantity to characterize the 

density of a specific set of prime numbers: 

Definition 3.4. Assume 𝒫 is a set of positive primes. If the limit 𝑑(𝒫) : = 𝑙𝑖𝑚
𝑧→1

∑ 𝑝−𝑧
𝑝∈𝒫

−𝑙𝑛(𝑧−1)
exists, we 

called 𝒫 has Dirichlet density. 

The basic fact of Dirichlet density is 

𝑑(𝒫) = {
0, 𝒫 is limited

1, 𝒫 consists of all but finitely many positive primes
 

In that cases, Theorem 3.1 is equivalent to 𝑑(𝒫(𝑎, 𝑚)) > 0. 

Now we can prove Theorem 19: 

Proof. Let 𝐿(𝑧, 𝜆) be the Dirichlet L-function with respect to 𝜆, where 𝜆 is a character of ℤ/𝑚ℤ. Since 
|𝜆(𝑛)| = 1 ⇒ |𝜆(𝑛)𝑛−𝑠| ≤ 𝑛−𝑠 , 𝐿(𝑧, 𝜆) converges and continuous for 𝑧 > 1. Now define 𝐺(𝑧, 𝜆) =

∑ ∑ (
1

𝑘
)𝑘=1q is prime 𝜆(𝑞𝑘)

1

𝑞𝑘𝑧  It also converges and continuous for 𝑧 > 1 . Additionally, for any 

complex number 𝑠 with |𝑠| < 1, we have exp (∑
1

𝑘
∞
𝑘=1 𝑠𝑘) = (1 − 𝑠)−1  Substituting 𝑠 = 𝜆(𝑞)

1

𝑞𝑧, we 

obtain exp (∑
1

𝑘
∞
𝑘=1 𝜆(𝑞𝑘)

1

𝑞𝑘𝑧) = (1 − 𝜆(𝑞)
1

𝑞𝑧)
−1

 Therefore, exp𝐺(𝑧, 𝜆) = 𝐿(𝑧, 𝜆). By Proposition 21, 

𝐺(𝑧, 𝜆) = ∑ 𝜆𝑞∤𝑚 (𝑞)
1

𝑞𝑧 + 𝑅𝜆(𝑧)  where lim𝑧→1𝑅𝜆(𝑧) < ∞ . Through some transformations and 

calculations, we have ∑ 𝜆(𝑎)𝜆 𝐺(𝑧, 𝜆) = ∑
1

𝑞𝑠𝑞∤𝑚 ∑ 𝜆(𝑎)𝜆 𝜆(𝑞) + ∑ 𝜆(𝑎)𝜆 𝑅𝜆(𝑧)  By utilizing the 

orthogonality of the characters(cf. (Kenneth Ireland, 2000) Proposition 16.3.2) ∑ 𝜆(𝑎)𝜆 𝐺(𝑧, 𝜆) =

𝜓(𝑚) ∑ 𝑞−𝑧
𝑞≡𝑎 mod 𝑚 + 𝑅𝜆,𝑎(𝑧)  Dividing −ln(𝑧 − 1)  on both sides, 

𝑅𝜆,𝑎(𝑧)

ln(𝑧−1)
−

𝐺(𝑧,𝜆0)

ln(𝑧−1)
−

∑ 𝜆(𝑎)𝜆≠𝜆0 𝐺(𝑧,𝜆)

ln(𝑧−1)
= 𝜓(𝑚)𝑑(𝒫(𝑎, 𝑚))  Since 𝑅𝜆,𝑎(𝑧)  is bounded as 𝑧 → 1 , lim

𝑧→1

𝑅𝜆,𝑎(𝑧)

ln(𝑧−1)
= 0  Notice that 

𝐺(𝑧, 𝜆0) = ∑ ln𝜆∣𝑚 (1 − 𝜆−𝑧) + ln𝜁(𝑧). By Proposition 5, lim
𝑧→1

𝐺(𝑧,𝜆0)

ln(𝑧−1)
= −1 It remains to prove that 

𝐺(𝑧, 𝜆) remains bounded as 𝑧 → 1 forall nontrival character 𝜆. It’s equivalent to prove 𝐿(𝑧, 𝜆) can be 

extended to half complex plane and 𝐿(1, 𝜆) ≠ 0 forall nontrival character. The first assertion is similar 

to Theorem 7. For the second assertion, summing over 𝜆 on both sides of 𝐺(𝑧, 𝜆) = ∑ ∑𝑘=1q is prime

(
1

𝑘
) 𝜆(𝑞𝑘)𝑞−𝑘𝑠 we have ∑ 𝐺𝜆 (𝑧, 𝜆) = 𝜓(𝑚) ∑

1

𝑘𝑞𝑘≡1 mod 𝑚 𝑞−𝑘𝑧  Since RHS ≥ 0 , we take the 

exponential of both sides: 𝐹(𝑧) : = ∏ 𝐿𝜆 (𝑧, 𝜆) ≥ 1, ∀𝑧 > 1 . Now Firstly we prove that if 𝜆  is a 
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nontrivial complex character of ℤ/𝑚ℤ , then 𝐿(1, 𝜆) ≠ 0 :Assumed 𝐿(1, 𝜆) = 0 , then 𝐿(𝑧, 𝜆) =

𝐿(𝑧, 𝜆)implies 𝐿(1, 𝜆) = 0 . Therefore 𝐹(1) = 0 , contradiction!. Next we prove the nontrivial real 

character 𝜆  also satisfies 𝐿(1, 𝜆) ≠ 0 : Since |𝜆(𝑛)| = 1, 𝜆(𝑛) ∈ ℝ ⇒ 𝜆(𝑛) = ±1, ∀𝑛 ∈ ℤ . Assume 

𝐿(1, 𝜆) = 0, We construct a function as follows:𝜙(𝑧) =
𝐿(𝑧,𝜆)𝐿(𝑧,𝜆0)

𝐿(2𝑧,𝜆0)
 𝜙(𝑧) is analytic on 𝑅𝑒 𝑧 >

1

2
 and 

𝜙(𝑧) → 0  as 𝑧 →
1

2
. Supposed 𝑧  is real and 𝑧 > 1 , then by Proposition 2, 

𝜙(𝑧) = ∏
(1−𝑞−2𝑧)

(1−𝑞−𝑧)(1−𝜆(𝑞)𝑞−𝑧)𝑞∤𝑚 = ∏
1+𝑞−𝑧

1−𝑞−𝑧𝜆(𝑞)=1 = (1 + 𝑞−𝑧)(∑ 𝑞−𝑘𝑧∞
𝑘=0 )

= 1 + 2𝑞−𝑧 + 2𝑞−2𝑧 + ⋯ +
 Using Theorem 3, 

𝜙(𝑧) = ∑ 𝑎𝑛
∞
𝑛=1 𝑛−𝑧  converges for 𝑧 > 1 . Expanding 𝜓(𝑧)  into power series at 𝑧 = 2 , we have 

𝜙(𝑧) = ∑ 𝑏𝑚
∞
𝑚=0 (𝑧 − 2)𝑚Since 𝜙(𝑧) is analytic for 𝑅𝑒 𝑧 >

1

2
, the radius of convergence of it is at least 

3

2
. Since 𝑏𝑚 =

𝜙(𝑚)(2)

𝑚!
, differentiate 𝜙(𝑠)  m times it follows that 𝜙(𝑚)(2) = ∑ 𝑎𝑛

∞
𝑛=1 (−ln𝑛)𝑚𝑛−2

: = (−1)𝑚𝑐𝑚, 𝑐𝑚 ≥ 0 Thus 𝜙(𝑧) = ∑ 𝑐𝑚
∞
𝑛=0 (2 − 𝑧)𝑚  with the coefficient 𝑐𝑚  nonnegative and 𝑐0 =

𝜙(2) = ∑ 𝑎𝑛
∞
𝑛=1 𝑛−2 ≥ 𝑎1 = 1 It follows that for 

1

2
< 𝑧 < 2, 𝜙(𝑧) ≥ 1. This contradicts 𝜙(𝑧) → 0 as 

𝑧 →
1

2
! Therefore, forall the nontrival character 𝜆, we have 𝐿(1, 𝜆) ≠ 0, so that 𝐺(𝑧, 𝜆) remains bounded 

as 𝑧 → 1. Taking 𝑧 → 1 in [1], we obtain 1 = 𝜓(𝑚)𝑑(𝒫(𝑎, 𝑚)) ⇒ 𝑑(𝒫(𝑎, 𝑚)) =
1

𝜓(𝑚)
> 0 Where 

𝜓(𝑛) is the Euler’s totient function. Thus we finally prove the Theorem 19.  

4.  Counting Problem For Groups 

Zeta-function is suitable for some counting questions: Let 𝛤 be a mathematical object, 𝑎𝛤(𝑛) is a non-

negative integers sequence which encoded with some information about 𝛤 . Thus 𝑛 ↦ 𝑎𝛤(𝑛) is an 

arithmetic functions. It’s natural to consider the Dirichlet L-function of 𝑎𝛤(𝑛), which gives rise to the 

following definition: 

Definition 4.1. The zeta function of (𝛤, 𝑎𝛤(𝑛))  is the Dirichlet generating series 𝜁𝛤(𝑧) =

∑
∞

𝑛=1
𝑎𝛤(𝑛)𝑛−𝑧 

Firstly let’s consider the number of subgroup with finite index of an infinite group. Let 𝛤 be a infinite 

group. For a given 𝑛 ∈ ℤ, denoted 𝑎𝛤(𝑛) = #{𝐻 ≤ 𝛤| |𝛤: 𝐻| = 𝑛}. Therefore the arithmetic function 

𝑛 ↦ 𝑎𝛤(𝑛) is called the subgroup number function. The partial sum 𝑆𝛤(𝑛) = ∑ 𝑎𝛤𝑚≤𝑛 (𝑛) is called the 

subgroup growth functions. The subgroup zeta function is given by 

𝜁𝛤(𝑧) = ∑ 𝑎𝛤

∞

𝑛=1

(𝑛)𝑛−𝑧 = ∑ |𝛤: 𝐻|−𝑧

𝐻≤𝑓𝛤

 

where the notation 𝐻 ≤𝑓 𝛤 indicates that the summation is over all subgroups with finite index. By 

finding an explicit expression for this function, we can determine the properties of 𝑎𝛤(𝑛) through 

coefficient comparison or asymptotic analysis. 

It’s better that 𝑛 ↦ 𝑎𝛤(𝑛) has the following properties: 

1. Polynomial growth: 𝑆𝑛(𝛤) = 𝑂(𝑛𝑎) for some 𝑎 ∈ ℝ. 

2. Multiplicativity: If 𝑛 = ∏ 𝑝𝑖
𝑒𝑖

𝑖 , then 𝑎𝛤(𝑛) = ∏ 𝑎𝛤𝑖 (𝑝𝑖
𝑒𝑖). 

Property 1 ensures the convergence of 𝜁𝛤(𝑧). Generally, the abscissa of convergence is a useful tools 

to characterize the region of convergence, defined as 

𝛼(𝑎𝛤(𝑛)) = limsup
𝑛→∞

ln𝑆𝑛(𝛤)

ln𝑛
 

Marcus du Sautoy Shows the relation between abscissa of convergence and region of convergnece:(cf. 

(Sautoy & Grunewald, 2000)) 
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Theorem 4.2. Consider a 𝒥 −group 𝛤. The abscissa of convergence 𝛼(𝑎𝛤(𝑛)) ∈ ℚ. And 𝜁𝛤(𝑧) is 

analytically continued to the half plane 𝑅𝑒 (𝑧) > 𝛼(𝑎𝛤(𝑛)) . Moreover, the line {𝑧 ∈ ℂ|𝑅𝑒(𝑧) =

𝛼(𝑎𝛤(𝑛)) can have at most one pole of 𝜁𝛤(𝑧) located at 𝑧 = 𝛼(𝑎𝛤(𝑛)) 

Property 2 shows that Proposition 2 can be generalized to 𝜁𝛤(𝑧): 

𝜁𝛤(𝑧) = ∏ ∑ 𝑎𝛤

∞

𝑖=0𝑝 prime

(𝑝𝑖)𝑝−𝑖𝑧 

The factor 𝜁𝛤,𝑝(𝑧) : = ∑ 𝑎𝛤
∞
𝑖=0 (𝑝𝑖)𝑝−𝑖𝑧 is called the local factor of 𝜁𝛤(𝑧) at the prime 𝑝. 

The next question is to identify the types of groups that satisfy these properties. Grunewald, Fritz J 

and Scharlau, Rudolf has proved in (Grunewald & Scharlau, 1979) that torsion-free, finitely generated 

nilpotent group, denoted as 𝒥 -group, exhibits polynomial subgroup growth and multiplicativity. 

Consequently, the focus shifts to finding a general formula for the zeta function of −𝐽  group or 

calculating specific cases. 

Example 4.3. 𝜁ℤ𝑛(𝑧) = ∏ 𝜁𝑛−1
𝑖=0 (𝑧 − 𝑖) 

Proof. 

Lemma 26. Let 𝐺  be a group, 𝐺 = 𝐴 × 𝐵, 𝑄 ≤ 𝐵 ≤ 𝐿 ≤ 𝐺 , then there is 𝐻, 𝐻 ≤ 𝐺, 𝑠. 𝑡. 𝐻𝐵 =
𝐿, 𝐻 ∩ 𝐵 = 𝑄 

Proof. Let 𝐻 = 𝐿 ∩ 𝑄𝐴, then 

𝐻 ∩ 𝐵 = (𝐿 ∩ 𝑄𝐴) ∩ 𝐵 = 𝑄𝐴 ∩ 𝐵 = 𝑄(𝐴 ∩ 𝐵) = 𝑄

𝐻𝐵 = (𝐿 ∩ 𝑄𝐴)𝐵 = 𝐿 ∩ 𝑄𝐴𝐵 = 𝐿 ∩ 𝐺 = 𝐿
 

Lemma 27. Subject to the conditions of Lemma 26 and further supposes that 𝑄 ⊴ 𝐵, then number of 

distinct choices for 𝐻 is |𝐷𝑒𝑟(𝐿/𝐵, 𝐵/𝑄)| 
Proof. In 𝐿/𝑄 we have the classical configuration for which the result is well konwn. Note that in 

order to define derivations we need to prescribe an action of 𝐿/𝐵 on 𝐵/𝑄. This is done by distinguishing 

an 𝐻 arbitrarily (𝐻/𝑄) ≅ 𝐿/𝐵), and defining the action as conjugation by elements of 𝐻/𝑄. ◻ 

Let 𝐺 ≅ ℤ𝑛 ≅ ℤ ⊕ ℤ. Denote the first component o this direct sum by 𝐵. Suppose 𝐻 ≤ 𝐺, |𝐺: 𝐻| <
∞. 𝐻  give rise to 𝐿 = 𝐻𝐵 and 𝑄 = 𝐻 ∩ 𝐵, and |𝐺: 𝐿| ⋅ |𝐵: 𝑄| = |𝐺: 𝐻| < ∞. Conversely, if we are 

given 𝑄 and 𝐿, 𝑄 ≤𝑓 𝐵 ≤ 𝐿 ≤𝑓 𝐺, then by Lemma 26, there exists 𝐻 ≤𝑓 𝐺 such that 𝐻𝐵 = 𝐿 and 𝐻 ∩

𝐵 = 𝑄.Suppose |𝐺: 𝐿| = 𝑛/𝑑 and |𝐵: 𝑄| = 𝑑 then |𝐺: 𝐻| = 𝑛. Lemma 27 enables us to count there are 

|𝐷𝑒𝑟(𝐿/𝐵, 𝐵/𝑄) of 𝐻 associated with the pair (𝐿, 𝑄). Now 𝐺 is abelian so 𝐿/𝐵 acts trivially on 𝐵/𝑄. 

Thus we have |𝐷𝑒𝑟(𝐿/𝐵, 𝐵/𝑄)| = |𝐻𝑜𝑚(ℤ𝑛−1, 𝑐𝑑)| = 𝑑𝑛−1. Let 

𝜁ℤ𝑛(𝑧) = ∑ 𝑎𝑛

∞

𝑛=1

𝑛−𝑧, 𝜁ℤ𝑛−1(𝑧) = ∑ 𝑏𝑛

∞

𝑛=1

𝑛−𝑧 

𝐵 has a unique subgroup of each specific index, so 

𝑎𝑛 = ∑ 𝑏𝑛/𝑑

𝑑∣𝑛

𝑑𝑛−1 

Therefore 

𝜁ℤ𝑛(𝑧) = 𝜁ℤ𝑛−1𝜁(𝑧 − 𝑛 + 1) 

Finally, by induction we can prove this result. ◻ 

Corollary 4.6. Define 𝑎𝑛 = #{𝐻 ≤ ℤ2|⬚|ℤ2: 𝐻| = 𝑛}, then ∑
𝑛

𝑖=1
𝑎𝑖 ∼

𝜋2

12
𝑛2 

Proof. : 

Lemma 4.7. (Tauberian Theorem (Marcus du Sautoy, 1925)): Let 𝑓(𝑧) = ∑
∞

𝑛=1
𝑎𝑛𝑛−𝑧be a Dirichlet 

series, 𝑎𝑛 ≥ 0 ∀𝑛 ∈ ℤ. It converges for 𝑅𝑒(𝑧) > 𝛼 > 0, If within the domain of convergence 𝑓(𝑧) 

satisfies 𝑓(𝑧) = 𝑎(𝑧)(𝑧 − 𝛼)−𝑤 + 𝑏(𝑧), where 𝑎(𝑧), 𝑏(𝑧) are analytic on ℂ𝑅𝑒(𝑧)≥𝛼 , 𝑎(𝛼) ≠ 0, 𝑤 > 0, 

then 𝑙𝑖𝑚
𝑥→∞

∑ 𝑎𝑛𝑛≤𝑥 = (
𝑎(𝛼)

𝛼𝛤(𝑤)+𝑜(1)
) 𝑥𝛼(𝑙𝑛𝑥)𝑤−1 
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Since 𝜁ℤ2(𝑧) = 𝜁(𝑧)𝜁(𝑧 − 1), it converges at 𝑅𝑒(𝑧) > 2, and 𝜁(2) =
𝜋2

6
. Expanding 𝜁(𝑧 − 1) at 

𝑧 = 2: 

𝜁(𝑧 − 1) =
1

𝑧 − 2
+ 𝛾 + 𝑜(𝑧 − 2) 

By Tauberian theorem, take 𝛼 = 2, 𝑤 = 1, 𝑔(𝑥) = 1, then 

lim
𝑥→∞

∑ 𝑎𝑛

𝑛≤𝑥

=
𝜋2𝑥2

12
∼

𝜋2𝑛2

12
 

Example 4.8. Let 𝐹𝑛
𝑐  be the free nilpotent group of rank 𝑛  and class 𝑐 , then 𝜁𝐹2

2(𝑧) =
𝜁(𝑧)𝜁(𝑧−1)𝜁(2𝑧−2)𝜁(2𝑧−3)

𝜁(3𝑧−3)
 

Proof. It only suffices to prove that 

𝜁𝐹2
2,𝑝(𝑧) =

𝜁𝑝(𝑧)𝜁𝑝(𝑧 − 1)𝜁𝑝(2𝑧 − 2)𝜁𝑝(2𝑧 − 3)

𝜁𝑝(3𝑧 − 3)
 

Let 𝑆 = 𝛾2(𝐺) ≅ ℤ, then 𝐺/𝑆 ≅ ℤ2𝑎𝑛𝑑𝑆 = 𝑍(𝐺). Suppose 𝑄 ≤ 𝐺, |𝐺: 𝑄| = 𝑝𝑛. Let |𝐺: 𝑄𝑆| = 𝑝𝑎 

and |𝑆: 𝑄 ∩ 𝑆| = 𝑝𝑏 , we have 𝑛 = 𝑎 + 𝑏 . 𝑄/𝑄 ∩ 𝑆 ≅ 𝑄𝑆/𝑆  is abelian and 𝑆/𝑄 ∩ 𝑆  is central in 

𝑆𝑄/𝑄 ∩ 𝑆 so 𝑄𝑆/𝑄 ∩ 𝑆 is abelian.Conversely, suppose that 𝐾/𝐿 is abelian, then since 𝐾/𝑆 is torsion 

free and 𝑆/𝐿  is finite, 𝜏(𝐾/𝐿) = 𝑆/𝐿 . We choose a complement to this torsion subgroup of 𝐾/𝐿 , 

denoteds as 𝑄/𝐿. Then 𝑄𝑆 = 𝐾 and 𝑄 ∩ 𝑆 = 𝐿.Moreover, from Lemma 27 applied to the abelain group 

𝐾/𝐿 , the number of distinct choices for 𝑄  is exactly |𝐻𝑜𝑚(𝐾/𝑆, 𝑆/𝐿)| = |𝐻𝑜𝑚(ℤ2, 𝑐𝑝𝑏)| = 𝑝2𝑏 . 

Suppose (𝑥, 𝑦) are free generators of 𝐺, and 𝑧 = [𝑥, 𝑦]. Then 𝐾 = ⟨𝑥𝛼 , 𝑥𝛾𝑦𝛽 , 𝑧: 𝛼 > 0,0 < 𝛾 < 𝛼, 𝛽 ≥

0⟩ uniquely. Now, 𝑝𝑎 = 𝛼𝛽, 𝛾2(𝐾) = ⟨𝑧𝑝𝑎
⟩, so 𝐾/𝐿 is abelian ⇔ 𝑏 ≤ 𝑎 ⇔ 𝑏 ≤ [

𝑛

2
]Suppose 

𝜁𝐹2
2,𝑝(𝑧) = ∑ 𝑔𝑖

∞

𝑖=0

𝑝−𝑖𝑧,  𝜁ℤ2,𝑝(𝑧) = ∑ 𝑔𝑖
′

∞

𝑖=0

𝑝−𝑖𝑧 

From the previous discussion, we deduce 

𝑔𝑛 = ∑ 𝑔𝑛−𝑖
′

[𝑛/2]

𝑖=0

𝑝2𝑖 

Since 

𝜁ℤ2,𝑝(𝑧) = 𝜁𝑝(𝑧)𝜁𝑝(𝑧 − 1) = (1−𝑧 + 𝑝−𝑧 + 𝑝−2𝑧 + ⋯ +)(1−𝑧 + 𝑝 ⋅ 𝑝−𝑧 + 𝑝2 ⋅ 𝑝−2𝑧 + ⋯ +)

= 1−𝑧 + (1 + 𝑝)𝑝−𝑧 + (1 + 𝑝 + 𝑝2)𝑝−2𝑧 + ⋯
 

Thus 

𝑔𝑖
′ =

𝑝𝑖+1 − 1

𝑝 − 1
, ∀𝑖 ∈ ℤ 

𝑔𝑛 =
𝑝𝑛+1 − 1

𝑝 − 1
+

𝑝𝑛 − 1

𝑝 − 1
𝑝2 + ⋯ +

𝑝𝑛+1−[𝑛/2] − 1

𝑝 − 1
⋅ 𝑝2[𝑛/2] 

(𝑝 − 1)𝑔𝑛 = 𝑝𝑛+1 ∑ 𝑝𝑖

[𝑛/2]

𝑖=0

− ∑ 𝑝2𝑖

[𝑛/2]

𝑖=0

 

Let 

𝑎𝑛 = ∑ 𝑝𝑖

[𝑛/2]

𝑖=0

, 𝑏𝑛 = ∑ 𝑝2𝑖

[𝑛/2]

𝑖=0

 

then 
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𝑎𝑛 = ∑ 𝑓1

𝑛

𝑖=0

(𝑝𝑖),where 𝑓1(𝑝2𝑖) = 𝑝𝑖, 𝑓2(𝑝2𝑖+1) = 0

𝑏𝑛 = ∑ 𝑓2

𝑛

𝑖=0

(𝑝𝑖),where 𝑓2(𝑝2𝑖) = 𝑝2𝑖, 𝑓2(𝑝2𝑖+1) = 0

 

From the multiplication of p-Dirichlet series, we deduce 

∑ 𝑎𝑛

∞

𝑛=0

𝑝−𝑛𝑧 = 𝜁𝑝(𝑧)(1 + 𝑝 ⋅ 𝑝−2𝑧 + 𝑝2 ⋅ 𝑝−4𝑧 + ⋯ ) = 𝜁𝑝(𝑧)𝜁𝑝(2𝑧 − 1),

∑ 𝑏𝑛

∞

𝑛=0

𝑝−𝑛𝑧 = 𝜁𝑝(𝑧)(1 + 𝑝2 ⋅ 𝑝−2𝑧 + 𝑝4 ⋅ 𝑝−4𝑧 + ⋯ ) = 𝜁𝑝(𝑧)𝜁𝑝(2𝑧 − 2).

 

Now, from [2] we know 

(𝑝 − 1)𝜁
𝐹2

2
𝑝 (𝑧) = ∑ 𝑝𝑖+1

∞

𝑖=0

𝑎𝑛𝑝−𝑖𝑧 − ∑ 𝑏𝑖

∞

𝑖=0

𝑝−𝑖𝑧

= 𝑝 ∑ 𝑎𝑛

∞

𝑖=0

𝑝−𝑖(𝑧−1) − ∑ 𝑏𝑖

∞

𝑖=0

𝑝−𝑖𝑧

= 𝑝𝜁𝑝(𝑧 − 1)𝜁𝑝(2𝑧 − 3) − 𝜁𝑝(𝑧)𝜁𝑝(2𝑧 − 2)

=
𝑝

(1 − 𝑝−𝑧+1)(1 − 𝑝−2𝑧+3)
−

1

(1 − 𝑝−𝑧)(1 − 𝑝−2𝑧+3)

=
𝑝(1 − 𝑝−𝑧 − 𝑝−2𝑧+2 + 𝑝−3𝑧+2) − (1 − 𝑝−𝑧+1 − 𝑝−2𝑧+3 + 𝑝−3𝑧+4)

(1 − 𝑝−𝑧+1)(1 − 𝑝−2𝑧+3)(1 − 𝑝−𝑧)(1 − 𝑝−2𝑧+2)

= (𝑝 − 1)(1 − 𝑝−3𝑧+3)𝜁𝑝(𝑧)𝜁𝑝(𝑧 − 1)𝜁𝑝(2𝑧 − 2)𝜁𝑝(2𝑧 − 3).

 

Therefore, 

𝜁
𝐹2

2
𝑝 (𝑧) =

𝜁𝑝(𝑧)𝜁𝑝(𝑧 − 1)𝜁𝑝(2𝑧 − 2)𝜁𝑝(2𝑧 − 3)

𝜁𝑝(3𝑧 − 3)
 

The Heisenberg group 𝐻3(ℤ) = {(
1 𝑝 𝑞

0 1 𝑟
0 0 1

) : 𝑝, 𝑞, 𝑟 ∈ ℤ} is a 𝐹2
2  groups. So using the 

same techinique from Corollary 28 we obtain: 

Corollary 4.9. Let 𝑎𝑛 = #{𝐻 ≤ 𝐻3(ℤ): |𝐻3(ℤ): 𝐻| = 𝑛}, then ∑
𝑛

𝑖=1
𝑎𝑛 ∼

𝜁(2)2𝑛2ln𝑛

2𝜁(3)
 

Grunewald F J provides a concrete formula for subgroup zeta function of 𝒥-group with Hirsch length 

3(cf. (Grunewald F J, 1988)). Here are some notations might be used: for a fixed prime 𝑝, let 

𝑋𝑏
𝑎 = 𝑝𝑏−𝑎𝑧, 𝑃𝑏

𝑎 = (1 − 𝑋𝑏
𝑎)−1, 𝑍𝑛 = 𝑃0

1𝑃1
1 ⋯ 𝑃𝑛−1

1  

Theorem 4.10. Let 𝐽 be a 𝒥-group with Hirsch length 3, number 𝑚 satisfies 𝑝𝑚 ∣ |𝑍(𝐽): 𝛾2(𝐽)|, then 

𝜁𝐺,𝑝(𝑧) = (1 − 𝑋2𝑚
𝑚 )𝑍3 + 𝑋2𝑚

𝑚 (1 − 𝑋3
3)𝑃2

2𝑃3
2𝑍2 

They also prove that forall 𝒥-group 𝛤, the 𝑝 −local factor of 𝜁𝛤(𝑧) is a rational function of 𝑝−𝑧: 

Theorem 4.11. Consider a 𝒥-group 𝛤. For any prime number 𝑝, there exists polynomials 𝜙𝑝(𝑥) and 

𝜓𝑝(𝑥) over ℤ, s.t.𝜁𝛤,𝑝(𝑧) =
𝜙𝑝(𝑝−𝑧)

𝜓𝑝(𝑝−𝑧)
Additionally, 𝑑𝑒𝑔𝜙𝑝, 𝑑𝑒𝑔𝜓𝑝 < ∞ 

Using this theorem we can have a formal generalization of corollary 28 annd corollary 31, which is 

proved by Grunewald and duSautoy in (Sautoy & Grunewald, 2000): 

Theorem 4.12. Let 𝛤  be a 𝒥 -group, then ∃𝑏(𝛤) ∈ ℤ, 𝑏(𝛤) ≥ 0, ∃𝑐, 𝑐′ ∈ ℝ , such that 

𝑆𝛤(𝑛) = ∑ 𝛼𝛤𝑚≤𝑛 (𝑚) ∼ 𝑐𝑛𝛼(𝛤)(𝑙𝑛𝑛)𝑏(𝛤),

𝑆𝛤(𝑛)𝛼(𝛤) ∼ 𝑐′(𝑙𝑛𝑛)𝑏(𝛤)+1.
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Studying the abscissa of convergence is practical and useful, especially when the zeta function is not 

explicitly known. The following results from (Smith, 1983) show that the abscissa of convergence is 

bounded by the Hirsch length and is invariant under group commensurability: 

Theorem 4.13. Let 𝛤 be a finitely generated nilpotent group, then 𝛼𝛤 ≤ ℎ(𝛤) 

Particularly, for 𝒥-group of class 2, we can find the exact upper and lower for the abscissas of 

convergence: 

Theorem 4.14. Let 𝐺 be a 𝒥-group of rank n and class 2. Denoted ℎ = ℎ(𝐺),then 
3𝑛

2
− 1 ≤ 𝛼𝐺 ≤

ℎ − 1 

Secondly, we can enumerate the 𝑛-dimensional irreducible complex representations of a group 𝛤, 

considering isomorphism classes, which we will denote as 𝐼𝑟𝑟𝛤(𝑛). The number of such representations 

is denoted by 𝑟𝛤(𝑛) : = #𝐼𝑟𝑟𝛤(𝑛). If 𝛤  is rigid, i.e. ∀𝑛 ∈ ℕ, 𝑟𝛤(𝑛) is finite, then we can define the 

representation zeta function: 

𝜁𝛤
𝑖𝑟𝑟(𝑧) = ∑ 𝑟𝛤

∞

𝑛=1

(𝑛)𝑛−𝑧 

Our main purpose is to study the cases for 𝒥-group. The problem is unless 𝛤 is trivial, 𝛤 has infinitely 

many one-dimensional representations. Thus it’s valuable to consider the twists equivalence of finite-

dimensional representations 

Definition 4.15. Let 𝜌1, 𝜌2 ∈ 𝐼𝑟𝑟𝑛(𝛤), if ∃𝜆 ∈ 𝐼𝑟𝑟1(𝛤), s.t. 𝜌1 ≅ 𝜌2 ⊗ 𝜆,then 𝜌1 and 𝜌2 are twist-

equivalent. 

We denoted 𝑟̃𝛤(𝑛)  to be the number of n-dimensional representations up to twists equivalent. 

Alexander Lubotzky, Andy R Magid, and Andy Roy Magid has proved that the ∀𝑛 ∈ ℤ, 𝑟̃𝛤(𝑛) is 

finite(cf. (Lubotzky et al., 1985)). Thus 

𝜁𝛤(𝑧) = ∑ 𝑟̃𝛤

∞

𝑛=1

(𝑛)𝑛−𝑧 

is well defined 

Ehud Hrushovski demonstrated in (Hrushovski et al., 2018) that the representation zeta function 

shares many properties with the subgroup zeta function. 

Example 4.16. For 𝐻3(ℤ), 𝜁𝐻(ℤ)
𝑖𝑟𝑟̃ (𝑧) =

𝜁(𝑧−1)

𝜁(𝑧)
 

Since 

∑ 𝜓

∞

𝑛=1

(𝑛)𝑛−𝑧 =
𝜁(𝑧 − 1)

𝜁(𝑧)
 

We have 

𝜁𝐻(ℤ)
𝑖𝑟𝑟̃ (𝑧) = ∑ 𝑟𝑛̃

∞

𝑛=1

(𝛤)𝑛−𝑧 =
𝜁(𝑧 − 1)

𝜁(𝑧)
= ∑ 𝜓

∞

𝑛=1

(𝑛)𝑛−𝑧 

So that the number of irreducible representations of 𝛤 up to twists equivalence is 𝜓(𝑛) 

5.  Conclusion 

This paper investigates various important aspects of the zeta function and its applications in number 

theory and group theory. We started by proving that the nontrivial zeros of 𝜁(𝑧) lie within the critical 

strip, specifically between 𝑅𝑒 𝑧 = 0 and 𝑅𝑒 𝑧 = 1 on ℂ. This result, closely related to the Riemann 

Hypothesis, is a central issue in analytic number theory." 

Furthermore, we utilized the asymptotic behavior of 𝜁(𝑧) and its generalization, the Dirichlet L-

function, as 𝑧 approaches 1 to provide a proof of Dirichlet’s theorem. This demonstration highlights the 

application of analytic techniques to address problems in number theory, illustrating how such methods 

can be leveraged to uncover deep connections and solve complex issues within the field. 
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Finally, we extended our study to the realm of group theory by introducing the concept of the zeta 

function of a group. Using 𝐻3(ℤ) as a case study, we calculated both its subgroup zeta function and its 

representation zeta function. These computations illustrate the utility of zeta functions in understanding 

the structure and representation theory of infinite groups.  
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