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Abstract. Nowadays, the extensive use of Monte Carlo methods in various fields has promoted 

the scientific decision-making, improved the efficiency of social operation, and enabled better 

management of many uncertain factors in daily life. However, in some cases, traditional Monte 

Carlo methods doesn't work so well because of the excessive variance. This paper aims to 

explore a new numerical integration method called splitting method to minimize intrinsic 

variance in Monte Carlo simulations. Through this innovative method, we found that the 

variance was reduced significantly. Despite some oscillating functions which are still difficult 

to estimate because they have too many turning points, this study provides new insights into 

variance reduction in Monte Carlo for integrals to optimize calculations in various fields when 

the modelling functions are not monotonic. 

Keywords: Monte Carlo, variance reduction, control variates. 

1.  Introduction 

Monte Carlo methods are used widely in the field of finance, biology, physical sciences and 

engineering. Its core advantage lies in its ability to handle complex randomness and uncertainty 

problems, providing more accurate basis for decision-making. However, it also has many drawbacks 

including high computational costs, slow convergence speed, large sample size requirements, and high 

dependence on the model. Therefore, to estimate intervals accurately and efficiently, variance 

reduction is crucial. This paper explores a new numerical integration method called splitting method 

for reducing intrinsic variance in Monte Carlo simulations. The application of these techniques not 

only optimizes computing resources but also broadens the applicability of Monte Carlo methods. The 

paper is divided into five parts: the first part is the introduction of the paper, the second part reviews 

related work of the applications of Monte Carlo methods in different fields, the third part describes 

Monte Carlo methods and control variates, the fourth part presents experimental results of various 
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functions and proposes the innovative method, and the fifth part draws conclusions and discusses the 

limitation of this paper. 

2.  Literature Review 

Nowadays, Monte Carlo methods are usually applied in the fields of mathematics and science and can 

effectively solve various complicated mathematical problems. Maanane et al. used the symbolic 

Monte Carlo method to identify the radiation characteristics of non-uniform materials, and the 

polynomials obtained through this method allow for complete inverse analysis, thereby improving 

efficiency and stability [1]. Meanwhile, Zhou et al. introduced the Monte Carlo method in the stability 

analysis of the dispersion strength characteristics of soil rock mixtures, effectively improving the 

accuracy of the stability analysis method [2]. Wicaksono et al. proposed a new paradigm Monte Carlo 

Fuzzy Hierarchy Analysis (NMCFAHP) by introducing normally distributed fuzzy numbers, which is 

more effective in overcoming uncertainty in the group decision-making process [3]. In addition, 

Sangwongwanich et al. developed a Monte Carlo simulation method with incremental damage by 

considering the cumulative damage of the system, which is suitable for fault-tolerant systems and can 

be effectively applied in the direction of reliability assessment of power electronic equipment [4]. 

Moreover, Mongwe et al. proposed a new method for solving the high variance problem in 

Hamiltonian Monte Carlo (HMC) estimators, including back sampling combined with importance 

sampling, diamagnetic Hamiltonian Monte Carlo, and diamagnetic momentum Hamiltonian Monte 

Carlo, to improve posterior inference in machine learning [5]. Afterwards, Sarrut et al. reviewed the 

ecosystem of the open-source Monte Carlo toolkit GATE for medical physics and introduced the 

application of Monte Carlo simulation methods in medical physics [6]. Besides, Song et al. provided a 

more comprehensive exposition of Monte Carlo and variance reduction methods, a thorough review of 

the relevant formulations and techniques, and an in-depth summary of the development of existing 

numerical methods, covering general formulations, specific subcategories and their variants, and 

applications, as well as a comparison of the strengths and weaknesses of different methods [7]. 

Furthermore, considering the uncertainty of out-of-distribution data prediction, Yelleni et al. proposed 

the Monte Carlo DropBlock (MC DropBlock) method to simulate the uncertainty in YOLO and the 

convolutional visual transformer used for object detection, effectively improving the model's 

generalization ability [8]. And Mazzola, G also analyzed the feasibility of Monte Carlo’s application 

in the field of quantum computing and the future challenges it faces [9]. Monte Carlo methods have 

already been applied in so many fields, so it is of great practical significance to improve the precision 

of Monte Carlo methods through variance reduction. 

3.  Methods 

3.1.  Monte Carlo Methods 

In many applications in mathematics, computing the expectation 𝐸[𝑋] of a random variable X, e.g., in 

option pricing or utility maximization theory is often needed. However, it is not always possible to 

compute 𝐸[𝑋] analytically. Therefore, it is crucial to find methods to approximate). 

Suppose there is a sequence of random variables ( 𝑋𝑖 ), which are mutually independent and 

identically distributed with the same distribution as X. Then, with probability one, we have 

1

𝑛
∑ 𝑋𝑖

𝑛

𝑖=1

 →  𝐸[𝑋], (𝑛 → ∞).                                                         (1) 

by the so-called Strong Law of Large Numbers (SLLN), which turns a sequence of random 

observations into a deterministic number by computing the average.  

If many independent realizations are generated from the same distribution, and these realizations 

are averaged, by the SLLN, it is sure that for large n the average is close to the true expected value, 

which is called Monte Carlo methods. Monte Carlo methods stem from the analogy between 

probability and volume and calculate the volume of a set by interpreting the volume as a probability. 
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In the simplest case, this means randomly sampling from a range of possible outcomes and selecting a 

portion from a given set as an estimate of the volume of that set. The law of large numbers ensures that 

as the number of draws increases, the estimate value will converge to the correct value. The central 

limit theorem provides information on the possible size of estimation errors after finite drawing [10].  

Monte Carlo method algorithms can be summarized as the following pattern: 

1.Define a possible input domain 

2.Generate inputs randomly based on the probability distribution on the domain 

3.Perform a deterministic calculation of the outputs 

4.Sum up the results 

In principle, Monte Carlo methods can be used to solve any problem with probabilistic 

explanations. However, a major limitation of Monte Carlo methods is their high dependence on 

sample size. For example, let's evaluate ∫ 𝑥2𝑑𝑥
1

0
. 

 

Figure 1. Performance of Monte Carlo when evaluate ∫ 𝑥2 𝑑𝑥
1

0
. 

As figure 1 shows, even if the sample size in Monte Carlo simulation is large enough, it is 

impossible to estimate a perfect fit with the correct value because the accuracy of Monte Carlo 

estimation is limited by the random distribution and integral characteristics of the samples. 

3.2.  Control Variates 

The method of control variates is one of the most effective and widely applicable techniques to 

improve the efficiency of Monte Carlo simulations. It utilizes the information of known quantity 

estimation error to realize error decreasing of unknown quantity estimation [10]. 

The control-variates method for estimating 𝐸[𝑋] can be described as follows. 

Suppose the pairs (𝑋𝑖, 𝑌𝑖), i = 1, . . ., n are independent and identically distributed, and that the 

expectation E[Y] is known. The control-variates estimator with b* of 𝐸[𝑋] is defined by 

𝑋𝑛
̅̅̅̅ (𝑏) ∶=  𝑋𝑛

̅̅̅̅  −  𝑏(𝑌𝑛
̅̅ ̅ −  𝐸[𝑌])  =  

1

𝑛
∑(𝑋𝑖 −  𝑏(𝑌𝑖  −  𝐸[𝑌]))

𝑛

𝑖=1

                       (2) 

Note that the observed error �̅�𝑛 - 𝐸[𝑌] is used to control the estimation of E[X]. 

The mean of the control-variates estimator is 

𝐸[𝑋𝑛
̅̅̅̅ (𝑏)] =  

1

𝑛
∑  𝐸[𝑋𝑖(𝑏)]

𝑛

𝑖=1

 =  𝐸[𝑋],                                                (3) 

so, it's unbiased. The variance of the control-variates estimator is   
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Var(𝑋𝑛
̅̅̅̅ (𝑏))  =  

1

𝑛2
∑  Var(𝑋𝑖(𝑏)) 

𝑛

𝑖=1

                                                    (4) 

   =  
1

𝑛
Var(𝑋𝑖(𝑏))                                                               (5) 

                                                 =  
1

𝑛
(Var(𝑋) − 2𝑏Cov(𝑋, 𝑌) + 𝑏2 Var(𝑌))            (6) 

This variance is a function in b, and we want to minimize it with respect to b. By setting the 

derivative in b equal to zero we can get the value b* which minimizes the variance. This value is given 

by 

𝑏∗ =  
Cov(𝑋, 𝑌)

Var(𝑌)
                                                                      (7) 

Substituting b* for b in (6), we obtain 

Var(𝑋𝑛
̅̅̅̅ (𝑏∗)) =

1

𝑛
(Var(𝑋) −

Cov(𝑋, 𝑌)2

Var(𝑌)
).                                         (8) 

This expression and the fact that  

Var(𝑋𝑛
̅̅̅̅ ) =

1

𝑛
Var(𝑋)                                                                  (9) 

imply that 

Var(𝑋𝑛
̅̅̅̅ (𝑏∗))

Var(𝑋𝑛
̅̅̅̅ )

= 1 −
Cov(𝑋, 𝑌)2

Var(𝑋)Var(𝑌)
= 1 −  𝜌𝑋𝑌

2                                     (10) 

where  𝜌𝑋𝑌 is the correlation between X and Y. The control variates method is useful provided that the 

squared correlation  𝜌𝑋𝑌
2 of X and Y is large and the extra computational effort associated with 

generating the samples 𝑌𝑖 is relatively small. 

4.  Results 

4.1.  Experiments of basic functions 

Let's try different basic functions, including exponential functions, power functions, logarithmic 

functions, trigonometric functions and inverse trigonometric functions, and compare the performance 

of control variates with Monte Carlo.  

 

Figure 2. Performance of control variates compared with Monte Carlo when evaluate ∫ 𝑒𝑥 𝑑𝑥
1

0
. 
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Table 1. ∫ 𝑒𝑥 𝑑𝑥
1

0
. 

Actual value of integral 1.7183 

Standard MC estimate (b = 0) 1.7193 

MC standard deviation 0.00156 

Control-variates estimate with b = b* 1.7187 

Control-variates standard deviation 0.00020 

Variance reduction (empirical) 0.98 

As figure 2 and table 1 show, the performance of control variates is much better than Monte Carlo 

with an empirical variance reduction of about 98%. 

 

Figure 3. Performance of control variates compared with Monte Carlo when evaluate ∫ 𝑥2 𝑑𝑥
1

0
. 

Table 2. ∫ 𝑥2 𝑑𝑥
1

0
. 

Actual value of integral 0.3333  

Standard MC estimate (b = 0) 0.3341 

MC standard deviation 0.00095  

Control-variates estimate with b = b* 0.3337  

Control-variates standard deviation 0.00024  

Variance reduction (empirical) 0.94  

As figure 3 and table 2 show, the performance of control variates is much better than Monte Carlo 

with an empirical variance reduction of about 94%. 

 

Figure 4. Performance of control variates compared with Monte Carlo when evaluate ∫ ln 𝑥 𝑑𝑥
1

0
. 
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Table 3. ∫ ln 𝑥 𝑑𝑥
1

0
. 

Actual value of integral -1.0000 

Standard MC estimate (b = 0) -0.9988 

MC standard deviation 0.00316  

Control-variates estimate with b = b* -0.9999  

Control-variates standard deviation 0.00158  

Variance reduction (empirical) 0.75  

As figure 4 and table 3 show, the performance of control variates is better than Monte Carlo with 

an empirical variance reduction of about 75%. 

 

Figure 5. Performance of control variates compared with Monte Carlo when evaluate ∫ tan 𝑥 𝑑𝑥
𝜋

4
0

. 

Table 4. ∫ tan 𝑥 𝑑𝑥
𝜋

4
0

. 

Actual value of integral 0.3466 

Standard MC estimate (b = 0) 0.3460  

MC standard deviation 0.00069 

Control-variates estimate with b = b* 0.3465   

Control-variates standard deviation 0.00006  

Variance reduction (empirical) 0.99  

As figure 5 and table 4 show, the performance of control variates is much better than Monte Carlo 

with an empirical variance reduction of about 99%. 
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Figure 6. Performance of control variates compared with Monte Carlo when evaluate ∫ tan−1 𝑥 𝑑𝑥
1

0
. 

Table 5. ∫ tan−1 𝑥 𝑑𝑥
1

0
. 

Actual value of integral 0.4388 

Standard MC estimate (b = 0) 0.4390 

MC standard deviation 0.00073 

Control-variates estimate with b = b* 0.4387  

Control-variates standard deviation 0.00007   

Variance reduction (empirical) 0.99  

As figure 6 and table 5 show, the performance of control variates is much better than Monte Carlo 

with an empirical variance reduction of about 99%. In conclusion, when the functions are monotonic, 

the effect of variance reduction is usually significant. 

4.2.  Experiments of other functions 

When it comes to double integrals, control variates also work. It is noteworthy that the choosing of 

variable functions is essential because different variable functions have different correlations and 

result in different variance reduction. As figure 7 and table 6 show, when the integrand is 𝑒𝑥 ∗ 𝑒𝑦, 

there is no remarkable difference between the results of the two variable functions.  

 

Figure 7. Performance of control variates (x*y) compared with control variates (x+y) and Monte Carlo 

when evaluate ∬ 𝑒𝑥 ∗ 𝑒𝑦 𝑑𝑥 𝑑𝑦
1

0
. 
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Table 6. ∬ 𝑒𝑥 ∗ 𝑒𝑦 𝑑𝑥 𝑑𝑦
1

0
. 

variable g (x, y) x*y x+y 

Correlation 0.9735 0.9722 

Actual value of integral 2.9525 2.9525 

Standard MC estimate (b = 0) 2.9589 2.9589 

Monte Carlo standard deviation 0.00385 0.00385 

Control-variates estimate with b = b* 2.9530 2.9516 

Control-variates standard deviation 0.00088 0.00090 

Variance reduction (empirical) 0.947 0.945 

However, when the integrand is 𝑒𝑥𝑦, as figure 8 and table 7 show, it is obvious that x*y is a better 

option than x+y when selected variable functions, because in this case where x and y are both between 

0 and 1, x*y is smaller than x+y. 

 

Figure 8. Performance of control variates (x*y) compared with control variates (x+y) and Monte Carlo 

when evaluate∬ 𝑒𝑥𝑦 𝑑𝑥 𝑑𝑦
1

0
. 

Table 7. ∬ 𝑒𝑥𝑦 𝑑𝑥 𝑑𝑦
1

0
. 

variable g (x, y) x*y x+y 

Correlation 0.9921 0.8969 

Actual value of integral 1.3179 1.3179 

Standard MC estimate (b = 0) 1.3181 1.3181 

Monte Carlo standard deviation 0.00103 0.00103 

Control-variates estimate with b = b* 1.3179 1.3180 

Control-variates standard deviation 0.00013 0.00045 

Variance reduction (empirical) 0.98 0.80 

Speaking of functions with infinite intervals, as figure 9 and table 8 show, control variates don't 

perform well, with only 0.119708 in variance reduction. 
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Figure 9. Performance of control variates compared with Monte Carlo when evaluate ∫ 𝑒−𝑥2∞

0
𝑑𝑥. 

Table 8. ∫ 𝑒−𝑥2∞

0
𝑑𝑥. 

Actual value of integral 0.8862 

Standard MC estimate (b = 0) 0.8739 

Monte Carlo standard deviation 0.01010 

Control-variates estimate with b = b* 0.8763 

Control-variates standard deviation 0.00947 

Variance reduction (empirical) 0.12 

4.3.  Splitting method 

The functions discussed above are all monotonic functions. Let's discuss functions that are not 

monotonic. If control variates are used directly, their performance is terrible, which act the same as 

standard Monte Carlo. But if the function is split into two parts, which are respectively monotonic, and 

then sum them up, the performance of control variates will improve a lot. This innovative method is 

called splitting method, and the performance of this new method is called control variates+. 

For example, let’s evaluate ∫ (𝑥 −
1

2
)2 𝑑𝑥

1

0
.  

 

Figure 10. Function graph of (𝑥 −
1

2
)2 

Figure 10 shows the function graph of (𝑥 −
1

2
)2. 
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First, let's directly evaluate ∫ (𝑥 −
1

2
)2 𝑑𝑥

1

0
. 

 

Figure 11. Performance of control variates compared with Monte Carlo when evaluate ∫ (𝑥 −
1

2
)2 𝑑𝑥

1

0
. 

Table 9. ∫ (𝑥 −
1

2
)2 𝑑𝑥

1

0
. 

Actual value of integral 0.0833 

Standard MC estimate (b = 0) 0.0837 

Monte Carlo standard deviation 0.00024 

Control-variates estimate with b = b* 0.0837 

Control-variates standard deviation 0.00024 

Variance reduction (empirical) 0.000044 

As figure 11 and table 9 show, control variates and standard MC almost overlap and the variance 

reduction is only 0. 000044, which means in this case, control variates are nearly useless. Then, let's 

split the integration interval into two monotonic subintervals and estimate independently in each 

subinterval.  

 

Figure 12. Performance of control variates compared with Monte Carlo when evaluate ∫ (x −
1

2
)2 dx

1

2
0

. 
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Table 10. ∫ (𝑥 −
1

2
)2 𝑑𝑥

1

2
0

. 

Actual value of integral 0.04167 

Standard MC estimate (b = 0) 0.04187 

Monte Carlo standard deviation 0.00012 

Control-variates estimate with b = b* 0.04168 

Control-variates standard deviation 0.00003 

Variance reduction (empirical) 0.94 

 

Figure 13. Performance of control variates compared with Monte Carlo when evaluate ∫ (𝑥 −
1

2
)2 𝑑𝑥

1
1

2

. 

Table 11. ∫ (𝑥 −
1

2
)2 𝑑𝑥

1
1

2

.  

Actual value of integral 0.04167 

Standard MC estimate (b = 0) 0.04167 

Monte Carlo standard deviation 0.00012 

Control-variates estimate with b = b* 0.04167 

Control-variates standard deviation 0.00003 

Variance reduction (empirical) 0.94 

As figure 12,13 and table 10,11 show, both the two monotonic subintervals perform well. 

After that, let's sum the two results up and obtain the final integral estimate.  

 

Figure 14. Performance of control variates compared with Monte Carlo when evaluate ∫ (𝑥 −
1

2
0

1

2
)2 𝑑𝑥 + ∫ (𝑥 −

1

2
)2 𝑑𝑥

1
1

2

. 
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Table 12. ∫ (𝑥 −
1

2
)2 𝑑𝑥

1

2
0

+ ∫ (𝑥 −
1

2
)2 𝑑𝑥

1
1

2

. 

Actual value of integral 0.08333 

Standard MC estimate (b = 0) 0.08325 

Monte Carlo standard deviation 0.00024 

Control-variates estimate with b = b* 0.08328 

Control-variates standard deviation 0.00006 

Variance reduction (empirical) 0.94 

As figure 14 and table 12 show, the final integral estimate performs well. Finally, let's compare the 

results of control variates with and without splitting method.  

 

Figure 15. Performance of control variates+ compared with control variates and Monte Carlo when 

evaluate∫ (𝑥 −
1

2
)2 𝑑𝑥

1

0
. 

As figure 15 shows, it is evident that control variates+ have a much better performance than control 

variates. Likewise, as figure 16 shows, integrals like ∫ sin 𝑥 𝑑𝑥
𝜋

0
 can also be estimated by splitting 

method, solving the problem that control variates are useless to estimate integrals with turning points. 

 

Figure 16. Performance of control variates+ compared with control variates and Monte Carlo when 

evaluate∫ sin 𝑥 𝑑𝑥
𝜋

0
. 
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5.  Conclusion 

This paper proposes a new numerical integration strategy, which splits the integration interval into 

several monotonic subintervals and estimate the control variables independently in each subinterval 

and then the results of each segment can be summed up to obtain the final integral estimate. Such 

methods minimize the variance inherent in Monte Carlo simulations and improve the accuracy and 

efficiency of numerical integral estimates. Although the splitting method can solve the problem of 

estimating the integrals of non-monotonic functions, some oscillating functions, like 𝐬𝐢𝐧 𝒙 and 

𝐜𝐨𝐬 𝒙, have too many turning points to split, which requires a lot of splitting. And if the splitting 

method is not used, the direct control variates is almost useless. Therefore, when encountering a 

function with too many oscillations, variance reduction in Monte Carlo may not help so much.  
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