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Abstract. Constructive mathematics involves numbers and objects that can be constructed and 

computed through algorithmic methods. In this paper we prove that there is no algorithm to 

determine if the homotopy group 𝜋𝑛 is trivial or not for all constructive compact spaces. In the 

beginning we introduce constructive mathematics and topology theory. Then we introduce 

constructive compact spaces to describe the compact space in algorithmic way, and we calculate 

certain homotopy groups. Finally, we use an unextendible partially computable function to prove 

that there is no algorithm that can always determine the triviality of their homotopy groups by 

contradiction. 
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1.  Introduction 

Differing from classical mathematics, constructive mathematics involves “constructing” the 

mathematical object. This can be regarded as a turning point for mathematics based on intuitionistic 

thinking [1]. In 1907, Brouwer began to critique classical mathematics and brought the idea of 

“intuitionism.” In his idea, a mathematical object exists only if it can be constructed mentally and 

formally [1]. In 1936, amidst developments in computer machines done by Turing, Statistics of 

Repetitions, and The Applications of Probability to Crypt, concepts of algorithmic computability were 

formalized [1,2]. Now, two separate branches evolved from constructive mathematics in the works of 

A. A. Markov, E. Bishop, and N. A. Shanin [1,3]. Markov introduced certain elementary objects, 

forming constructive objects that are constructed according to definite rules. Whereas Bishop showed 

that much of mathematics can be done constructively and without using somewhat questionable 

principles [1]. The key distinction between Bishop’s constructive mathematics and Markov–Shanin’s 

lies in the latter’s acceptance of the principle of constructive choice, which occasionally permits the use 

of construction arguments leading to contradictions [4]. 
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For many years, topology has been one of the most thrilling and impactful areas of study in modern 

mathematics [5]. The first application was in 1736, when Leonhard Euler considered the Königsberg 

bridge problem; he introduced the idea of networks of vertices connected by edges, introduced the Latin 

phrase analysis situs, and motivated the development of topology [5]. In the 19th century, German 

mathematician Johann Listing, known for the first printed use of the term topology, sought to 

comprehend the topological properties of surface-like objects formed by combining basic shapes like 

polygons or polyhedra [5]. In 1851, German mathematician Bernhard Riemann examined surfaces 

connected to complex number theory and used combinatorial topology as a method for analysing 

functions [5]. Subsequent work by numerous mathematicians led up to the 1895 publication of Analysis 

Situs, where Poincaré laid the groundwork for applying algebraic concepts in combinatorial topology. 

He introduced the notions of “homology” and “homotopy” [5].  

Today, research in algebraic topology has thrived and resolved numerous significant questions. For 

example, issues related to compactness, a property that extends closed and bounded subsets of n-

dimensional Euclidean space, are crucial in topology [5].  

Our work, combining algorithms with topology, is intended to show that there is no algorithm to 

determine the triviality of the homotopy group π𝑛 for all compact constructive spaces. 

1.1.  Constructive Mathematics 

1.1.1.  Algorithm 

An algorithm is considered to be a set of certain operations. Formally, an algorithm can be expressed as 

a Turing Machine, involving a set of rules represented by a list of strings from a given finite alphabet 𝐴, 

with legal input and output. Let the set of all algorithms be 𝐴𝑙𝑔 . Because the algorithm can be 

represented by a finite list of words in alphabet, 𝐴𝑙𝑔 is countable. Constructively we can get an injection 

from given algorithms to natural numbers.  

Theorem 1.1.1 There is a constructive injection 𝒜: 𝐴𝑙𝑔 → ℕ. [6] 

Sketch of Proof. By saying the injection is constructive, we mean we can realize the transformation 

in finite steps. Every algorithm can be given as a string of letters in an alphabet. We identify the alphabet 

with unique natural numbers with a given length of digits, such as the ASCII code, and combine the 

digits of the number together to generate a long but finite sequence of digits. The resulting natural 

number is what we need. It is unique because we can uniquely extract the digits from the beginning to 

the end to reveal the characters of the algorithm. 

1.1.2.  Constructive Real Numbers 

A constructive real number expressed as a string 𝛼♢ 𝛽. In the string, 𝛼 is an algorithm that generates a 

Cauchy sequence consisting of rational numbers, where 𝛽  is an algorithm that generates a natural 

number sequence, satisfying the following property: 

 ∀𝑛 ∈ ℕ, ∀𝑖, 𝑗 ∈ ℕ, 𝑖, 𝑗 > 𝛽(𝑛), |𝛼(𝑖) − 𝛼(𝑗)| < 2−𝑛 (1) 

To be specific, 𝛽(𝑛) controls its convergence speed. 𝛽(𝑛) is also called the convergence regulator. 

The convergence regulator is considered to be standard if 𝛽(𝑛) = 𝑛  for natural number 𝑛. [7] 

1.1.3.  Enumerable and decidable sets 

Definition 1.1.2 A computable function is an algorithm with a natural number input to a natural number 

output. For a computable function 𝑢 with given input 𝑛, if 𝑢 never terminates with input 𝑛, we say 𝑢(𝑛) 

is undefined. If 𝑢 terminates and output 𝑚, we say 𝑢(𝑛) is defined. In that case, we say 𝑢(𝑛) = 𝑚 [7] 

Definition 1.1.3 Let 𝜇  be a set of words in an alphabet 𝐴, we say 𝜇  is decidable if there is an 

algorithm 𝑢 that applies to all words in 𝐴, such that: 

1) If the input 𝑛 ∈ 𝜇, the algorithm will output 1  

2) if the input 𝑛 ∉ 𝜇, the algorithm will output 0. [7] 
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Definition 1.1.4 Let 𝜇 be a set of words in an alphabet 𝐴, we say 𝜇 is enumerable if it is related to 

an algorithm 𝑢 over ℕ, such that: 

1) If 𝑢(𝑛) terminates for 𝑛 ∈ ℕ, 𝑢(𝑛) ∈ 𝜇. 

2) For all 𝑎 ∈ 𝜇, there is a 𝑛 ∈ ℕ such that 𝑢(𝑛) is exactly 𝑎. [7] 

Lemma 1.1.5 The domain of a computable function is enumerable. [8] 

Proof. Suppose a computable function has the domain 𝜇 . We can construct an algorithm 𝑢  as 

following: Run the function for an integer 𝑛, if the function terminates, output 𝑛 instead of original 

output. Now 𝜇 is enumerable because 𝑢 is the enumerating algorithm. 

Decidable sets are enumerable, but the converse is not always true. 

Theorem 1.1.6 There is a computable function that does not admit an everywhere extension. 

Proof.  Let us choose some programming language and arrange all the programs that compute every 

function into a computable natural number sequence 𝑝0, 𝑝1, ⋯ by Theorem 1.1.1. Set 𝑈(𝑖, 𝑥) to be equal 

to the output that the program of number 𝑖 run with input 𝑥 . The function 𝑈 is regarded to be the 

computable universal function. The desired function can be defined by setting 𝑑′(𝑛) = 𝑑(𝑛) + 1, where 

𝑑 is diagonal, i.e., 𝑑(𝑛) = 𝑈(𝑛, 𝑛). Indeed, any of its total computable extensions 𝑑′̅  differ from 𝑑 

everywhere (if 𝑑(𝑛) is undefined, then 𝑑′̅(𝑛) ≠ 𝑑(𝑛), since 𝑑′̅ is a total function. Otherwise,  𝑑′(𝑛) =
𝑑(𝑛) + 1  is defined and 𝑑′̅(𝑛) = 𝑑′(𝑛) ≠ 𝑑(𝑛) ;). However, 𝑑′̅  is not computable because 𝑈(𝑖, 𝑛) 

includes all possible functions that are computable, giving a contradiction. [8] 

There are everywhere-defined computable functions, such as the constant function which just output 

0 immediately for every input. But according to the proof of Theorem 1.1.6 we can make a computable 

function that cannot be defined everywhere. 

Proposition 1.1.7 There is an enumerable but not decidable subset 𝐹 ⊂ ℕ.  

Proof. Consider a computable function 𝑓  with natural arguments and values that has no total 

computable extension. Its domain 𝐹  is what we expect. Indeed, 𝐹  is enumerable (by one of the 

definitions of enumerability). If 𝐹 were decidable, then the function 

 𝑔(𝑥) = {
𝑓(𝑥), 𝑥 ∈ 𝐹

0, 𝑥 ∉ 𝐹
 (2) 

would be a total computable extension of 𝑓 (to compute 𝑔(𝑥), we check if 𝑥 belongs to 𝐹 (we can do 

this since 𝐹 is decidable), and we compute 𝑓(𝑥) if 𝑥 ∈ 𝐹). [8] 

1.2.  Algebraic Topology 

Definition 1.2.1 Let 𝑓 and 𝑔 be continuous functions from two topological spaces 𝑋 and 𝑌. A homotopy 

between 𝑓 and 𝑔 is defined as a function 𝐻: 𝑋 × [0,1] → Y that is continuous, such that 𝐻(𝑥, 0) = 𝑓(𝑥) 

and 𝐻(𝑥, 1) = 𝑔(𝑥) for all 𝑥 ∈ 𝑋. [4] 

Definition 1.2.2 In general, a homotopy 𝑓𝑡: 𝑋 × [0,1] → 𝑌 is called a homotopy relative to 𝐴 when 

its restriction to a subspace 𝐴 ⊂ 𝑋 is independent of 𝑡. For short, 𝑓𝑡 is a homotopy rel 𝐴. [9] 

Definition 1.2.3 Let 𝐼𝑛 be the product of 𝑛 unit intervals [0,1], i.e., the 𝑛 dimensional unit cube. We 

can deduce that the boundary 𝜕𝐼𝑛  consists of points with at least one coordinate equal to 0 or 1. For a 

space 𝑋 and 𝑥0 ∈ 𝑋, consider the set of continuous maps 𝑓: 𝐼𝑛 → X, where 𝑓 are required to satisfy 

𝑓(𝜕𝐼𝑛) = 𝑥0 . Functions 𝑓 and 𝑔 are considered equivalent if there is a homotopy 𝑓𝑡  relative to 𝜕𝐼𝑛 

between them. Let 𝜋𝑛(𝑋, 𝑥0) to be the set of equivalence classes of these maps, where 𝑥0 is said to be 

the base point. 

For homotopy classes [𝑓]and [𝑔] and 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) ∈ 𝐼𝑛, define the multiplication [𝑓] ∘ [𝑔] to 

be the equivalent class [ℎ], where 

 ℎ = {
𝑓(2𝑡𝑥1, 𝑥2, ⋯ , 𝑥𝑛), 0 ≤ 𝑡 ≤ 1/2

𝑔((2𝑡 − 1)𝑥1, 𝑥2, ⋯ , 𝑥𝑛), 1/2 < 𝑡 ≤ 1
 (3) 

We can check that the multiplication is well defined and 𝜋𝑛(𝑋, 𝑥0)  is a group under this 

multiplication. 
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The homotopy group, denoted as 𝜋𝑛(𝑋, 𝑥), can also be defined as the set of homotopy classes of 

maps with domain 𝑛-sphere 𝑆𝑛  (the space of unit vectors in ℝ𝑛+1) to 𝑋 which send a fixed point, 

denoted in the case as 𝑥 ∈ 𝑆𝑛 (called the base point) to a fixed point in 𝑋.  

These two definitions, disregarding of different expressions, are equivalent. [9] 

Lemma 1.2.4 Every homotopy group of a closed interval in ℝ is trivial. [9] 

Proposition 1.2.5 For a product space ∏ 𝑋𝑖
𝑛
𝑖=1  of a collection of path-connected spaces 𝑋𝑖 there is 

an isomorphism π𝑗(∏ 𝑋𝑖
𝑛
𝑖=1 )≅ ∏ πj

n
i=1 (𝑋𝑖) for all 𝑗. [9] 

Theorem 1.2.6 π𝑛(𝑆𝑛) =  ℤ. [9] 

Lemma 1.2.7 Let 𝑋 be 𝑛 dimensional closed cube with side length 𝑑 ∈ ℝ, and 𝑌 be a 𝑛 dimensional 

open cube having the same center as 𝑋 and side length is �́� < 𝑑. Let 𝑌𝑐 be the complementary of 𝑌 , 

then π𝑛(𝑋 ∩ 𝑌𝑐) = ℤ. 

Proof. By Lemma 1.2.4 and Proposition 1.2.5, we have that π𝑛(𝑋 ∩ 𝑌𝑐) = π𝑛([𝑑 ́ ,  𝑑] × 𝑆𝑛) =

π𝑛(𝑆𝑛) × π𝑛([𝑑 ́ ,  𝑑]) = π𝑛(𝑆𝑛) = ℤ. 

2.  Preliminary 

To find a function to determine whether a given path-connected compact space has trivial homotopy 

group or not, we firstly need to formally find a way to describe the compact space, by adopting the idea 

of 𝜀-net. 

Definition 2.1 A finite 𝜀 -net of a compact set 𝐴  in a metric space (𝑋, 𝜌)  is a finite set 𝑃 =
𝑥1, 𝑥2, ⋯ , 𝑥𝑚 with 𝑥𝑖 ∈ 𝑋, 𝑖 = 1,2, ⋯ 𝑚 , such that for every 𝑦 ∈ 𝐴 there exists a 𝑥𝑖 ∈ 𝑃 and 𝜌(𝑥𝑖, 𝑦) <
𝜀. 

To be precise, a 𝜀-net gives the centers of balls with radii 𝜀 such that the balls give a finite cover of 

𝐴 [9].  

Definition 2.2 A point 𝑥 = (𝑝1, 𝑝2, ⋯ , 𝑝𝑛) ∈ ℝ𝑛 is a rational point if for all 𝑘 = 1, ⋯ , 𝑛, 𝑝𝑘  is a 

rational number. [9] 

The following definition comes from the standard definition of a compact space in a metric space 

that is complete.  

Definition 2.3 A constructive compact topological space is an algorithm that generates a sequence 

of finite 𝜀-nets 𝑃𝑘: 𝑘 = 1,2, ⋯, for 𝜀 of the form 1/2𝑘, 𝑘 ∈  𝑁, such that for all 𝑥 ∈ 𝑃𝑘 for 𝑘 ≥ 2, there 

exists a point 𝑥′ ∈ 𝑃𝑘−1, with 𝜌(𝑥, 𝑥′ ) ≤ 2−𝑘.We better say the compact space is the closure of the 

union of these epsilon nets. [9] 

The point 𝑥 ∈ 𝑃𝑘 in the ambient space which in our case is a cube in the Euclidean space should be 

chosen rational. Both the unit cube and its boundary are constructive compact topological spaces. For 

the 𝜀-nets of the cube we can take all the points with integer enumerator and the denominator that is the 

power of 2. For the boundary of the cube, we can do a similar construction, but it requires that one of 

the coordinates of the points of the 𝜀-net is 0 or 1. 

3.  Theorem and Proof 

Theorem 3.1 There is no algorithm to determine whether a given constructive compact space has trivial 

homotopy group 𝜋𝑑−1 or not for 𝑑 ≥ 2. 

Without loss of generality, we only consider the constructive compact space is path-connected. Take 

a computable function 𝑢 that does not admit an everywhere defined extension. For every integer 𝑛 ∈ ℕ, 

we intend to design an algorithm 𝑐𝑛 generating a constructive compact space in ℝ𝑑 . We design the 

algorithm as follows: 

For input 𝑛 ∈ ℕ, we change the algorithm 𝑢 to count the step it currently runs for, where the step 𝑘 

refers to a natural number.  

Let point (𝑥1, 𝑥2, 𝑥3, ⋯ )/𝑐 means (𝑥1/𝑐, 𝑥2/𝑐, 𝑥3/𝑐, ⋯ ).If 𝑢(𝑛) does not terminates at step 𝑘, set 

 𝑃𝑘 = {𝑎 ∈ ℝ𝑑: 𝑎 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑑)/(3𝑘𝑑); 𝑥𝑖 = 0,1, ⋯ , 3𝑘; 𝑖 = 1,2, ⋯ , 𝑑} (4) 

If 𝑢(𝑛) terminates at step 𝑚, for every 𝑘 ≥ 𝑚, let  
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 𝑄𝑘 = {𝑎 ∈ ℝ𝑑: 𝑎 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑑)/(3𝑘𝑑); 𝑥𝑖 = 0,1, ⋯ , 3𝑘; 𝑖 = 1,2, ⋯ , 𝑑} (5) 

 
𝑅𝑘 = {𝑎 ∈ ℝ𝑑: 𝑎 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑑)/(3𝑘𝑑);

𝑥𝑖 =
(3𝑚−1)3𝑘−𝑚

2
+ 1,

(3𝑚−1)3𝑘−𝑚

2
+ 2, ⋯ ,

(3𝑚+1)3𝑘−𝑚

2
− 1; 𝑖 = 1,2, ⋯ , 𝑑}

 (6) 

And set 𝑃𝑘 = 𝑄𝑘  \𝑅𝑘. Basically 𝑃𝑘 is the 𝜀-net for the whole cube minus the 1/3𝑚 side cube in the 

center of it. 

In the end, let 𝑐𝑛 be the algorithm generating the sequence 𝑃𝑘: 𝑘 = 1,2, ⋯. It might be better to think 

of 𝑐𝑛 as the finite algorithm that gives the sequence rather than the infinite sequence of 𝜀-nets and this 

program is exactly the input into the computer program 𝑣 below. 

Lemma 3.2 For 𝑛 ∈ ℕ, 𝑐𝑛 satisfies the definition of a constructive compact space. 

Proof. The proof of Lemma 3.2 is clear. Note that the division by 𝑑 in the definition is to make the 

points close enough. 

Lemma 3.3 The constructive compact space of input 𝑛 is related to the cube 𝐼𝑑 = (𝑥𝑖) ∈ ℝ: 0 ≤

𝑥𝑖 ≤ 1/𝑑 in ℝ𝑑 if 𝑢(𝑛) is undefined. And if 𝑢(𝑛) is defined, the constructable compact space of input 

𝑛  refer to the cube with a hole 𝐴𝐻𝑚

𝑑 = {(𝑥𝑖) ∈ ℝ3: 0 ≤ 𝑥𝑖 ≤ 1/𝑑}\{(𝑥𝑖) ∈ ℝ: (1/2 − 1/(2 × 3𝑚))/

𝑑 < 𝑥𝑖 < (1/2 + (2 × 3𝑚)/𝑑} for some 𝑚 ∈ ℕ in ℝ𝑑. 

Proof. This can be verified by checking that 𝑃𝑘 is a 𝜀-net of them. If 𝑢(𝑛) does not terminates at step 

𝑘, 𝑃𝑘 is a 𝜀-net of both 𝐴𝑑 and 𝐴𝐻𝑚

𝑑  for 𝑚 ≥ 𝑘.  

If 𝑢(𝑛) terminates at step 𝑘, then 𝑃𝑘 remain to be the 𝜀-net of and 𝐴𝐻𝑘

𝑑 .  

If 𝑢(𝑛) never terminates 𝑃𝑘 is still the 𝜀-net of 𝐴𝑑.  

For undefined input 𝑛, 𝑢(𝑛) never terminates, so the compact space is 𝐴𝑑. For an input 𝑛, on which 

𝑢(𝑛) terminates at some step 𝑚, the resulting compact space is 𝐴𝐻𝑚

𝑑 . 

At the last step, we can prove Theorem 3.1. 

Proof of theorem 3.1. Assume there exists an algorithm 𝑣(𝑛)  to determine whether a given 

constructive compact space has trivial homotopy group 𝜋𝑑−1, such that 𝑣 will output 1 if 𝑛 refers to a 

constructive compact space has trivial homotopy and output 0 otherwise. The algorithm will also work 

on all the computer program 𝑐𝑛. By Lemma 3.3, if u(𝑛) never terminates then the constructive compact 

space of input 𝑛  is the cube 𝐴𝑑 , otherwise it is the cube with a hole 𝐴𝐻𝑚

𝑑 . By Lemma 1.2.4 and 

Proposition 1.2.5, and Lemma 1.2.7 we know that 𝜋𝑑−1(𝐴𝑑) = 0, and π𝑑−1(𝐴𝐻𝑚

𝑑 ) = ℤ, which means 

that 𝑣  will output 1 if the 𝑢(𝑛) never terminates and output 0 if the 𝑢(𝑛) ever terminates. This 𝑣  is 

exactly the definition of the decidable set according to Definition 1.1.3, saying the domain of 𝑢 is 

decidable. However, we know from Proposition 1.1.7 that the domain of 𝑢 is not decidable, giving a 

contradiction. 

4.  Conclusion 

In this article we prove that there is no algorithm to determine whether a given constructive compact 

space has trivial homotopy group 𝜋𝑛 or not for 𝑛 ≥ 1 by contradiction. 

Using a similar method, we can also show that it is impossible to algorithmically decide if a general 

constructive compact topological space has πn = ℤ + ℤ or likely any other nice and reasonable group. 
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Appendix 

ℕ,ℝ,ℚ,ℤ Natural numbers, Real numbers, Rational numbers, Integer numbers 

𝐴𝑙𝑔 Set of algorithms 

𝒜 The constructive injection 𝐴𝑙𝑔 → ℕ 

𝛼♢𝛽 Constructive real number 

(𝑝1, 𝑝2, ⋯ , 𝑝𝑛) Point in ℝ𝑛 

∩,∪,\, 𝑐 Intersection, Union, Subtraction, Complementary 

|𝑥| Euclidian norm √(𝑝1
2 + 𝑝2

2 + ⋯ + 𝑝𝑛
2) for 𝑥 = (𝑝1, 𝑝2, ⋯ , 𝑝𝑛) 

𝐼 Interval [0,1] 

𝐼𝑛 Product of 𝑛 interval [0,1] 

𝜋𝑛 Homotopy group 

𝑆𝑛 {𝑥  ∈  ℝ𝑛+1: ‖𝑥‖ = 1} 
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