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Abstract. Landau theory employs free energy to depict the work potential of molecules and 

utilizes order parameters to signify the degree of molecular organization. By applying a Taylor 

expansion of the free energy with respect to the order parameter in the vicinity of a phase 

transition, the theory elucidates how molecular arrangements can influence the system's energy. 

The universality of Landau theory stems from the order parameter within the framework of free 

energy expansion. The application of critical exponents exemplifies the universality of Landau 

theory, showcasing the properties of materials that share the same dimensionality and similar 

correlation lengths. This article aims to derive formulas and discuss practical applications of 

Landau theory, such as analyzing the heat capacity and magnetic susceptibility of materials 

across a range of temperatures. 
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1.  Introduction  

The significance of Landau theory in the study of phase transitions cannot be overstated, as it provides 
a fundamental framework for understanding these phenomena. Phase transitions, such as condensation, 
involve a substance changing from one state to another under certain conditions. For example, water is 
liquid at temperatures above zero degrees Celsius under standard atmospheric pressure, but it becomes 
solid when the temperature drops below zero. These different states—liquid and solid—are distinct 
phases of water, and the change between them is known as a phase transition. Landau's theory introduces 

the concept of an order parameter, which characterizes the properties of each phase and aids in 
comprehending the transition process. Imagine a cube-shaped building with a robust structural 
framework that is evenly distributed and supports the entire structure. If an earthquake occurs with 
relatively low energy, it may not be enough to destroy the building's bearing structures. However, if the 
earthquake carries a significant amount of energy, it could lead to the collapse of the building by 
damaging these critical supports. In this analogy, the intact building represents an ordered state, where 
the bearing structures all support the building in a unified direction. The destruction of these structures 

signifies a move to a disordered state, where the supporters no longer act in concert. Although this is a 
simplified example, it serves to illustrate the basic concepts. Various factors can influence the order 
parameter, with temperature being a primary one. Landau's theory also introduces critical exponents, 
which are universal results derived from calculations and can be used to predict material properties. 
These exponents are particularly useful when searching for materials with specific characteristics, such 
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as high resistance at high temperatures. The universality of critical exponents across materials in the 
same dimensional space is crucial for predicting their properties. While different dimensions may yield 
different critical exponents, each set of calculated exponents within a dimension is universal, making 
the study of Landau's theory invaluable for understanding and predicting material behavior. 

2.  Landau Theory and the Applications 

Landau theory provides methodology to understand how different states of matter transform into one 
another, which is crucial in condensed matter physics and materials science. Transitions can be described 
as either first-order or second order. First-order phase transitions are characterized by a discontinuous 
change in density and latent heat. For example, the melting of a solid metal into a liquid is a first-order 

transition. Second-order transformations are characterized by a continuous change of an order parameter. 
For example, a change from ferromagnetic to paramagnetic states at the Curie temperature is a second-
order transition. 

2.1.  Function of order parameter 
Order parameters are crucial variables in Landau theory, used to describe the state of a system, 

particularly during phase transitions. They help distinguish between ordered and disordered states by 
indicating changes in symmetry and energy states. Above the critical temperature, the system is in a 
disordered state, characterized by an order parameter value of zero. In this high-temperature phase, the 
system exhibits high symmetry. The increased thermal energy provides enough agitation to allow 
electrons or other entities to populate higher energy states freely, which disrupts any preference for 
specific energy levels, leading to a disordered arrangement. The reduced thermal energy during this state 
means that electrons tend to occupy lower energy states, which stabilizes the ordered phase and 

contributes to the distinct characteristics of this lower-symmetry phase. Different levels of order are 
related to different states, and the state of order refers to the degrees of freedom of the system's 
components, such as atoms, molecules, spins, etc. From the properties of these components, we can 
predict the arrangement or behavior of the entire system.  

2.2.  Deduction of free energy expansion 

Landau theory the free energy can be expressed as a Taylor-expansion of the order parameter close to 
the phase transition point, where order parameter is close to zero. Thus, we can write the expression as: 

 F(∅)=A∅+B∅2+C∅3+D∅4 + ⋯.    (1) 

F(∅), Free energy expansion with order parameters. A,B,C, and D are temperature related values. 
Order parameter approaches a small value indicating that the expansion is nearing the critical point. A 

small order parameter means that higher-order terms have less impact than lower-power terms, allowing 
for a 'good' approximation with just a few terms. In the equation, it's necessary to eliminate all odd terms 
due to symmetrical considerations and stability requirements. This requirement is linked to stability, as 
the system prefers a state of lower energy, implying that the free energy should have a minimum value 
in the equilibrium state.  

 F(∅)=B∅2+D∅4.    (2) 
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Figure 1. (We use free energy to label y and order parameter in x label and the coefficient B is always 

positive.) 

Order parameter equal to zero when temperature equals to critical temperature. When B is equal to 
zero it means the free energy has a single minimum at an order parameter equal to zero, indicating a 

stable phase without spontaneous symmetry breaking.  

 

Figure 2. (We use free energy to label y and order parameter in x label and the coefficient B is always 

negative.) 

Order parameter equal to zero when temperature equals to critical temperature. This graph shows 
two minima, indicative of two equivalent stable states at non-zero values of the order parameter. This 
represents a situation of spontaneous symmetry breaking, typical for temperatures below the critical 

temperature, where the system can spontaneously choose one of two ordered phases. First derivative of 
first four term in free energy expansion. In equilibrium, for a system to be stable, the first derivative of 
the free energy with respect to the order parameter should be zero. 

 
𝑑𝐹

𝑑∅
= F'(∅)=2B∅+4D∅3 = ∅(2B+4D∅2) = 0.     (3) 

Second derivative of first four term in free energy expansion. This curvature is directly related to the 
stability of the equilibrium state. 

 
𝑑2𝐹

𝑑∅2 =F''(∅)=2B+12D∅2. (4) 

The second derivative gives different meanings for each condition. (
𝑑2𝐹

𝑑∅2 < 0), Indicates an unstable 

equilibrium. (
𝑑2𝐹

𝑑∅2 = 0), At this point, the system is marginally stable, and the response to perturbations 

can lead to qualitative changes in the system's behavior. (
𝑑2𝐹

𝑑∅2
> 0), Indicates a stable equilibrium. Then 

we can consider how B works in the free energy expansion. Could we make a connection between B 
and temperature?  We can make a linear correlation between the change in temperature and the change 
in our constant B from positive to negative. 

 𝐵~∎
(𝑇−𝑇𝑐)

𝑇𝑐
+ ∎ 𝑜𝑟 𝐵(𝑇)~𝑇 − 𝑇𝑐. (5) 
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Then we can rewrite the expression: 

 𝐹(∅) = 𝐹0 +
1

2
𝑎(𝑇)∅2 +

1

4
𝑏(𝑇)∅4 + ⋯. (6) 

The coefficient number is used to cancel the extra value from derivative. Then we can determine the 

Order Parameter Exponent (𝛽). The order parameter behaves as ∅~(𝑇 − 𝑇𝑐)𝛽below 𝑇𝑐 . To find the 

Order Parameter Exponent we need to Minimization of Free Energy, which is take the first derivative. 

Finally, we get ∅~(𝑇 − 𝑇𝑐)1/2 and this exponent (1/2) is the critical component. Critical components 
have the property of Universality. This property gives us a way to predict behavior of material close to 
critical points. The critical exponent correlates to correlation length and disruption. In Landau theory, 
the heat capacity of a material near a phase transition can be analyzed by considering the expansion of 
the free energy in terms of order parameters. The heat capacity at constant volume is defined as the 
temperature derivative of the internal energy, and, equivalently, it can be expressed as the negative 
second temperature derivative of the free energy assuming constant volume: 

 𝐶𝑣 =
𝑑𝑈

𝑑𝑇 𝑣
= −𝑇

𝑑2𝐹

𝑑𝑇2
𝑣
. (7) 

𝐶𝑣  is heat capacity at constant volume. 
𝑑𝑈

𝑑𝑇
 is temperature derivative of the internal energy. 

𝑑2𝐹

𝑑𝑇2 is the 

second temperature derivative of free energy. As temperature approaches the critical temperature, the 
free energy becomes highly sensitive to changes in temperature due to the critical fluctuations of the 
order parameter. Near the critical temperature, the order parameter changes significantly, typically going 
from nonzero in the ordered phase to zero in the disordered phase. This significant change in the order 
parameter results in an anomaly in the heat capacity, which may exhibit a peak or discontinuity at the 

critical temperature.  

2.3.  Magnetic Susceptibility 
Magnetic susceptibility is a critical parameter that quantifies the response of a magnetic system to an 
applied magnetic field. For a magnetic system near a phase transition, the Landau free energy expansion 
in terms of the magnetization(M), which serves as the order parameter. 

 𝐹(𝑇, 𝑀) = 𝐹0 + 𝑎𝑀 +
1

2
𝑏(𝑇)𝑀2 +

1

3
𝑐(𝑇)𝑀3 +

1

4
𝑏(𝑇)𝑀4 + ⋯ − 𝑀𝐻. (8) 

F is free energy. 𝐹0 is the free energy in the absence of magnetization. T is temperature. M is net 
magnetization. H is applied magnetic field. MH is energy from external field. 

To find the critical component of 𝐹(𝑇, 𝑀), we also need to minimize the free energy. First let’s define 
𝑎 = 𝑎(𝑇) = 𝑎0(𝑇 − 𝑇𝑐 ) < 0. Make 𝑎 temperature dependent. 

 
𝑑𝐹

𝑑𝑀
= 𝑎𝑀 + 𝑏𝑀3 − 𝐻 = 0. (9) 

The magnetic susceptibility is defined as the derivative of magnetization with respect to the applied 

magnetic field at constant temperature: 

 𝑥 =
𝑑𝑀

𝑑𝐻
 .(10) 

For small fields and near critical temperatures, M also small, allowing us to approximate the 
equilibrium condition for magnetization by neglecting higher-order terms: 

 𝑀 = 𝐻/𝑎. (11) 

Equation (11) gives the expression the susceptibility: 

 𝑥 =
1

𝑎
= 1/𝑎(𝑇 − 𝑇𝑐). (12) 

Which gives critical exponent equal to -1. 
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3.  Results  

3.1.  Heat Capacity 

In "Heat Capacity of Iron: A Review" by J.B. Austen, which is the cornerstone of metallurgical 
engineering and materials science. Austen meticulously documents how different alloying elements 
impact iron's heat capacity, providing a comprehensive dataset that distinguishes between the alpha (α) 
and gamma (γ) phases of iron, which are two of the several allotropes of iron that exist at different 
temperature ranges and pressures. Austen's work captures the thermal transitions between these phases, 
revealing how the intrinsic property of heat capacity responds as iron progresses through these structural 
and magnetic transformations. By focusing on the heat capacity of α-iron from 100°C to 906°C, Austen 

steps into a critical domain of temperature where the material exhibits significant changes in its physical 
properties.  

 

Figure 3. (This graph measures the heat capacity changes with different degree centigrade and there is 

an unexpected peak appear on the graph, which comes from A Review" by J.B. Austen. [3])  

The heat capacity appears relatively stable at lower temperatures with a gradual increase as the 
temperature rises. This is typical for solids, as the heat capacity increases with temperature due to the 
increased vibrational energy of the atoms. There is a sharp peak observed in the graph. This could 
correspond to a phase transition. According to Landau's Theory, such a peak might be associated with a 
second-order phase transition, where the heat capacity shows critical behavior as the order parameter 

changes continuously. If this peak indeed corresponds to the Curie point, the graph provides 
experimental evidence that supports Landau's Theory. The theory predicts that the heat capacity will 
diverge at the critical temperature for a second-order phase transition.  

3.2.  Magnetic Susceptibility 
The article “Temperature Dependence of the Magnetic Susceptibility for Triangular-Lattice 

Antiferromagnets with spatially anisotropic exchange constants” which written by “Weihong Zheng” 
and “Rajiv R. P. Singh.”  And their team gives a good example to illustrate the property of critical 
exponent.  
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Figure 4. (The Curie-Weiss Law is represented by a straight line, which is the expected behavior for a 
paramagnetic material in the high-temperature limit, according to the Curie-Weiss law. Different 
symbols represent different lattice models (linear-chain, square-lattice, triangular-lattice, and an 

anisotropic model with 
𝐽1

𝐽2
= 3 [2]) 

𝐽1and 𝐽2 are parameters that characterize the interactions between adjacent particles or spins in a 

lattice. C define as Curie constant and in their model expression in 𝐶 = 𝐴𝑔2 . 𝜒 define as uniform 
magnetic susceptibility per mole of a substance in the context of Para magnetism. When it expresses by 

Curie-Weiss law 𝜒 =
𝐶

𝑇+𝑇𝑐𝑤
. 𝑇𝑐𝑤 define as The Curie-Weiss temperature and express with 𝑐 =  𝐽2 +

𝐽1

2
. 

The uniformity of the critical exponent is assessed by how closely the data points for each lattice model 

approach the line representing the Curie-Weiss law as 𝑇 approaches 𝑇𝑐𝑤. If the lattice models follow the 
Curie-Weiss behavior closely, they exhibit a critical exponent consistent with the mean-field prediction. 
If they deviate, it suggests different critical exponents and possibly different universality classes for the 

phase transitions. For a paramagnetic to ferromagnetic transition, we would expect the susceptibility to 
diverge as 𝑇 approaches 𝑇𝑐𝑤. On the graph, this would be represented by the plotted points for each 

lattice system rising sharply and following the line as 𝑇/𝑇𝑐𝑤 approaches 1, indicating that T is getting 

close to 𝑇𝑐𝑤. In this graph, if all the data collapse to the same line near the critical region, it would imply 

that they share the same critical exponent. But when deviations happen as T they approach 𝑇𝑐𝑤 , 
indicating different magnetic ordering. 

4.  Conclusion and Outlook 

Table 1. Critical exponents for percolation phase transition in dimensions 

dimension 𝛼 𝛽 𝛾 𝛿 𝜈 𝜂 

1D 1 0 1 ∞ 1 1 

2D -2/3 5/36 43/18 91/5 4/3 5/24 

3D -0.625 0.418 1.793 5.29 0.876 0.46 
a𝛼 This exponent characterizes how the specific heat of a system varies near its critical point. 
b𝛽 This exponent describes how the order parameter, such as magnetization in a ferromagnetic material, 

changes as the system passes through the critical temperature from above. 
c𝛾 This exponent illustrates how the susceptibility or response function of the system behaves in the presence 

of an external field as the critical temperature is approached. 
d𝛿 This exponent demonstrates the relationship between the order parameter and the external field at the 

critical temperature. 
e𝜈 This exponent is associated with the correlation length, indicating how correlated regions of the system 

grow as the critical point is approached. 
f𝜂 These exponents measure the decay of correlations at the critical point, describing the anomalous 

dimension or behavior of the correlation function at large distances. 
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Landau's theory of phase transitions is fundamentally about symmetry breaking [1]. The concept of 
symmetry refers to the invariance of the system's free energy under certain transformations. In a high-
symmetry phase, temperature dropping below a critical value and a system may undergo a phase 
transition to a low-symmetry phase. For example, in Figure.2 we defined when temperature is lower 

than critical temperature and it will drop to one of the two minimum. When it is dropped, it means it is 
broken the symmetry and selected one of the lower energy states. In Table 1, we observe that varying 
dimensions can lead to markedly different outcomes for each parameter. However, it's important to note 
that not all materials possess similar operators. Within the same dimension, certain materials, such as 
cuprate superconductors, exhibit vastly different correlation lengths and spatial distances compared to 
classical materials. The correlation length measures how far apart two parts of a system can be while 
still maintaining some degree of correlation. Spatial distance, another factor that can influence critical 
exponents, refers to the physical length separating two points in space. In cuprate superconductors, the 

correlation length tends to be short due to the intense electronic correlations present, which result in the 
pairing of electrons into Cooper pairs over very brief distances. The role of spatial distance is crucial in 
determining the propagation of correlated states. Consequently, we can deduce that a critical exponent 
related to a physical property is based on the order parameter and could represent the spin of an electron 
in magnetic susceptibility. Altering the spatial distance between two electrons and the extent of their 
correlation undeniably modifies the resulting critical exponent. 

References 

[1] P. W. Anderson. (August 1972). More Is Different. SCIENCE, Volume 177, p393-396. 
https://www.science.org/doi/10.1126/science.177.4047.393 

[2] Weihong Zheng. (February 2, 2008). Temperature Dependence of the Magnetic Susceptibility for 
Triangular-Lattice Antiferromagnets with spatially anisotropic exchange constants. p3-5. 
https://arxiv.org/abs/cond-mat/0410381v2 

[3] J. B. Austen (1 November 1932). Heat Capacity of Iron A Review. p1228-1230 
https://www.semanticscholar.org/paper/Heat-Capacity-of-Iron-A-Review-
Austin/81def45beaff11b61e4dbf50792fe1f1e1f24cdd 

[4] Fayfar, Sean; Bretaña, Alex; Montfrooij, Wouter (2021-01-15). "Protected percolation: a new 
universality class pertaining to heavily doped quantum critical systems". Journal of Physics 
Communications. https://www.semanticscholar.org/paper/Protected-percolation%3A-a-new-
universality-class-to-Fayfar-

Breta%C3%B1a/08b09d681c8bc3ad24d1151627ac3969ea3713c6 
[5] Luis, Edwin; de Assis, Thiago; Ferreira, Silvio; Andrade, Roberto (2019). "Local roughness 

exponent in the nonlinear molecular-beam-epitaxy universality class in one-dimension". 
Physical Review. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.022801 

 
 
 
 

 
 
 

Proceedings of  the 2nd International  Conference on Applied Physics and Mathematical  Modeling 
DOI:  10.54254/2753-8818/53/20240230 

248 


