

Comparative Analysis of Machine Learning Models for Music

Recommendation

Xi Cheng1,7,*, Ke Liu2.8, Xin Hu3,9, Tong Liu4,10, Chang Che5,11, Chen Zhu6,12

1Cornell University, NY, USA

2University of California at Berkeley, CA, USA
3University of Michigan, Ann Arbor, MI, USA
4University of Illinois at Urbana-Champaign, IL, USA
5The George Washington University, DC, USA
6Tsinghua University, Beijing, China

7xc557@cornell.edu
8liuke126@berkeley.edu

9hsinhu@umich.edu
10tongl5@illinois.edu
11cche57@gwmail.gwu.edu
12zhuchen9505@foxmail.com

*corresponding author

Abstract. This study is inspired by the Kaggle competition “WSDM - KKBox’s Music

Recommendation Challenge”. The study focuses on doing a comparative study on music

recommendation models. Based on the requirements and the given dataset from the Kaggle

competition, the problem can be transferred to a classification problem, and therefore, we chose

three classification models for the comparative study. The three models are K Nearest Neighbors

(KNN), Random Forest, and Light Gradient Boosting Machine (LightGBM). We also did data

analysis and data preparation before applying the model and used the handout method and cross-

validation method for the validation. For the evaluation, the AUC score is applied to the results

and the empirical results show that LightGBM is the best model among these three.

Keywords: Exploratory data analysis (EDA), K Nearest Neighbors (KNN), Random Forest,

Light Gradient Boosting Machine (LightGBM), Music Recommendation.

1. Introduction

Inspired from the Kaggle competition “WSDM – KKBox’s Music Recommendation Challenge” [9], it

is meaningful and necessary to build a better music recommender system for a music streaming service

(i.e., KKBox, Spotify) as the precise recommendation could provide better user experience [1] .

We will use the dataset from KKBox which includes the information about the first observable

listening event for each unique user-song pair within a specific time duration accompanied by the

information of users and songs. The aim is to predict whether the song will be recurring listened to by

the user within one month after the user’s first listening for a given user-song pair. [9]

Proceedings of the 2nd International Conference on Applied Physics and Mathematical Modeling
DOI: 10.54254/2753-8818/53/20240233

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

249

The prediction will have 2 possible results, there is a recurring listening event or not, that can be seen

as classify the user-song pairs into two classes. Therefore, the problem can be transferred to a

classification problem.

In this study, we aim to apply different models to predict the habits of users and compare the

performance of built models. We choose three popular classification models for further exploration. K

Nearest Neighbors (KNN) is chosen as baseline model, Random Forest and Light Gradient Boosting

Machine (LightGBM) are potentially improved models. The details of the methodology will be stated

in Section 3.

Based on our experiments, the LightGBM model has the best performance among the three models.

That is also consistent with the existing results in the Kaggle competition. In the Kaggle competition,

the LightGBM model was heated discussed and the 1st place solution is also partly based on LightGBM.

Therefore, the LightGBM seems to be the ideal model for this kind of problem.

2. Related works

As this is a past Kaggle competition, there are many implementations and discussions on Kaggle. The

most popular model used is LightGBM and the 1st place solution is also based on LightGBM [10].

Besides, there are also several implementations based on Random Forest, SVD and XGBoost.

The core of the recommender system is the filtering algorithm, especially collaborative filtering [3].

The most popular collaborative filtering algorithm is the KNN [3]. The recommender system based on

KNN is conceptually simple and usually gets good-quality results, but also has the cold start problem

and low scalability [3]. Another popular approach is based on SVD which can reduce the dimensionality

and increase the scalability [13]. Random Forest could avoid the local optimal solutions by assembling

a large number of individual decision trees [2]. With the help of the two novel techniques Gradient-

Based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) [7], LightGBM can handle

the large size of data and takes lower memory [6].

3. Methodology

We use the dataset from the KKBox’s competition. We are asked to predict the probability if a user will

listen to a song repetitively after the first listen event based on the given dataset. To wrack this challenge,

we plan to start with data analysis, then preprocess the data, and adapt three models to the data to

compare and analyze the performance among them.

3.1. Statistical Data Analysis

In this part, we mainly use numpy, and matplot library to help analyze the original dataset, and visualize

the data.

The original dataset is divided into 6 tables: train.csv, test.csv, songs.csv, memebrs.csv,

sample_submission.csv, and song_extra_info.csv. Generally, we want to preview the data, check total

number of entries, column types for each table. We also want to check if there are any null values, outlier

data. This will help us determine the strategy for processing the data.

For train table and test table, we cared about how many entries do we have for each user. Does user

appear in both tables? Moreover, since music can be categorized into different genres, we need some

plots to help represent the distribution of these data. We are also interested in the top k types of music

genres and songs that are repeated frequently by users in train table, which will help us to have a more

comprehensive understanding on the original data.

3.2. Data Preparation

The data are in several files so the first step is to aggregate all data into one table. We combined the data

based on msno (i.e., id for member) and song_id.

3.2.1. Data Cleaning. Based on the result we got from EDA part, we start to process the dataset. We

need to remove some duplicated or useless attributes in the set.

Proceedings of the 2nd International Conference on Applied Physics and Mathematical Modeling
DOI: 10.54254/2753-8818/53/20240233

250

For example, in song.csv, we have a column holds the ISRC code for each song. It is used to identify

songs, which does the exactly same thing as song_id. But it is not precise, and multiple songs could

share the same ISRC. Therefore, we need to remove it. We also separate the target attribute from the

table as this is the target value for the classification. The remaining attributes are shown in table 1.

After that, we need to handle the outlier values. For the attribute bd, which indicates the age of the

member, the values such as 100 or 0 or negative values for age are definitely not reasonable. Therefore,

we set the valid range of bd as 10 ~ 75. Any value outside this range will change to null value which

indicates unknown.

For null values, we want to keep it as an independent category, as the null values in the dataset

indicates unknown. We drop rows has more than 50% null values.

As values for all the attributes other than song_length can be seen as categories, we want to change

song_length to make it consistent with others to simplify our further steps. As the slight difference in

the length of song is not matter, we can divide it with 60000 ms which change the unit from ms to minute

and round it to integer. After that, we actually divided it into several categories and make the songs

having similar length into the same category.

3.2.2. Data Transformation. As the values for attributes represent different categories. We choose to

use OneHotEncoder which converts categorical variables to a numerical representation without an

arbitrary ordering to encode the dataset [11]. But that also lead to another problem, the encoded data is

a high-dimensional sparse matrix. Therefore, we use TruncatedSVD [12] to do dimensionality reduction.

3.2.3. Split Dataset. As the original dataset doesn't provide target values for test data, it's hard for us to

do evaluation on it. Therefore, we use the origin train dataset as our whole dataset, and split it for

training-validation and testing. We use 4:1 as the split ratio for training-validation and testing datasets

and split randomly.

3.3. Implement Models

Based on the dataset, we pick four relatively basic models as the comparison object in our study. We

plan to choose the KNN as our baseline model. In addition, Random Forest and LightGBM from

Gradient Boosting Decision Trees (GBDT) algorithms will also be used as potentially improved models.

3.3.1. K Nearest Neighbors. K Nearest Neighbors (KNN) is a simple but powerful method for

classification [5]. The main idea of KNN algorithm is when there is a new data point comes, pick k

neighborhood data points around it and put it to the majority category among k neighborhood data points.

As KNN needs to define the k value, we run different k values on the validation set to make decision.

3.3.2. Random Forest. Random Forest is an ensemble learning method for classification operated by

constructing a number of decision trees, each of which considers a random subset of features with a

random set of training data points. The salient advantage of a random forest model is that it averages all

the decision trees to improve the predictive accuracy and control over-fitting. With the help of scikit-

learn package, we initiate the RandomForestClassifier model and fit the model on our training data.

After training the model, now the model learns some relationship between features and target, we then

make predictions on the test data and compare the results with the existing targets.

3.3.3. LightGBM. LightGBM is a high-performance gradient boosting framework based on decision

tree algorithm. It splits the tree leaf wise with the best fit which reduce more loss than level-wise

algorithm. [8] It provides more accuracy and has a relatively fast training time. We need to test the

parameter value for num_leaves and max_depth to gain a better accuracy.

Proceedings of the 2nd International Conference on Applied Physics and Mathematical Modeling
DOI: 10.54254/2753-8818/53/20240233

251

3.4. Comparison & Evaluation

3.4.1. AUC. For the evaluation, we will use the area under a Receiver operating characteristics (ROC)

curve (AUC) as the criterion. The ROC graph is a two-dimensional graph which has the true positives

(TP) rate as the Y axis and the false positives (FP) rate as the X axis [4]. Generally, the AUC value of

a realistic classifier will be between 0.5 and 1, and the closer to 1 means the result is better [4].

3.4.2. Holdout VS. Cross-Validation. For the training-validation dataset, we want to split it into training

and validation datasets. We use two ways to split train and validation datasets for the evaluation: Holdout

and Cross-Validation.

For the holdout method, we use 3:1 as the split ratio for training and validation datasets and split

randomly.

For the Cross-Validation method, we randomly split the data into k mutually exclusive subsets D1,

D2, ..., Dk with approximately equal size. At the ith (i = 1, 2, ..., k) iteration, we use Di as the validation

dataset and others as the training dataset. We choose 𝑘 = 5 for the Cross-Validation.

4. Empirical Results

This section includes the empirical results for the statistical data analysis, data preprocessing and

applying three models discussed in previous section.

4.1. Statistical Data Analysis

We start our data analysis based on some related works on Kaggle. This is an essential part, since our

model's predict results are directly related to how well we form and reconstruct the dataset.

4.2. Data Preprocessing

Based on our observations on the raw data and EDA results. We start to construct new train dataset and

test dataset.

First, we decide to merge original train & test with songs.csv and members.csv by key column “msno”

and “song_id” to obtain more comprehensive datasets. Next, we start to handle missing values by

replacing all “NaN” value into 0. For age attribute “bd” since it holds continuous value. We want to

divide it into 4 categories: [0], (0,25), [25,50), (50,100] based on our EDA results.

After that, like we mentioned in methodology, we convert categorical variables to a numerical

representation. Then, we construct a new attribute “artist_repeat_percentage” by counting the repeat

times for each artist. So that we can get rid of “artist_name”, “composer”, “lyricist” these attributes that

we can't categorize. Finally, we drop some redundant attributes or attributes that we think don't have

enough credibility.

The remaining attributes after data preprocessing is listed in table 1:

Table 1. Remaining attributes.

no. Attr

1 source_system_tab

2 source_screen_name

3 source_type

4 city

5 bd

6 gender

7 song_length

8 genre_ids

9 language

10 artist_repeat_percentage

11 age_category

Proceedings of the 2nd International Conference on Applied Physics and Mathematical Modeling
DOI: 10.54254/2753-8818/53/20240233

252

4.3. KNN

We have tried different k values with the two train-validation methods. And the results are shown in

Figure 1 and Figure 2.

Figure 1. Result on validation set.
Figure 2. Result on validation set.

Figure 1 shows the AUC scores using the holdout method for different k values. As the AUC score

changed slightly after 𝑘 = 13, we picked up 13 as the k value. AUC score for 𝑘 = 13 on test set is

0.65456.

Figure 2 shows the average AUC scores using the 5-folds cross-validation method for different k

values. As the AUC score changed slightly after 𝑘 = 14, we picked up 14 as the k value. AUC score

for 𝑘 = 14 on test set is 0.65536.

4.4. Random Forest

After tuning the hyperparameters, we pick up the following parameters: 𝑚𝑎𝑥 𝑑𝑒𝑝𝑡ℎ = 20 ,

𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 = 0, 𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 200. Then we evaluate the model and obtain the AUC score on

the test set is 0.67416. We also conduct k-fold Cross-validation on this random forest model with 5 folds.

For the simplicity to make comparison, mean AUC score of cross validation is given by 0.67269.

4.5. LightGBM

The hyperparameters' values for LightGBM are decided by calling GridSearchCV to help choose the

best parameters: 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑏𝑖𝑛𝑎𝑟𝑦, 𝑒𝑣𝑎𝑙_𝑚𝑒𝑡𝑟𝑖𝑐 = 𝑎𝑢𝑐, 𝑏𝑜𝑜𝑠𝑡𝑖𝑛𝑔 = 𝑔𝑏𝑑𝑡, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1,

𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 0, 𝑛𝑢𝑚_𝑙𝑒𝑎𝑣𝑒𝑠 = 2
10

, 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 50 and 𝑛𝑢𝑚_𝑟𝑜𝑢𝑛𝑑𝑠 = 1000. The prediction results

on the test dataset gives AUC score around: 0.71199.

After doing a 5-folds cross validation on training set. It outputs a mean AUC score around: 0.71620.

We can see there is a slight improvement by using cross validation comparing to the two train-validation

methods.

4.6. Comparison

Table 2 shows the AUC score on testing dataset using holdout method or cross-validation method for

the three models, K Nearest Neighbors (KNN), Random Forest (RF) and Light GBM (LGBM).

Table 2. Comparison.

Method Holdout Score Cross-validation Score

KNN 0.65456 0.65536

RF 0.67416 0.67269

LGBM 0.71199 0.71620

From table 2, the LGBM has the highest AUC score. The AUC scores using holdout method and

cross-validation method are similar. The cross-validation scores for KNN and LGBM are a little higher

than holdout scores.

Proceedings of the 2nd International Conference on Applied Physics and Mathematical Modeling
DOI: 10.54254/2753-8818/53/20240233

253

5. Conclusions

From the EDA result, we found that both the training set and testing set have a cold start problem.

Moreover, we did data preparation based on EDA, including removing attributes, handling outlier and

null values, data encoding, dimensionality reduction, and splitting datasets. This part plays an important

role when we start training our models. A poor processed dataset is very possible to bring us a model

with low prediction accuracy.

After that, we applied three chosen models KNN Random Forest and LightGBM on the processed

data on the dataset. According to the evaluation on AUC scores of both holdout method and 5-folds

cross-validation method, LightGBM got the highest scores, which means Light GBM performs the best.

In addition, Random Forest performs better than the benchmark KNN model.

In the nutshell, LightGBM is an ideal method compared to baseline model KNN and Random Forest

method for the Kaggle competition “WSDM - KKBox’s Music Recommendation Challenge”, which

complies with existing results in the competition. For the validation part, the cross-validation method

can get light better results than the holdout method, but there is no significant improvement. Therefore,

the core for improving the recommendation result is still choosing the suitable model and make enough

effort on feature engineering. The limitation of the study is that there's still a lot of room for feature

engineering and there exist other potentially advanced methods which may also be conducted to make

comparisons.

References

[1] Ananthram, Priya “EDA of music recommendation system” https://www.kaggle.com/

priyaananthram/eda-of-music-recommendation-system

[2] Belgiu, Mariana, and Lucian Drăguţ.‘‘Random forest in remote sensing: A review of applications

and future directions.’’ ISPRS journal of photogrammetry and remote sensing 114 (2016): 24-

31.

[3] Bobadilla, Jesús, et al. “Recommender systems survey.” Knowledge-based systems 46 (2013):

109-132.

[4] Fawcett, Tom. “An introduction to ROC analysis.” Pattern recognition letters 27.8 (2006): 861-

874.

[5] Guo, Gongde, et al. “KNN model-based approach in classification.” OTM Confederated

International Conferences “On the Move to Meaningful Internet Systems”. Springer, Berlin,

Heidelberg, 2003.

[6] Jiang, Jiawei, et al. “Dimboost: Boosting gradient boosting decision tree to higher dimensions.”

Proceedings of the 2018 International Conference on Management of Data. 2018.

[7] Ke, Guolin, et al. “Lightgbm: A highly efficient gradient boosting decision tree.” Advances in

neural information processing systems 30 (2017): 3146-3154.

[8] Khandelwal, Pranjal. “Which algorithm takes the crown: Light GBM vs XGBOOST?”

https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-

gbm-vs-xgboost/

[9] KKBOX. “WSDM - KKBox's Music Recommendation Challenge” https://www.

kaggle .com/c/kkbox-music-recommendation-challengef

[10] lystdo. “A brief introduction to the 1st place solution” https://www.kaggle.com/c/kkbox-music-

recommendation-challenge/discussion/45942

[11] Pedregosa et al. “OneHotEncoder” https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.OneHotEncoder.html

[12] Pedregosa et al. “TruncatedSVD” https://scikit-learn.org/stable/modules/generated/sklearn.

decomposition.TruncatedSVD.html

[13] Vozalis, Manolis G., and Konstantinos G. Margaritis. “Using SVD and demographic data for the

enhancement of generalized collaborative filtering.” Information Sciences 177.15 (2007):

3017-3037.

Proceedings of the 2nd International Conference on Applied Physics and Mathematical Modeling
DOI: 10.54254/2753-8818/53/20240233

254

