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Abstract. Continuous time Markov chains (CTMC) with start point and endpoint, i.e., a 

continuous time Markov Bridge, have become an important mathematical model in a wide 

variety of scientific disciplines and simulations. In this research, we review some classical 

Markov Bridge simulation algorithms and Markov Bridge's mathematical model, Kinetic Monte 

Carlo, Direct Sampling, Reject Sampling and Uniform Sampling with a potential application 

algorithm in biological protein folding evolution problem. 
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1.  Introduction 

In the paper [1] by Asger Hobolth and Eric A. Stone, titled 'Simulation from endpoint-conditioned, 

continuous-time Markov chains on a finite state space, with applications to molecular evolution', the 

technique of taking samples is discussed. For the task of extracting samples from CTMCs, especially 

under endpoint-specific conditions, traditional approaches, while conceptually clear, have encountered 

obstacles in terms of computational burden and utility limitations. To address these gaps, innovative 

sampling techniques have been proposed. Significant progress has been made by Siepel, Pollard, and 

Haussler (2006) [2] and Minin and Suchard (2008) [3], who developed methods to quantify transfer 

probabilities and other key indicators. 

The novel coronavirus (COVID-19) pandemic has severely impacted every aspect of public health, 

with significant psychological impacts on adolescents and major challenges for healthcare systems. A 

systematic review by Jones et al. [10]  highlighted the psychological distress experienced by youth 

during the pandemic, as well as increased anxiety, depression, and substance use. This is consistent with 

the extensive literature highlighting the need for strong mental health support in times of such crises. 

This reflects the need for methods to predict virus occurrence in order to effectively control the virus. 

In computational biology, the work of Zakarczemny and Zajęcka [4] introduces Markov strand 

methods for dealing with gaps in DNA sequences and provides a framework for extrapolating viral DNA 

prediction. The technique, which can predict synonymous codons without changing the protein sequence, 

may be useful for studying the evolution of viruses such as SARS-CoV-2. 

The application of Bayesian inference and Markov chain Monte Carlo methods (MCMC) is 

important in both epidemiological modeling and genetic analysis. O'Neill's[5] guidelines on 

probabilistic epidemic modeling illustrate this point by detailing the MCMC approach in infectious 
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disease modeling. Likewise, , Rohitash and Chen's [6] tutorial course on Bayesian modeling with 

MCMC demonstrates the flexibility of these methods in a variety of research settings. 

Discussions by Kass et al., and Andrieu et al. [7] provide a summary report on the foundation of the 

MCMC method, emphasizing practical applications and technical aspects. These resources are important 

for understanding the complexity and functionality of MCMCs in machine learning and statistical 

reasoning. 

In practical applications, Worby et al. [8] in a study of hospital MRSA transmission used the MCMC 

algorithm to evaluate the effectiveness of separation measures. Schunk's large-scale survey and Bansal 

et al.'s novel haplotype assembly algorithm further reflect the diversity of MCMC applications in 

missing data processing and gene reconstruction. 

Taken together, these studies not only reveal the versatility of Markov chain approaches in public 

health and computational biology but also address the multifaceted challenges caused by pandemics 

such as COVID-19 in Zhang et al. [9]. There is an urgent need for powerful and adaptable statistical 

tools. 

2.  Mathematical Model of the Markov Bridge for Continuous Time Case 

2.1.  State Transition of a Markov Chain 

The development of Markov chains is random, and the process requires a 'memory-free' property: the 

probability distribution of the next state can only be determined by the current state, and the events 

preceding it are independent of it in the time series. 

Now, suppose we have a system with N discrete states, denoted as {1,2,…,N}. The probability of 

transitioning from state α to state β is Wαβ. In an infinitesimal time interval Δt, the probability of 

transitioning from state α to state β is given by: 

P(β, t + Δt | α, t) = WαβΔt 

2.2.  Master Equation 

The time evolution of the probability Pα(t) of the system being in state α at time t is described by the 

following master equation: 

dPα(t)/dt = Σβ (Wβα Pβ(t) - Wαβ Pα(t)) 

2.3.  Bridge State Transition Equation 

To generate a bridge, we consider the probability P(αf, t_f | α, t) of the system being in state αf at time 

tf, given it is in state α at time t. We define: 

Qα(t) = P(αf, tf | α, t) 

Using the total probability formula and the master equation, we get the backward master equation: 

dQα(t)/dt = Σβ Wαβ Qβ(t) 

2.4.  Conditional Probability of the Bridge State 

Given the initial and final states, the conditional probability of generating the bridge state is: 

Rα(t) = P(αi, ti | α, t) Qα(t)/Q(αi, ti) 

2.5.  Bridge Equation 

Considering the conditional probability of the bridge and defining Z as a normalization factor (ensuring 

the sum of probabilities over all states equals 1), we obtain: 

dRα(t)/dt = Σβ (Vαβ(t) Rβ(t) - Vβα(t) Rα(t)) 

where Vαβ(t) = Wαβ Qβ(t)/Qα(t). 

3.  Kinetic Monte Carlo Implementation 

To sample bridge trajectories, we can use a modified version of the Gillespie algorithm. Given the 

current state α, the probability of transitioning to state β in the infinitesimal time interval [t, t + dt] is: 
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Γα(t) = Σβ Vαβ(t) 

Introducing a random variable τ to represent the waiting time in state α, the survival probability Gα(t) 

satisfies: 

dGα(t)/dt = -Γα(t) Gα(t), Gα(0) = 1 

Thus, the distribution of the waiting time is: 

Gα(t) = exp(-integral(0, t, Γα(s) ds)) 

Based on this distribution, we can generate a realization u: 

integral(0, τ, Γα(s) ds) + ln(1 - u) = 0 

This allows us to generate a Markov bridge through a random walk process. The Kinetic Monte Carlo 

could be displayed by the following algorithm framework: 

3.1.  Algorithm 1: Kinetic Monte Carlo for Markov Bridge Simulation 

Input: Current state α, Transition rate matrix V, Total time T 

Output: Sampled Markov bridge trajectory 

3.1.1.  Calculate Transition Rates 

For the current state α, compute the total transition rate: 

Γα(t) = Σβ Vαβ(t) 

3.1.2.  Determine Waiting Time 

Introduce a random variable τ representing the waiting time in state α. 

Calculate the survival probability Gα(t) using: dGα(t)/dt = -Γα(t) Gα(t), Gα(0) = 1 

Derive the waiting time distribution: Gα(t) = exp(-integral(0, t, Γα(s) ds)) 

3.1.3.  Generate a Random Realization 

Generate a uniform random variable u in (0, 1). 

Determine the waiting time τ by solving: integral(0, τ, Γα(s) ds) + ln(1 - u) = 0 

3.1.4.  State Transition 

After waiting time τ, transition from state α to a new state β based on the transition probabilities Vαβ(t). 

3.1.5.  Update Path and Time 

Record the transition to state β and update the current time t = t + τ. 

3.1.6.  Iterate Until Final Time 

Repeat Steps 1-5 to continue generating the trajectory until the total time T is reached. 

3.1.7.  Output the Markov Bridge 

Return the complete trajectory representing the Markov bridge from the initial state to the final state 

over time T. 

4.  Other Simulation Algorithms for Markov Bridge 

Besides Kinetic Monte Carlo Implementation, here we review three other classical simulation 

algorithms' process and framework for Markov Bridge: Direct Sampling, Rejection Sampling, Uniform 

Sampling as also discussed in Hobolth and Stone (2009) [11]. by the means of displaying their algorithm 

frameworks: 

4.1.  Algorithm 2: Endpoint-conditioned Markov Continuous Chains - Direct Sampling  

Input: Transition rate matrix Q, Total time T 

Output: Sampled path with time stamps 
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4.1.1.  Initialization 

Set the initial state a = 0 (assuming the first state for demonstration). 

Initialize the current time t = 0. 

Initialize the path with the start state and time: sample_path_with_times = [(a, t)]. 

4.1.2.  Simulate the Path 

While t < T: 

Compute the waiting time in state a: waiting_time = exponential(1 / |Q[a, a]|) 

Update the current time: t = t + waiting_time 

If t > T: break 

Calculate transition probabilities to other states: p_i = Q[a, i] / -Q[a, a] 

Normalize the probabilities: p_i = p_i / Σ p_i 

Sample the next state based on p_i and update the path. 

4.1.3.  Output the Sampled Path 

Return sample_path_with_times containing states and corresponding time stamps. 

4.2.  Algorithm 3: Endpoint-conditioned Markov Continuous Chains - Rejection Sampling  

Input: Start state bgnst, End state endst, Transition rate matrix W, Total time T 

Output: Sampled path with time stamps 

4.2.1.  Simple Forward Sampling 

Function simpleforward(bgnst, W, t_0, T): 

Initialize the path with start state and time. 

While t < T: Update the state and time based on transition rates. 

Return the sampled path. 

4.2.2.  Modified Forward Sampling 

Function modifiedforward(bgnst, endst, W, T): 

If bgnst = endst: Perform simple forward sampling until the path ends at endst. 

Else: Calculate initial waiting time τ using: 

τ = log(1 - random_value * (1 - exp(T * W[bgnst, bgnst]))) / W[bgnst, bgnst] 

Perform simple forward sampling from a new state after τ. 

Return the final path. 

4.2.3.  Output the Sampled Path 

Return the path generated by the modified forward sampling. 

4.3.  Algorithm 4: Endpoint-conditioned Markov Continuous Chains - Uniform Sampling  

Input: Transition rate matrix Q, Total time T, Start state a, End state b 

Output: Sampled path 

4.3.1.  Precompute Matrices 

Compute μ = max(diag(Q)) 

Calculate matrix R = I + Q / μ and transition matrix P = exp(T * Q) 

4.3.2.  Uniform Sampling 

Generate a uniform random variable u 

Initialize summ = 0 and n = 0 

While summ < u: 

Increment n 

Calculate the cumulative sum for the current number of transitions: 
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summ = summ + exp(μ * T) * (μ * T)^n / n! * R^n[a, b] / P[a, b] 

4.3.3.  Path Generation 

If n = 0: The path remains in state a throughout the interval. 

Else: Generate transition times and intermediate states based on R and Q. 

4.3.4.  Output the Sampled Path 

Return the sampled path from a to b with corresponding time stamps. 

5.  Simulating Protein Folding Using Markov Bridges 

We finally display a possible application for applying Markov Bridge model to Protein Folding problem, 

a background is introduced in [12], 

5.1.  Algorithm 5: Protein Folding Simulation Using Markov Bridge 

Input: Initial state U, Final state F, Transition rate matrix W, Total time T 

Output: Simulated protein folding pathway from U to F 

5.1.1.  Define States 

Define the states representing different protein conformations: Unfolded (U), Intermediate (I), and 

Folded (F). 

5.1.2.  Set Up Transition Rates 

Construct the transition rate matrix W based on the energy landscape: 

W = [ [-k_UI - k_UF, k_UI, k_UF], [k_IU, -k_IU - k_IF, k_IF], [k_FU, k_FI, -k_FU - k_FI] ] 

where k_XY denotes the transition rate from state X to state Y. 

5.1.3.  Initialize the Process 

Start the simulation at the unfolded state U at time t = 0. 

5.1.4.  Backward Evolution 

Calculate the backward probabilities Qα(t) using the backward master equation: 

dQα(t)/dt = Σβ Wαβ Qβ(t) 

This ensures that the simulation concludes in the folded state F. 

5.1.5.  Generate Trajectory 

For each time step from t = 0 to T: 

Sample the folding pathway using the kinetic Monte Carlo method. 

Transition to the next state based on the transition probabilities derived from W and Qα(t). 

5.1.6.  Normalize Path 

Normalize the transition probabilities to ensure the overall probability distribution is maintained. 

5.1.7.  Output Results 

Output the simulated protein folding pathway and visualize the sequence of conformational changes 

over time. 

6.  Conclusion 

In this review, we explored the mathematical framework and simulation techniques of continuous-time 

Markov bridges, especially on their relevance in various scientific applications fields. We reviewed 

classical simulation algorithms such as Kinetic Monte Carlo, Direct Sampling, Rejection Sampling, and 

Uniform Sampling, all of which serve as valuable tools for generating endpoint-conditioned paths in 
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stochastic processes. These methods potentially may provide useful information on systems with 

constrained start and end conditions, such as molecular evolution and protein folding pathways. 
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