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Abstract. Parkinson’s disease is a neurodegenerative disorder that affects movement. 

Diagnosing Parkinson’s disease has traditionally involved clinical assessments by neurologists, 

and this practice still persists today to a significant extent. However, clinical assessments can be 

prone to subjectivity. In this study, a comprehensive predictive modeling approach was 

undertaken, employing nine distinct machine learning algorithms and six different model 

evaluation metrics to identify the best performing algorithms. The findings reveal that, using 

only 12 vocal characteristics, KNeighborsClassfier (KNC), MLPClassifier (MLP), and 

XGBClassifier (XGBC) achieved the highest score of 0.87. This score is generally considered 

very good, indicating that the model is robust and possesses strong predictive power. This study 

marks a crucial initial step in leveraging machine learning techniques for more effective and 

potentially more accurate diagnosis of Parkinson’s disease based on patients’ vocal 

characteristics. 
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1.  Introduction 

Parkinson’s disease is a neurodegenerative disorder that affects movement. It develops gradually, often 

starting with subtle tremors, stiffness, and difficulty with coordination. As it progresses, individuals may 

experience slowed movement and impaired balance. Diagnosing Parkinson’s disease has traditionally 

involved clinical assessments by neurologists from evaluating medical history, and observing symptoms 

to the more advanced diagnostic approaches including neuroimaging techniques like MRI or DaTscan, 

which can help visualize changes in the brain [1]. This practice still persists today to a significant extent. 

However, there isn’t a definitive test for Parkinson’s disease and these diagnostic approaches could be 

influenced by subjectivity. 

Studies have indicated that vocal characteristics play a pivotal role in the diagnostic process for 

Parkinson’s disease. Alterations in speech patterns, including changes in pitch, frequency, amplitude 

variation, and articulation, often manifest as early symptoms. These changes, termed dysphonia, reflect 

the underlying neurodegenerative processes affecting the vocal cords, muscles, and control mechanisms 

in the brain [2]. 

In recent years, machine learning algorithms have emerged as powerful tools in various medical 

applications. These algorithms analyze vast amounts of patient data, allowing for predictive modeling, 

disease diagnosis, and outcome forecasting. Their ability to discern intricate patterns within complex 

datasets enables more accurate prognoses, aiding in making informed decisions. In this study, 9 distinct 
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machine learning algorithms were employed to analyze data from 195 patients, considering their diverse 

vocal characteristics. Then, six different model evaluation metrics were utilized to assess the 

performance of the models in accurately identifying patients with Parkinson’s disease. The aim is to 

potentially enable earlier detection and intervention for improved patient outcomes. 

2.  Methods 

2.1.  Data Acquisition 

Provided by the University of California, Irvine and available through the university website and Kaggle, 

the dataset encompasses 22 vocal characteristic attributes for 195 patients, where 147 individuals have 

been diagnosed with Parkinson’s disease [3]. These attributes collectively represent a diverse range of 

vocal traits, covering frequency, amplitude, noise components, jittering, shimmering, nonlinear 

dynamical complexity, and scaling properties, providing a holistic view of patients’ vocal characteristics. 

The dataset also underwent scrutiny to identify potential missing values, extreme outliers, and any 

potential irregularities. Subsequently, adjustments were made, including the imputation of missing 

values and the application of aggregation methods. 

2.2.  Correlation Matrix 

The correlation matrix serves as an initial exploration and analysis step in understanding the structure 

of the data. Figure 1 presents a correlation heatmap displaying the correlation strength and direction 

among the 22 vocal characteristic variables. When a correlation is highly positive, approaching 1, it 

indicates a strong positive linkage, signifying that an increase in one variable is accompanied by a 

concurrent increase in the other. In contrast, a substantial negative correlation, nearing -1, suggests a 

strong negative connection, indicating that an increase in one variable is linked to a decrease in the other. 

High correlations between features suggest redundancy or multicollinearity. Redundant features offer 

similar information, potentially affecting model performance and interpretation. Therefore, the aim is to 

identify highly correlated features and remove redundant features, reducing dimensionality without 

losing much information. 

 

Figure 1. Correlation Heatmap with 22 Features. 
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In the heatmap, MDVP: Jitter(%), MDVP: Jitter(Abs), MDVP: RAP, MDVP: PPQ, and Jitter: DDP 

exhibit very strong correlations with each other (correlation coefficients close to 1), indicating redundant 

information. In addition, these variables represent fundamentally similar vocal characteristics, 

prompting the decision to retain one and drop the others. The utilization of feature importance scores 

from Decision Trees and Random Forests aids in this selection process. Among these correlated features, 

Jitter: DDP has the highest scores, leading to its retention in the model while discarding the other four. 

Similarly, MDVP: Shimmer, MDVP: Shimmer(dB), Shimmer: APQ3, Shimmer: APQ5, MDVP: APQ, 

and Shimmer: DDA are also very highly correlated, with Shimmer: APQ5 having the highest feature 

importance scores. Consequently, Shimmer: APQ5 is retained, and the remaining five are eliminated. 

Finally, NHR and HNR exhibit a strong negative correlation, and NHR has higher feature importance 

scores. Thus, NHR is retained, and HNR is removed from the model. Figure 2 displays the updated 

correlation heatmap after dropping these 10 features, resulting in a model with only 12 features. 

 

Figure 2. Correlation Heatmap with 12 Features 

2.3.  Dataset Partitioning: Training and Testing Datasets  

Splitting the dataset into training and testing sets is essential to evaluate the model’s performance and 

its ability to generalize to unseen data. The training set is used to teach the model the patterns and 

relationships within the data, allowing it to learn to make predictions. Meanwhile, the testing set acts as 

an unseen dataset used to assess how well the model generalizes to new, previously unseen data. This 

study employs a typical division, allocating 70% of the data for training and reserving the remaining 30% 

for testing. This split aims to ensure that the model has enough data to learn from while also having 

sufficient unseen data to evaluate its performance. Additionally, the validation dataset is also utilized 

during the model’s training phase to fine-tune hyperparameters and validate different models. It helps 

prevent overfitting by providing an additional checkpoint to evaluate the model’s performance during 

training. 

2.4.  Data Standardization 

Standardization is another crucial preprocessing step in machine learning. It transforms the numerical 

features to have a mean of zero and a standard deviation of one. This normalization ensures that all 
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features contribute equally to the model training process, preventing any particular feature from 

dominating simply due to its larger scale or magnitude. Without standardization, features with larger 

scales might disproportionately influence the model, overshadowing the impact of smaller-scaled 

features. In addition, by standardizing features, the model becomes more robust and less sensitive to the 

scale of input variables. This step helps machine learning algorithms perform optimally, especially those 

that rely on optimization techniques like gradient descent. For instance, K-Nearest Neighbors benefits 

significantly from standardized features, as it speeds up convergence and ensures fair consideration of 

all features during the training process. 

2.5.  Evaluating Machine Learning Models  

Multiple evaluation metrics are used in this study to assess and compare the performance of different 

models. Table 1 lists those evaluation metrics alongside their definitions and suitability for different 

scenarios [4]. False positives (FP) in Parkinson’s prediction could lead to unnecessary treatments or 

stress, while false negatives (FN) might result in delayed or missed diagnoses. Each of these metrics 

plays a role in different aspects of evaluating a predictive model for Parkinson’s disease, addressing 

specific concerns such as correctly identifying positive cases (Parkinson’s) or negative cases (non-

Parkinson’s), balancing errors, and considering the overall predictive quality. Therefore, the decision is 

to assign equal weight to each metric, but slightly downgrading the importance of Accuracy due to the 

dataset’s class imbalance, where Parkinson’s disease cases significantly outnumber non-Parkinson’s 

cases.  

Table 1. Evaluation Metrics 

Metric Definition/Formula Suitability 

Precision 

Precision quantifies the ratio of correctly 

predicted positive observations to the 

total predicted positive observations. 

Precision = TP / (TP + FP) 

Useful when the focus is on minimizing 

false positives (FP), common in 

scenarios like disease diagnosis. Helps 

in avoiding unnecessary treatments by 

minimizing false positives 

Specificity 

Specificity measures the ratio of 

correctly predicted negatives to all actual 

negatives. 

Specificity = TN / (TN + FP) 

Crucial when avoiding false positives 

(FP) is a priority, used in scenarios like 

medical screenings. 

Recall 

(Sensitivity) 

Recall represents the ratio of correctly 

predicted positive observations to all 

actual positives. 

Recall = TP / (TP + FN) 

Crucial when missing actual positive 

instances (FN) is critical, like medical 

diagnoses. Helps in avoiding delayed or 

missed diagnoses. 

F1 Score 

F1 score is the harmonic mean of 

precision and recall, offering a balance 

between the two metrics. 

F1 Score = 2 * (Precision * Recall) / 

(Precision + Recall) 

Effective when the focus is on balancing 

precision and recall, suitable in various 

scenarios. 

Matthews 

Correlation 

Coefficient 

(MCC) 

MCC measures the correlation between 

predicted and actual classifications, 

considering all four confusion matrix 

elements. 

MCC = (TP * TN - FP * FN) / sqrt((TP + 

FP) * (TP + FN) * (TN + FP) * (TN + 

FN)) 

Suitable for assessing overall 

classification performance in both 

balanced and imbalanced datasets. 
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Table 1. (continued) 

Accuracy 

Accuracy represents the proportion of 

correctly predicted instances among the 

total instances. 

Accuracy = (TP + TN) / (TP + TN + FP 

+ FN) 

Suitable when class distribution is 

relatively balanced across classes. 

3.  Results 

3.1.  Best Performing Algorithms 

In this study, nine machine learning algorithms were chosen. First, each algorithm was applied on the 

training set to familiarize the model with the data’s patterns and relationships, facilitating its ability to 

make predictions. Subsequently, the model’s performance was evaluated on the testing set using the six 

distinct evaluation metrics as mentioned previously. These nine machine learning algorithms include: 

DecisionTreeClassifier (DTC), a method that builds a tree-like structure to make decisions by 

partitioning the dataset based on features; GaussianNB (GNB), a classifier based on Bayes’ theorem, 

assuming features are independent and follow a Gaussian distribution; KNeighborsClassifier (KNC), a 

classifier based on the majority class among its k nearest neighbors in the feature space; LGBMClassifier 

(LGBMC) Light Gradient Boosting Machine, a boosting algorithm that uses gradient boosting 

framework and is optimized for efficiency; LogisticRegression (LR), modeling the probability of a 

binary outcome using a logistic function and linear regression; MLPClassifier (MLP) Multi-Layer 

Perceptron, a type of neural network with multiple layers of nodes, used for classification tasks; 

RandomForestClassifier (RFC), constructing multiple decision trees and merging their outputs to 

improve accuracy and control overfitting; SVC (SVC) Support Vector Classifier, a classifier based on 

finding the hyperplane that best separates classes in a high-dimensional space; XGBClassifier (XGBC) 

Extreme Gradient Boosting, a boosting algorithm known for its speed and performance in tabular 

datasets [5-9].  

Figure 3 presents a summary of the model evaluation outcomes. Both the DTC and LR algorithms 

consistently display comparatively lower scores across all metrics when compared to the average. GNB 

also exhibits relatively lower performance across most metrics. Conversely, the KNC, MLP, and XGBC 

algorithms consistently demonstrate comparatively higher scores than the average across all metrics. 

These three algorithms showcase robustness and reliability across different evaluation criteria, standing 

out as top performers for predicting Parkinson’s disease.  

Figure 4 highlights the weighted average All Metrics score for each of the nine algorithms, where 

KNC, MLP, and XGBC achieve the highest score of 0.87, while GNC, LR, and DTC attain the lowest 

scores of 0.79, 0.8, and 0.81, respectively. Although the ideal score or range of scores can vary depending 

on the specific use case, a general guideline is that a score of 0.8 or higher is often considered a good 

score for most model evaluation metrics [10]. 
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Figure 3. Summary of Model Evaluation Outcomes 

 

Figure 4. Weighted Average of All Metrics for All Nine Algorithms 
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3.2.  Impact of Feature Reduction on Model Performance  

Furthermore, the entire process of model fitting and model evaluating was replicated using the original 

dataset containing all 22 features. Displayed in Figure 5 are the weighted average scores of all metrics 

using both 22 and 12 features across the nine algorithms. Dropping the previously identified 10 

redundant features resulted in either identical or improved model performance in 6 out of the 9 

algorithms. For the remaining 3 algorithms, there was only a slight decrease in model performance, 

which was more than compensated by the advantage of a more streamlined model, reducing redundancy 

and multicollinearity. This observation validates the earlier decision to eliminate those 10 features. 

 

Figure 5. All Metrics Score of Models with 22 Features and 12 Features 

4.  Conclusion 

Diagnosing Parkinson’s disease has traditionally involved clinical assessments by neurologists, and this 

practice still persists today to a significant extent. However, clinical assessments can be prone to 

subjectivity. In this study, a comprehensive predictive modeling approach was undertaken, employing 

nine distinct machine learning algorithms and six different model evaluation metrics to identify the best-

performing algorithms. The findings reveal that, using only 12 vocal characteristics, 

KNeighborsClassifier (KNC), MLPClassifier (MLP), and XGBClassifier (XGBC) achieved the highest 

score of 0.87. This score is generally considered very good, indicating that the model is robust and 

possesses strong predictive power. This study marks a crucial initial step in leveraging machine learning 

techniques for more effective and potentially more accurate diagnosis of Parkinson’s disease based on 

patients’ vocal characteristics.  
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