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Abstract. N6-methyladenosine (m6A), recognized as the most prevalent post-transcriptional 

modification in organisms, has been substantiated to exert a significant influence on the genetic 

mechanisms underlying breast cancer. To delve deeper into the disparities in expression, 

modification, and interactions between mRNA and m6A in breast cancer (BC), we conducted 

RNA-seq and MeRIP-Seq analyses on eight human breast tissue transcriptome samples 

acquired from the GEO database. combining two single omics and integrated analysis, the 

study unveiled the mRNA and m6A expression patterns, differential genes, and enriched 

pathway functional disparities in BC (on Chromosome 17): (1) A confidence list comprised of 

53 differential genes was derived by intersecting the 72 identified differentially expressed 

mRNA genes and the 781 differentially modified m6A genes; (2) The three-way analysis 

revealed two distinct types of pathways related to BC: “ABC transporter activity” and 

“Response to epidermal growth factor.” Among these, the EGF pathways exhibited the closest 

association with the differential m6A modifications. Meanwhile, all three BC subtypes 

enriched in DisGeNET were all linked to EGF; (3) By integrating PPI and enrichment analysis, 

we selected target genes from the confidence gene list, which included ABCA6, ABCA8, and 

ABCA10, known to be involved in regulating ABC transporters, and ERBB2, a central hub 

gene in PPI with a pivotal role in the EGF pathway and Her2-positive BC subtype under m6A 

differential modification. Subsequent research may uncover RNA-binding proteins for these 

target genes and offer effective drug design targets for BC. 
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1.  Introduction 

In the realm of global health challenges, breast cancer (BC) has emerged as a predominant concern. As 

the most common type of tumor worldwide, BC led in incidence and mortality rates among women, 

accounting for approximately 11.7% of all cancer cases [1-2]. Its prevalence not only has underscored 

a critical health issue but also highlighted an increasing trend year after year [3]. This growing 

prevalence necessitates a heightened focus on biological research, particularly in understanding the 

intricate mechanisms of pathology and developing effective treatment strategies for BC. According to 

the studies, one of the central aspects of BC pathology was the genetic abnormalities observed at the 

molecular level, particularly in gene expression [4]. A notable example of this was the regulatory role 
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of the KIAA1429 gene in the oncogenic modulation of CDK1 expression, a process deeply 

intertwined with m6A-related epitranscriptomic mechanisms [1]. Meanwhile, this genetic complexity 

has extended to treatment challenges as well, where genes like ABCA1, ABCB1, and ABCG2, 

associated with multidrug resistance in chemotherapy, revealed critical links to gene family regulators 

and chemoresistance [5]. 

To address these complexities, there has been an increasing reliance on bioinformatics using 

high-throughput sequencing samples. With the power of data, this approach can offer profound 

insights into the genetic underpinnings of BC, paving the way for more effective diagnostic and 

therapeutic strategies. In omics, in addition to traditional transcriptomics studies, the role of 

N6-methyladenosine (m6A) – the most prevalent post-transcriptional modification in eukaryotic RNA 

– was particularly noteworthy [6]. Its influence on mRNA functionality, such as transport, alternative 

splicing, and stability, plays a significant role in cancer progression, metastasis, and resistance to 

treatment [4]. Despite advances in sequencing technologies highlighting the relationship between 

abnormal m6A levels and tumors, the specific functions of m6A in BC and its contradictory effects 

across various cancer cell subtypes and patient profiles remained areas of active debate [1]. 

Recognizing the importance and dynamic nature of m6A modifications, the study aimed to provide 

a clearer picture of its role in BC in the context of the traditional mRNA landscape. By conducting an 

integrative transcriptomic analysis using RNA-seq and MeRIP-Seq on breast cancer samples (focusing 

on human chromosome 17), we sought to achieve the following objectives: (1) To identify and 

compile a high-confidence list of genes differentially expressed and regulated by m6A in BC; (2) To 

investigate the diverse biological functions of these genes; (3) To pinpoint potential target genes 

showing differential expression due to m6A regulation and assess the feasibility of BC hallmark genes 

TP53 and BRCA1. 

2.  Methods 

This study employed a dual-omics approach, incorporating both RNA-seq and MeRIP-Seq analyses. 

The workflow commenced with separate examinations of each omics method to procure distinct breast 

cancer expression profiles (Fig. 1), then an integrated analysis merged these findings, enabling a 

comprehensive exploration of the functions of the genes characterized by m6A-mediated differential 

transcripts expression. The specific analysis steps are as follows: 
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Figure 1. The flowchart of this whole analysis. After obtaining the raw data from the GO database, 

RNA-seq and MerIP-seq-based m6A flow analyses were first performed, respectively. After completing 

the two processes, joint analysis was used to obtain gene intersections and dig deeper into their 

enrichment functions in BC. During the analysis, the three main analysis topics are shown in red, the 

blue squares show the main analysis steps, and the yellow circles focus on the enrichment analysis and 

other analysis methods used. Finally, the R packages or functions used were presented in green diamond 

blocks.  

2.1.  Raw Data Acquisition 

Two omics methodologies were utilized in this research. The raw sequencing data, sourced from the 

GEO (NCBI) public database under accession number SRP407941, encompassed human breast cancer 

and normal breast tissue samples [7]. According to the database, sequencing was performed on the 

Illumina HiSeq 4000 (Illumina platform), generating paired-end RIP-Seq sequences with an average 

read length of 300bp. The project included 8 samples, each assigned specific IDs and library types. For 

instance, SRR2228734x(1-4) represented breast cancer tissue, while SRR2228734x(5-8) corresponded 
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to normal breast tissue. In the analysis, samples x2, x4, x6, and x8 from RNA-seq libraries were not 

only used for RNA-seq analysis but also concurrently served as inputs alongside samples x1, x3, x5, 

and x7 from MeRIP-Seq IP for m6A analysis (Fig. 2). 

 

Figure 2. Information on the samples obtained from the GEO database and the experimental 

design groups. Samples x1-4 were derived from human breast cancer tissues, while samples x5-8 were 

obtained from normal breast tissues. The library types are as shown in the table: 4 RNA-seq samples 

were grouped for mRNA differential analysis, while four MeRIP-Seq samples were used as 

immunoprecipitation (IP) samples for m6A analysis. Additionally, the same 4 RNA-Seq samples also 

served as input in m6A analysis. 

2.2.  Quality Control and Data Preprocessing 
Prior to formal analysis, the eight samples underwent rigorous quality assessment, including base 

quality filtering and rRNA sequence removal, executed by experienced professionals. 

2.3.  Genome Alignment 

The sequencing reads were aligned to the hg38 human reference genome using the Hisat2 tool [8]. 

This proc`ess employed a pre-built index at “/data/genome_indx/genome_hg38”. Subsequently, the 

eight resulting SAM files were converted to BAM format via ‘samtools view’ to enhance memory 

efficiency, after which the original SAM files were deleted [9]. 

*Note: Both RNA-seq and m6A-seq followed the above data processing workflow, albeit with 

subsequent divergent analytical procedures. 

2.4.  Read Counts (RNA-seq) & Peak Calling (m6A-seq) 

As the initial statistical steps, RNA-seq analysis and m6A-seq analysis had different statistical targets: 

RNA-seq: The RNA-seq analysis employed the “summarizeOverlaps()” function from R’s 

GenomicAlignments package for read count per gene, with gene annotation via 

TxDb.Hsapiens.UCSC.hg38.knownGene [10-11]. The resulting statistics included a matrix with genes 

arranged vertically and samples arranged horizontally, where each element represented the count of 

reads in a specific sample and gene. During this process, parameters were meticulously selected, 

including gene ID conversion using org.Hs.eg.db, and specific filtering conditions were applied to 

enhance data quality and reduce data background noise (count_se[rowSums(assay(count_se) >= 10) > 

1,]). 

MeRIP-seq: Unlike RNA-seq, which quantified the number of reads per gene, m6A analysis 

focused on identifying regions significantly enriched in m6A in IP samples compared to input samples. 

The “exomePeak2” tool was utilized for peak calling [12]. During this process, m6A-enriched regions 
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were separately counted for breast cancer and normal groups, with RNA-seq sequencing data from the 

same groups used as input controls. MeRIP-seq BAM files were used as immunoprecipitation (IP) 

samples for corrected peak findings. Notably, the “TxDb.Hsapiens.UCSC.hg38.knownGene” on 

chromosome 17 was called transcript annotation (TxDb), and the p-value and log2FC thresholds were 

set to default values in the functions [10]. 

2.5.  Differentially Expressed Genes & m6A Differential Peaks 
RNA-seq (differentially expressed genes): DESeq2 facilitated the identification, incorporating data 

normalization and modeling based on a negative binomial distribution [13]. Its results reported 

differential expression genes between breast cancer tissue and normal breast tissue, along with their 

log2FC and BH-corrected p-values (padj). Thresholds were set at |log2FC| > 1 and padj < 0.05. 

MeRIP-seq (m6A Differential Peaks): ExomePeak2 also executed differential peak calling 

comparing breast cancer tissue with normal tissue [12]. The “bam_ip_treated” and “bam_input_treated” 

parameters were enabled for this calling. The output was in BED format. 

2.6.  GO & KEGG Enrichment & GSEA Analysis 

Based on the differentially expressed genes and m6A differential peaks obtained in the previous steps, 

separate Gene Ontology (GO) Enrichment Analysis and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) Enrichment Analysis were conducted in both omics (methods without no enrichment 

outcome were not included in the next part) [14-15]. The gene lists corresponding to differential 

expression in both omics was set as input, and the “enrichGO()” and “enrichKEGG()” functions were 

called to perform enrichment analysis [16]. org.Hs.eg.db provided the necessary information for 

enrichment, such as human biological pathways and GO functional annotations. The threshold was set 

at p < 0.05. Additionally, Gene Set Enrichment Analysis (GSEA) was separately conducted for 

RNA-seq analysis [17]. 

2.7.  Conjoint Analyses 

The final phase involved a synergistic analysis, merging RNA-seq and m6A-seq findings to pinpoint 

breast cancer genes affected by m6A modifications. The specific method involved taking the 

intersection of differentially expressed genes from RNA-seq and genes corresponding to m6A 

differential peaks. Subsequent functional analyses included: (1) GO and KEGG functional enrichment 

analysis for the intersecting genes. (2) DisGeNet enrichment analysis to determine associations with 

diseases [18]. (3) Protein - Protein Interaction (PPI) network analysis using the String database to 

explore their deep functional roles in BC [19]. 

3.  Results 

3.1.  Breast Cancer mRNA Expression Profile 

3.1.1.  Sample Assessment. Based on the count matrix derived from read counts, Principal Component 

Analysis (PCA) and Pearson correlation coefficient assessments were conducted to determine the 

relationships among the four RNA-seq samples (Fig. 3A, B). In the PCA plot, breast cancer and 

normal tissue samples exhibited significant divergence along Principal Component 1 (PC1), while in 

Principal Component 2 (PC2), the two sample types maintained a distinct separation, although the two 

breast tissue samples were relatively distant from each other. Meanwhile, the Pearson correlation plot 

further quantified the strength of the association: a very strong positive correlation (0.87) between the 

breast cancer samples and a notable positive correlation (0.77) between the normal tissue samples. 

Considering both sets of analysis, the experimental design for the RNA-seq samples was overall 

effective, demonstrating significant biological variations between the two categories. This provides a 

solid foundation for subsequent differential expression analysis, despite the inherent variability within 

each group. 
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Figure 3. Sample relationships and quality checks. (A) PCA plots show the clustering of four 

RNA-seq samples; (B) The correlation coefficient chart quantifies the strength of the correlation 

between the four samples. 

mRNA Expression Level Analysis. After counting reads, the differential expression analysis was 

utilized to conduct a clustering analysis of 886 genes, which elucidated the overarching gene 

expression patterns and delineated the similarities and disparities among samples, as visualized 

through the heatmap (Fig. 4D). Subsequent comparison among groups and filtration yielded 72 genes 

with significantly differential expression. The symbols and clustering configurations of these 72 genes 

across four samples are indicated in Fig. 4E. Moreover, a volcano plot was deployed to further 

delineate the distribution, significance, and extent of variances among these differentially expressed 

genes. The analysis revealed that 37 genes were markedly upregulated in breast cancer samples, 

whereas 35 genes demonstrated pronounced downregulation. Notably, genes of considerable 

significance or with substantial differential fold changes have been annotated in the figure (Fig. 4A).  

Additionally, the relationship between the counts and the differential expression levels, as well as 

the dispersion across gene points and the fitting model of DESeq2, are shown in MA plot (Fig. 4B) 

and discrete estimation plot (Fig. 4C). 

Beyond these analyses, the study concentrated on the transcript expression of two star breast cancer 

genes, TP53 and BRCA1. It was observed that the transcript expression of both genes was augmented 

in breast cancer tissues, with BRCA1 exhibiting a more pronounced upregulation compared to TP53 

(log2FC: 1.94 vs. 1.64) (Fig. 4F-H). However, it was also worth noting that two genes were 

statistically non-significant (padj > 0.05) (Fig. 10D). 
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Figure 4. mRNA expression profile (RNA-seq). (A) Volcano map showed 72 differentially expressed 

genes, 37 of which were up-regulated and 35 down-regulated in BC samples; (B)(C) MA maps and 

Discrete estimation maps show the relationship and degree of dispersion of gene counts and expression 

differences respectively (corresponding to the statistical model in DESeq2); (D) Clustering heatmap of 

all 886 genes in four samples, showing expression patterns within and between groups as a whole; (E) 

Cluster expression patterns of 72 differentially expressed genes, with up-regulated genes represented in 

blue and down-regulated genes represented in red; (F-H) The dot plots for TP53 and BRCA1’s 

normalized counts, and the bar chart represents the up-regulation multiples (Log2FC) of these two BC 

star genes.  

3.1.2.  The Enrichment Analysis of Differentially Expressed Genes (DEGs): ABC Transporter Activity 

may have an Impact on BC. The GO and KEGG enrichment analyses of the 72 differentially expressed 

mRNA genes suggested potential alterations in ATP-binding cassette (ABC) transporters within breast 

cancer tissues (Fig. 5B). These changes might affect transporter protein functions, including lipid 

transporter activity, ATPase-coupled transmembrane transporter activity, and ABC-type transporter 

activity (Fig. 5A). The GO pathway network highlighted a significant link between ABCAx genes 

(ABCA6, ABCA8, ABCA9, ABCA10) and transporter protein functions (Fig. 5C). 
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Furthermore, gene set enrichment analysis of the original sample count matrix indicated potential 

comorbidity between Human Papillomavirus (HPV) and breast cancer. The differential gene set 

enrichment was depicted in Figure 5E, adhering to a threshold of p < 0.05 and False Discovery Rate 

(FDR) < 0.05. Notably, TP53 was observed to be upregulated in the gene set enrichment analysis, 

underscoring its potential involvement in this comorbidity (Fig. 5D).  
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Figure 5. The Enrichment Analysis of Differentially Expressed Genes (DEGs). (A) Histogram of 

GO enrichment analysis for DEG (only BP type had the output results); (B) Histogram of KEGG 

enrichment analysis for DEG; (C) GO enrichment analysis network map for DEG (assisted observation 

of associated genes); (D) (E) Gene set enrichment analysis revealed the only significant enrichment 

pathway HPV and the gene expression patterns affecting it. 

3.2.  m6A Peak Spectrum (BC & Normal & Differentiation) 

In the m6A omic study of breast cancer (BC) and normal tissue groups, we identified 6016 and 4635 

m6A peaks, respectively (Fig. 6F). The m6A peak distribution and peak scores on the entire 

chromosome 17 were shown in Figure 6H. Then, the comparative analysis of the distribution 

proportions revealed notable differences: in the BC group, a higher percentage of m6A peaks was 

observed in the 5’UTR region (12.3%) compared to the normal group (10.2%). In contrast, the BC 

group showed lower proportions in the CDS and 3’UTR regions relative to the control group (Fig. 

6C-E). Further detailed analysis presented in Figure 6A and 6B highlighted the regional distribution of 

these peaks on mRNA. We observed enrichment of m6A peaks near the transcription start site (TSS) 

and transcription termination site (TTS) in both groups. Notably, the BC group exhibited a marginally 

higher density of peaks in these regions compared to the normal group. Additionally, Figure 6G 

elucidated the variation in fold-change values (input versus IP) among the captured peaks within each 

group. 

Overall, the observed enrichment pattern of m6A peaks aligned with the established consensus on 

m6A distribution, serving as an indirect validation of the sequencing sample quality. 
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Figure 6. m6A modification spectrum. (A) IGV visualized m6A peak distribution and scores on whole 

chromosome 17, from top to bottom, as follows: difference peak (black), BC sample peak (pink), control 

group peak (light blue)[32]; (B) The guitar plots of BC and normal groups' m6A peak distribution on 

mRNA[33]; (C) The guitar plot of differential m6A peak distribution on mRNA[33]; (D - F) Pie charts 

of m6A distribution showing the proportions of the 3 region types under normal, cancer and 

differentiation conditions; (G) The bar plot of m6A peak counts; (H) The violin plot containing peak fold 

enrichment and distribution.  
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3.3.  The Enrichment Analysis Demonstrated the Comprehensive Impact of Differential m6A 

Modification on Various Functions 

After both two groups’ m6A peak examinations, ExomePeak2 was continuously used to identify 

differential m6A peaks in the breast cancer (BC) group in comparison to normal controls [12]. This 

approach led to the identification of 781 genes associated with these differential m6A peaks. 

Subsequent GO enrichment analysis elucidated the functional implications of these peaks, revealing 

two major pathways significantly associated with the epidermal growth factor response (Fig. 7A). 

Among the enriched genes, the cross genes (as observed in the joint analysis) included ERBB2, MED1, 

and CDL1A1, with the highest proportion in all pathways (3/10) (Fig. 7B). Additionally, two pathways, 

namely “regulation of signal transduction by P53 class mediator” and “chromosome segregation,” 

each implicated TP53 and BRCA1, respectively, potentially suggesting a potential downstream impact 

of m6A modification on these key genes in breast cancer pathology (Fig. 7B). 
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Figure 7. m6A differential genes’ GO enrichment analysis. (A) The bubble map shows differential 

m6A modification gene enrichment of "BP" and "MF"; (B) The network map represents the associations 

between the "BP" pathways as well as the numbers and names of genes enriched. 

3.4.  Integrated Pathway Analysis: Confidence Target Gene List & Enrichment Results Corresponding 

to Single-Omics 

Furthermore, integrated analysis was performed to extract the confident gene list and explore gene 

functions. Firstly, an intersection was taken between the differential genes obtained from the two 

single-omics, capturing 53 genes that simultaneously exhibited differential m6A modification and 

mRNA expression characteristics (Fig. 8A). This dual characteristic not only suggested that changes in 

expression could be influenced by variations in m6A modification but also bolstered the reliability of 

these genes as dynamic markers of reversible m6A modifications. Consequently, this robust list of 53 

genes (detailed in Appendix 1) was designated as the primary screening set for the target genes 

subsequently. 
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Following this, an enrichment analysis using the KEGG was conducted on these overlapping genes 

[15]. This analysis highlighted one significant pathway - “ABC transporters.” which included 3 ABCA 

subfamily genes of “ABCA6”, “ABCA8” and “ABCA10” (Fig. 8B). Complementarily, the 

Protein-Protein Interaction (PPI) network analysis elucidated expression correlations among these 

intersecting genes, pinpointing central hub genes such as ERBB2, TOP2A, STAT5A, EVPL, among 

others [19] (Fig. 8E). Notably, a pronounced correlation in expression was observed between ABCA8 

and ABCA6, which were critical regulatory genes in the ABC transporter system (Fig. 8E). 

Furthermore, the DisGeNET enrichment analysis was employed to explore potential disease 

associations of these intersecting genes [18]. Remarkably, all 53 genes showed enrichment in various 

cancer-related diseases (Fig. 8C-D). Specifically, three breast cancer subtypes - “Luminal B Breast 

Carcinoma,” “Monosomy,” and “Metastatic human epidermal growth factor 2 positive Carcinoma of 

Breast” - were prominent, all closely related to the Breast Epidermal Growth Factor category (Fig. 8C). 

This correlation with disease phenotypes aligned with the epidermal growth factor response pathways 

identified in the differential m6A gene enrichment analysis, shedding light on specific breast cancer 

types potentially influenced by m6A-mediated gene expression alterations. Finally, the observed 

enrichment in other cancer types might offer insights into potential comorbidity associations linked to 

these intersecting genes. 
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Figure 8. Integrated Pathway Analysis. (A) The Venn diagram of 53 overlapping genes obtained from 

72 differentially expressed (mRNA) genes and 781 differentially modified m6A genes. (B) KEGG 

enrichment network of intersection genes; (C-D) DisGeNET enrichment analysis diagrams: showing 

cross-gene enriched disease types (3 breast cancer subtypes were associated with EGF) and associated 

gene names. (E) The protein - protein interaction network contained the expression correlation of 53 

genes, in which key genes such as ERBB2, STAT5A, TOP2A were found, and close correlation between 

ABCA8 and ABCA6 was observed. 
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4.  Discussion 

Extensive research has explored the pathogenic genes and mechanisms underlying breast cancer, yet 

the role of m6A modification, a major epigenetic alteration of mRNA, remains underexplored, 

particularly its effects on the transcripts and distant phenotype associations [20]. In the study, 

RNA-seq and MeRIP-seq (m6A) were utilized to analyze differentially expressed mRNA genes and 

m6A differential peak genes in BC and normal tissues. Additionally, we conducted enrichment 

analysis to assess the distinct functional roles of these differentially expressed genes. 

The findings revealed that the differentially expressed genes were predominantly enriched in 

pathways associated with ABC transporters. Meanwhile, the differential m6A genes were significantly 

involved in processes linked to epidermal growth factor response, cellular localization, and 

chromosome segregation. An integrated analysis of these genes provided a deeper understanding of 

their m6A-mediated differential expressions and functions. 

In the KEGG database, an overlap of 53 genes showed similar enrichment in the ABC transporters 

pathway, and DisGeNET’s enrichment analysis further affirmed the link between epidermal growth 

factors and m6A modification in breast cancer subtypes. Additionally, a protein-protein interaction 

network pinpointed key genes such as ERBB2 (related to epidermal growth factors) and core genes 

like ABCA6 and ABCA8 (associated with ABC transporters), highlighting them as potential m6A 

targets in breast cancer. 

4.1.  ABC Transporter Genes 

ATP-binding cassette (ABC) transporters, a group of transmembrane proteins, facilitated substrate 

transport through ATP hydrolysis [21]. In the research, four subfamily A member genes (ABCA6, 

ABCA8, ABCA9, and ABCA10) were differentially expressed, with significant downregulation 

(log2FC < -3) in breast cancer samples. The m6A target genes overlapped with all but ABCA9. 

Particularly, these genes were the sole enriched pathway’s genes in the intersection, indicating a 

potential association between the ABC transporter pathway and DEG enrichment activities in breast 

cancer, which may involve m6A modification. 

Literature on m6A modification of ABC transporter genes in breast cancer was rare. However, 

extensive evidence linked these genes to breast cancer development and drug resistance. 

Overexpression of the ABCA8 gene, for instance, could inhibit breast cancer cell proliferation, 

whereas its low expression correlates with adverse clinical features in patients [22]. ABCA10, known 

for its low expression and regulatory pattern influenced by immune infiltration and promoter 

methylation, emerged as a potential target for precision therapy and a novel prognostic biomarker [23]. 

Moreover, ABC transporter family genes were intricately connected to multidrug resistance (MDR) in 

cancer chemotherapy [24]. Their overexpression, a primary mechanism for acquired drug resistance, 

positioned them as potential therapeutic targets to combat cancer drug resistance [25]. Thus, 

investigating ABC transporter genes as m6A targets in breast cancer might offer a new epigenetic 

perspective on this complex therapeutic challenge. According to the confidence gene list, among the 

ABC family genes, ABCA6, ABCA8, and ABCA10 were selected as cautious but reliable choices for 

differential expression target genes regulated by m6A modification in breast cancer. 

4.2.  Epidermal Growth Factor & ERBB2 

Beyond the realm of ABC transporters, the Epidermal Growth Factor (EGF) standed as another 

molecule with significant functional relevance. EGF was instrumental in triggering signaling pathways 

that were pivotal for cell proliferation and differentiation, accomplished through its interaction with 

EGF receptors [26]. This analysis distinctly underscored the association between EGF and m6A 

differential modification. Notably, the differentially expressed genes (DEGs) mediated by m6A 

differential modification were significantly enriched across three breast cancer subtypes, all of which 

were closely related to breast epidermal factors. This observation was in harmony with our 

single-omics m6A-seq data, which demonstrated marked “response to epidermal growth factor” and 
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“cellular response to epidermal growth factor stimulus” pathways, thereby highlighting the impact of 

m6A modification on the downstream responses of epidermal growth factor in breast cancer tissues. 

In examining the genes enriched within these pathways, alongside their correlations across three 

breast cancer subtypes, the gene ERBB2 was consistently identified as a common element. Within the 

protein-protein interaction network, composed of 53 intersecting genes, ERBB2 assumed a critical role 

as a central hub gene. It established connections with key genes such as STAT5A, TOP2A, and 

STARD3, each playing a significant role in breast cancer subtypes or within the m6A-seq enrichment 

pathways. Specifically, TOP2A was involved in “chromosome segregation” pathway, while STARD3 

was crucial for “the establishment of organelle localization” pathway. Hence, ERBB2 positioned itself 

as an exemplary m6A target gene in the analysis. 

The role of EGF in breast cancer has been extensively researched, particularly focusing on the 

Human Epidermal Growth Factor Receptor 2 (HER2). HER2-positive breast cancer was recognized as 

a distinct subtype, with a substantial amount of research centered around pathways pertinent to 

HER2-positive subtypes. In the KEGG database, the pathway labeled “Breast cancer” (hsa05224) 

included two pathways that involved ERBB2: the “ERBB2-overexpression to RAS-ERK signaling 

pathway” (N00022) and the “ERBB2-overexpression to PI3K signaling pathway” (N00034) [27]. As 

illustrated in Figure 9, the overexpression of ERBB2 in HER2-positive breast cancer significantly 

influenced the downstream RAS-ERK and PI3K signaling pathways through EGFR and HER2, 

thereby confirming the crucial role of ERBB2 in EGF-related pathways within breast cancer. However, 

despite known overexpression of ERBB2 in breast and ovarian tumors, insights into its transcriptome 

have been largely restricted to selective splicing and a few transcription variants [28-29]. This gap 

underscored the necessity for further research to delve into the role of epigenetics, especially m6A 

modification, in the regulation of these downstream effects. 

 

Figure 9. Two influenced pathways of ERBB2 in KEGG “Breast cancer” pathway (hsa05224): 

"ERBB2-overexpression to RAS-ERK signaling pathway" (N00022) and "ERBB2-overexpression to 

PI3K signaling pathway" (N00034). 

4.3.  TP53 & BRCA1 

In this analysis, we examined that TP53 and BRCA1, star genes in breast cancer, were identified 

exclusively as mRNA differential expression genes, without featuring in the m6A differential 

modification gene list. The data demonstrated an upregulation of both TP53 and BRCA1 transcripts in 

breast cancer samples, with BRCA1 showing a more pronounced increase (log2FC: 1.94 vs. 1.64) (Fig. 

10D). This finding contrasted with the established understanding of TP53 and BRCA1’s roles in breast 

cancer. 

Typically, BRCA1, which coded for the BRCA protein crucial in DNA damage sensing and repair, 

was considered a tumor suppressor gene [30]. Therefore, it was generally considered to be 

downregulated in cancer [31]. Similarly, TP53, encoding the P53 protein responsible for cell cycle 

regulation, DNA repair, and apoptosis, was also categorized as a tumor suppressor gene [31]. However, 

the comprehensive analysis revealed a discrepancy between these theoretical roles and the results. 

Specifically, according to DESeq2 analysis results, neither gene showed statistical significance 

(padj > 0.05), a situation that might stem from a limited sample size (Fig. 10D). Other potential 

explanations include variations in sequencing quality, or differences in gene expression levels specific 

to breast cancer subtypes or certain mutations. 
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Additionally, m6A modification peaks of TP53 and BRCA1 were shown in Figure 10B and 10C for 

further check. 

 

 

Figure 10. m6A modification peaks of ERBB2, TP53, BRCA1 under IGV visualization & The table of 

TP53 and BRCA1 differential comparsion outcomes between groups (DESeq2) (Breast cancer tissue vs. 

Normal breast tissue). (A)ERBB2’s m6A peaks’ distribution and scores under three conditions 

(Differentiation, BC, Normal); (B)BRCA1’s m6A peaks’ distribution and scores under three conditions 

(Differentiation, BC, Normal); (C)TP53’s m6A peaks’ distribution and scores under three conditions 

(Differentiation, BC, Normal); (D) The DESeq2 results of TP53 and BRCA1. 

4.4.  Limitations 

The analysis in this study faced certain limitations which might impact the outcomes. Initially, the raw 

sample data, foundational to the analysis, have some deficiencies. It was possible that the use of a 

relatively small number of sequencing samples led to statistically insignificant results or statistical bias. 

This limitation also restricted the ability to employ broader analysis or modeling techniques, such as 

Weighted Gene Co-expression Network Analysis (WGCNA) or machine learning. Moreover, the 

categorization of breast tissue cancer samples lacked detailed subtyping, which impeded a more 

nuanced analysis. Furthermore, the analysis was restricted by hardware constraints, specifically the 

server capacity, which resulted in the only focused research on genes located on chromosome 17. This 

focus potentially led to a narrow view of m6A and mRNA interactions, neglecting a more 

comprehensive analysis of gene correlations. For instance, the exploration of the functional 

associations between BRCA2 and BRCA1 genes, which were situated on chromosome 13 could not be 
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achieved. Lastly, regarding the methodology, the read counts matrix generated using the 

“summarizeOverlaps” function had not been subjected to PKDF transformation, a decision influenced 

by time and technical constraints. This omission could have further implications for the depth and 

accuracy of the analysis. 

5.  Conclusion 
In conclusion, our study provided a comprehensive examination of the mRNA transcriptome and m6A 

methylome on chromosome 17 in human breast cancer tissue, compared to normal breast tissue. The 

integrative analysis of single-omics datasets highlighted a robust list of genes that were distinctly 

regulated by m6A modification in BC. Notably, two pathway types were observed as the significant 

enrichment of functions related to ABC transporter protein activity and epidermal growth factor 

signaling. Besides, among the identified target genes, ERBB2, characterized as a hub gene, along with 

ABC transporter genes containing ABCA6, ABCA8, and ABCA10, emerged as promising biomarkers, 

distinct from well-known genes like TP53 and BRCA1. Further, the findings suggested a potential link 

between the enrichment of co-occurring HPV in breast cancer and shared differential expression 

patterns of transcriptional transcripts. Today, the increasing recognition of m6A modifications in 

cancer underscored the need for further research into the m6A target genes in breast cancer. In the 

future, such research in this area will unveil new RNA-binding proteins (methyltransferases) as 

potential therapeutic targets, paving the way for innovative targeted therapy strategies in the realm of 

m6A epigenetics. Additionally, the integration of multi-omics studies with clinical data analysis will 

also promise to deepen our understanding of the underlying biological processes associated with 

transcriptional differences and their correlations with breast cancer progression at the same time. 
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Appendix 

Appendix 1. The Confidence Gene List (53)  

Gene_Symbol 

ABCA10 

ABCA6 

ABCA8 

AOC3 

ARHGEF15 

CACNG4 

CAVIN1 

CBX2 

CD300LG 

CDC6 

CDK12 

CEP131 

COL1A1 

ERBB2 

EVPL 

EZH1 

GAS7 

GHDC 

GRB7 

IGFBP4 

JPT1 

KIF18B 

KPNA2 

KRT14 

LLGL2 

LOC101929950 

MED1 

MEOX1 

MFAP4 
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MIEN1 

MMD 

NARF-AS2 

NATD1 

NDUFAF8 

NFE2L1 

NXPH3 

PECAM1 

PER1 

PYCR1 

RAMP2 

RPL19 

RPL23 

SAMD14 

SCN4A 

SGSH 

SP6 

STARD3 

STAT5A 

TBKBP1 

TMEM100 

TMEM97 

TOP2A 

WSCD1 
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