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Abstract. Gastric cancer is the second leading cause of cancer-related deaths in the world. It is 

estimated that gastric cancer would cause 12,000,000 deaths by 2030. Gastric cancer diagnosis 

in its early stages is often challenging due to the lack of specific symptoms, while early diagnosis 

is pivotal to patient survival. The discovery of tumor-specific biomarkers plays a crucial role in 

effectively diagnosing gastric cancer. Metabolomics-based approaches provide qualitative and 

quantitative measurements of the metabolic signatures that are unique to cancerous tissue. 

Recently, mass spectrometry imaging (MSI)--based metabolomics enables untargeted 

investigation of molecular species concerning spatial distribution across tissues, elucidating the 

heterogeneity of gastric cancer. In this study, a computational imaging segmentation-based 

pipeline that analyses the spatial distribution of metabolite for gastric cancer using MSI 

metabolomics data is developed, which leads to the discovery of differentially expressed 

metabolites and the identification of biomarkers across different tissue subtypes in gastric cancer.  
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1.  Introduction 

Gastric cancer is the fourth most common type of cancer and the second leading cause of cancer-related 

deaths in the world [1–4]. It is estimated that gastric cancer will cause 12,000,000 deaths by 2030 [5]. 

Early diagnosis and treatment serve a pivotal role in ensuring patient survival rates for gastric cancer. 

However, gastric cancer diagnosis in its early stages is often challenging due to the lack of specific 

symptoms [4–6]. There have been many studies that indicate an association between altered metabolic 

signatures with gastric cancer [7]. It can provide a highly accurate and comprehensive understanding of 

anomalies within the stomach, oftentimes giving distinguishable characteristics between malignant and 

healthy conditions. Additionally, metabolic biomarkers can provide impressive diagnostic and 

prognostic value to gastric cancer, with some even considered as independent risk or predictive factors. 

They are critical in gastric cancer’s early-stage diagnosis and disease prognosis. Such metabolic 

biomarkers play a vital role in the cancer pathogenesis of metastasis. Being able to predict and detect 

such biomarkers can serve a crucial purpose in advancing gastric cancer diagnostic and therapeutic 

measures [8,9]. 

The methodological innovations in metabolomics-based approaches provide both qualitative and 

quantitative measurements of the metabolic signatures that are unique to cancerous tissue [7]. 

Additionally, gastric cancer tumors are heterogenous, meaning they will portray different metabolic 

phenotypes based on their constantly evolving microenvironment [10,11]. Recently, a study has 
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demonstrated that information on altered metabolisms of gastric cancer cells provides additional 

guidance and advancement into gastric cancer diagnosis, prognosis, and treatment as the development 

of cancer cells requires alterations in its metabolism to adapt to its ever-changing hostile environment 

[10,12,13]. Specifically in gastric cancer, for instance, aerobic glycolysis is upregulated compared to 

that of normal gastric epithelium, forming an acidic microenvironment which aggravates the 

decomposition of extracellular matrixes and facilitates formation of blood vessels which transports 

needed nutrients to the tumor [7]. Lipid metabolism has also been discovered to alter in gastric cancer, 

with upregulated lipogenesis and enhanced fatty acid-β oxidation which works together to build up large 

amounts of fatty acids, ATP, and acetyl coenzyme-A to use as an energy source in the early stages of 

gastric cancer. The fatty acid synthase enzyme is also found to be upregulated in gastric cancer cells, 

which has been linked to chemoresistance, tumor proliferation, and relatively poor prognosis [7].  

The discovery of tumor-specific biomarkers can be pivotal in effectively diagnosing and preventing 

gastric cancer [14]. Mass spectrometry imaging (MSI) is a technique that enables untargeted 

investigation of molecular species concerning the spatial distribution of a variety of samples [15]. It is 

a method that provides both the information from mass spectrometry and a visualization of the 

distribution of molecules within the sample, making it a powerful analytical tool in analyzing the 

metabolic biomarkers in cancer research [12,15]. Therefore, using MSI to investigate gastric cancer 

tissue will facilitate the identification of biomarkers and elucidate the heterogeneity of gastric cancer 

tissue [12]. This is an MSI data-based study that aims to use a computational imaging segmentation-

based pipeline to analyze the differentially expressed metabolites and identify biomarkers across 

different tissue subtypes in gastric cancer.  

In this study, we developed a computational imaging segmentation-based pipeline to analyze MSI 

data of gastric cancer for metabolic biomarker discovery. We first conducted the visualization 

processing based on the MSI raw data, followed by segmentation of MSI data using the spatial 

distribution patterns of tissue metabolic signatures. We will annotate the segmentation regions based on 

the histological images and, as the final step, analyse the differential expressed metabolites in different 

regions and conduct functional analysis to investigate their mechanistic roles in gastric cancer.  

2.  Methods and materials 

2.1.  Dataset preparation  

Prior published data from studies using spatial metabolomics for gastric cancer biomarker discovery 

from the platform METASPACE (https://metaspace2020.eu/) were extracted for this study. The dataset 

was collected from frozen samples of human gastric cancer tissues in a project published in 2017 by 

Chenglong Sun et al., in which fresh, data uses TOF reflector as its analyzer and the sample uses MALDI 

as its source of ionization [12]. Four MALDI MSI data of gastric cancer samples were processed. 

2.2.  Data preprocessing 

To perform data pre-processing, we first imported the MSI raw data in imzML formats using the cardinal 

package in R followed by a visual inspection of the quality of MSI data by plotting the image and the 

mass spectra. Several preprocessing steps were then conducted, including normalization, baseline 

correction, smoothing, and peak detection. As a result, spatially distributed images of metabolite 

intensity based on different metabolites expressed were generated.  

2.3.  Statistical analysis 

To conduct MSI imaging segmentation, Principal Component Analysis (PCA) and spatial shrunken 

centroids were combined using cardinal packages in R as well. Different ways of segmentation to match 

the distribution of different biomarkers with different subtypes of tumor tissue were attempted 

concerning literature that performed histological analysis of the gastric cancer samples for MSI 

clustering. The spatially aware nearest shrunken centroid clustering was performed. To maximize the 

consensus of mass spectrometry imaging data and histological data, multiple k and s values were tested 
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to create segmented images that separate areas of tissue based on metabolic signatures, and different 

tissue regions are segmented in histological images. The range of k values tested was +/- 2 of the number 

of different tissue sections in the histology images, and the range of s values tested was between 0 and 

25 with intervals of 5. Specifically, we focused on maximizing the resemblance of the tumor tissue 

sections on histology images with the generated segmented images.   

2.4.  Functional analysis 

Subsequently, lists of m/z values for each cluster were extracted and searched in the MetaboAnalyst 

(https://www.metaboanalyst.ca/) website to perform functional analysis with a negative ion mode and a 

mass tolerance of 5 ppm, ranked by t-scores. The functional analysis focused on the lipid sub-chemical 

class and the non-lipid sub-chemical class. From the functional analysis, we can successfully identify 

the metabolites detected from mass spectrometry imaging, thus enabling us to conduct pathway and 

network analysis of these metabolites. The functional analysis from MetaboAnalyst allows us to 

simultaneously identify metabolites and execute pathway analysis by unifying them under the same 

computational framework based on the assumption that annotations at individual compound levels can 

collectively predict changes at functional levels. Moreover, it also helps with reducing ambiguity in 

metabolite prediction as changes at the group level rely on “collective behavior” which is more tolerant 

to random errors in compound annotation [16]. 

3.  Results  

 

Figure 1. The framework of metabolic biomarker discovery in gastric cancer by mass spectrometry 

imaging metabolomics. 

Figure 1 shows the framework of MSI-based metabolomics for biomarker discovery in gastric cancer. 

In this study, we used data collected from MSI imaging of multiple gastric cancer samples and performed 

a series of processing and analytical steps. Starting with data preprocessing where we first visualized 

the raw data downloaded and underwent peak picking processes. Subsequently, the four gastric cancer 

samples were segmented based on their differences in metabolic signatures. As a result, the metabolites 

within a sample are now separated into distinct clusters based on self-supervised methods. To further 

investigate the biological functions that these metabolites are correlated with, functional analysis can be 

carried out for the clusters that were created. In the end, this would lead to the discovery of biomarkers 
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that could potentially be significant to the pathology of gastric cancer and could enhance our diagnosis 

and understanding of gastric cancer.  

3.1.  MSI segmentation by spatially aware nearest shrunken centroid clustering 

 

Figure 2. Data analysis pipeline of gastric cancer MSI data. 

 

Figure 3. Segmentation results based on metabolic signatures 

The complete MSI data analysis pipeline is shown in Figure 2. Specifically, to segment the datasets 

and distinguish them based on their metabolites concerning each sample’s spatial distribution, we used 

the spatially aware nearest shrunken centroid clustering provided by Cardinal. As described in Methods, 

we tried a variety of k and s values to maximize spatial resemblance between generated segmentation 

images and histological segmentation of tissue samples. As demonstrated in Figure 3, we were able to 

segment the images based on metabolic signatures in a way that was mostly similar to the histological 

sections. Especially in samples GC-1 and GC-2, the outlines of tumor tissue were almost perfectly 

recreated by generated segmentation images based solely on metabolic signatures. Aside from tumor 

tissues, some other tissue types were also matched well by the generated images. For example, the 

intestinal metaplasia tissue in GC-1, normal epithelium tissue in GC-2, and serrated glandular structure 

in GC-3 were all captured fairly accurately. The final parameters that were selected are shown in Table 

1.  

Table 1. Final optimized parameters in segmentation  

Sample 
Shrinkage/sparsity 

parameter (s) 

Maximum numbers of 

segments attempted (k) 
Optimized parameters 

GC-1 10,15,20,25 8, 9, 10, 11, 12 k=7, s=0 

GC-2 10,15,20,25 4, 5, 6, 7, 8 k=6, s=10 

GC-3 10,15,20,25 4, 5, 6, 7, 8 k=6, s=25 

GC-4 10,15,20,25 2,3,4,5,6 k=4, s=25 
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3.2.  Functional analysis of metabolic signatures in gastric cancer  

 

Figure 4. Functional analysis graph generated via inputting peak values into MetaboAnalyst 

We generated the top 500 mass features from each cluster by the spatial shrunken centroids clustering 

method for each sample. Then we annotated these features to lipids using MetaboAnalyst software 

ranked by t scores with a negative ion mode and a mass tolerance of 5 ppm. Figure 4 and Table 2 show 

the major lipid categories that were matched via functional analysis for tumor tissue in sample GC-4 

and muscle tissue in sample GC-2. Some of the major findings included cholesterol esters, LPA, and 

Sulfatides. Via investigating the correlation between the discovered lipids with gastric cancer, there have 

been many corroborating studies that have been found which bolster the importance of the role these 

molecules play in gastric cancer. For example, for cholesterol ester found in both GC-4 and GC-2, the 

neutral cholesterol ester hydrolase 1 has been identified by other studies to serve as a novel biomarker 

for early-stage gastric cancer identification [17]. Similarly, for sulfatides found in GC-2 and GC-4, there 

have been studies that demonstrate the ability of sulfatides to serve as major receptors for H. pylori, a 

pathogen that is strongly correlated with gastric cancer [18,19]. As well as LPA, which was also 

discovered in GC-4, induces the migration of SGC-7901 gastric cancer cells, and cholesterols, where an 

abundance of them will increase one’s risk of gastric cancer [20-23]. As for GC-2, bile acids were found 

to be positively related to cancer overall, too.  

Table 2. Correlation of identified metabolic biomarkers with gastric cancer. 

Sample Tissue Type 
Lipid 

category 
Relationship with gastric cancer 

GC-4 Cluster 

1 
Tumor tissue LPA 

Induces migration and attack of SGC-7901 gastric 

cancer cells 

GC-4 Cluster 

1 
Tumor tissue Cholesterols 

High Cholesterol increases the risk for GC but also 

needs a moderate amount of cholesterol to suppress 

GC cell growth. HDL-C seems to pose good value 

for GC prognosis and development 

GC-4 Cluster 

1 and GC-2 

Cluster 3 

Tumor tissue 

and normal 

epithelium 

Sulfatides 

Serves as a major receptor for cell adhesion of H. 

pylori to GC cells. H. pylori is strongly linked to 

GC 

GC-4 Cluster 

1 and GC-2 

Cluster 3 

Tumor tissue 

and normal 

epithelium 

Chol. esters Serves as novel biomarker for early GC detection 

GC-2 Cluster 

3 

Normal 

epithelium 

C27 bile 

acids 

C-27 bile acids are precursors to many other bile 

acids, which are positively related to cancer overall 
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Additionally, when the detected biomarkers were plotted against the tumor histology tissue to display 

their spatial distribution, all of the biomarkers identified were observed to have a higher concentration 

in the areas labeled “tumor tissue” in the histology segmentation (Figure 5). This further corroborates 

the results that were obtained in functional analysis, confirming that the methodology will provide 

meaningful results that will enhance the efficacy of gastric cancer diagnosis.  

 

Figure 5. Spatial distribution of detected biomarkers of interest across tumor tissue 

4.  Conclusions 

By performing a series of analyses on raw MSI data, we were able to successfully discover multiple 

relevant metabolic biomarkers that have a strong linkage to gastric cancer. The obtained results display 

the heterogeneous nature of gastric cancer tumors concerning differences in metabolic signatures. From 

the findings, using this pipeline of data analysis and segmentation of mass spectrometry imaging data 

seems to be a promising avenue for improved diagnostic accuracies and hopefully better patient 

outcomes for cancers in the future.  
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