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Abstract. Intelligent prosthetics play a crucial role in restoring social functions for people with 

disabilities. This paper systematically reviews the decoding techniques for motor control 

information used in intelligent control of prosthetics and the encoding techniques for sensory 

feedback. The acquisition and decoding of motor information are discussed in terms of signal 

recording and decoding from the human body and the prosthetic. Sensory feedback in prosthetics 

is discussed from the perspectives of biomimetic and non-biomimetic feedback. Finally, the 

development of intelligent prosthetic control is explored, summarizing and forecasting future 

directions in this field. 
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1.  Introduction 

Individuals with amputations or congenital deformities typically face limitations in upper and lower 

limb functions. Intelligent prosthetics, as assistive devices, can effectively help these individuals 

overcome daily mobility barriers, improve quality of life, reduce existential and appearance-related 

anxieties, and facilitate better social integration while mitigating discrimination [1]. Intelligent 

prosthetic technology employs a multidisciplinary approach integrating biology, mechanics, and 

electronics to simulate biological systems through mechanical design. This technology consists of 

recognizing and decoding human movement intentions, algorithm computations, and closed-loop 

control [2,3]. The recognition and decoding of human movement intentions, and the feedback in closed-

loop control, are crucial for achieving a complete human-machine interaction loop. Recognition and 

decoding involve capturing a variety of signals such as bioelectrical signals [4], biomechanical signals, 

and complex environmental signals [5], processing these signals to decode human movement intentions. 

Research on diverse signal collection and decoding to improve the accuracy of recognizing human 

intentions and execution precision in complex environments is essential. Sensory feedback in prosthetics 

involves relaying the prosthetic’s operational status and environmental changes to the human body 

through stimuli, such as electrical stimulation [6] and vibratory stimuli [7], allowing for real-time 

perception of the interaction between the prosthetic and the environment, thus achieving true closed-

loop control in human-machine interaction. Ideally, feedback would replicate natural physiological 

sensations through multiple channels. However, current prosthetic feedback often relies on 

compensatory mechanisms such as visual and auditory feedback, which still significantly differ from 

natural human tactile and proprioceptive sensations. 
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This study focuses on two main aspects of human-machine interaction control in intelligent 

prosthetics: the recognition and decoding of human movement intentions and the feedback of sensory 

signals. It discusses motor information collection and recognition from the perspectives of human-

machine interaction control and assistive control technologies in intelligent prosthetics, while sensory 

feedback is introduced from the perspectives of physiological alignment and sensory modalities for the 

missing limb. The current state of human-machine interaction in intelligent prosthetics is analyzed and 

discussed. 

2.  Acquisition and Decoding of Motion Information 

2.1.  Human-Machine Interaction Control Technologies for Intelligent Prosthetics 

Neural electrical signals such as electroencephalography (EEG) and electromyography (EMG) reflect 

the activities of the central nervous system. Collecting and decoding EMG and EEG signals based on 

human motion intentions allow users to autonomously control intelligent prosthetics, further enhancing 

natural human-machine interaction through various artificial intelligence control algorithms. 

The acquisition of EMG signals can be categorized into implantable and non-implantable methods. 

Implantable measurement of EMG signals requires less specific muscle conditions and offers advantages 

such as low interference and high recognition rates compared to surface EMG signals, providing in-

depth analysis of the bioelectrical characteristics of different motor units during muscle contractions. 

For instance, ultrasonically guided minimally invasive implantable EMG sensing technology has been 

adopted for more adept control of prosthetic arms in individuals with transhumeral amputations, where 

surface EMG signals are challenging to sense accurately [8] Innovations like the semi-implantable 

device invented by Becerra-Fajardo et al., which is powered and communicates via an external system 

and implanted through injection, significantly reduce the risk of infection while ensuring precise 

communication [9,10]. However, the biocompatibility and lifespan of implantable sensors still require 

further research and clinical validation. 

Non-implantable measurements typically involve collecting surface EMG signals by placing 

electrodes on the muscle surface, which reflect the electrophysiological characteristics of entire muscle 

contractions. Analyzing surface electromyograms across different channels feeds back to the control 

system to achieve closed-loop control. Surface EMG signal extraction is advantageous due to its 

simplicity and non-invasiveness; however, the collection of surface EMG signals demands high muscle 

and nerve quality from users and is susceptible to interference from factors like sweat. Currently, in the 

realm of control algorithms, scholars have proposed the shared control theory for intelligent prosthetics, 

allowing amputees to achieve more precise grasping movements based on surface EMG signals [11]. 

Proposals for new classification frameworks suitable for upper limb prosthetic systems using fewer 

signal channels have been made, enhancing the performance and convenience of intelligent myoelectric 

prosthetics [12]. Clinical trials focus on improving robustness, simplifying channels, and enhancing 

algorithms, which are current research hotspots. 

EEG signals can be collected through invasive or non-invasive recording systems. Although invasive 

methods provide more accurate and precise recognition of brain activity, sensors are surgically 

implanted beneath the scalp to capture neural signals. Non-invasive methods involve placing electrodes 

on the exterior of the head to record electrochemical pulses of various frequencies emitted by the brain, 

analyzing and processing electroencephalograms to recognize human motion intentions and thereby 

facilitate human-machine interaction. Researchers like Taha Beyrouthy have developed intelligent, 

multifunctional, low-cost prosthetics using EEG neurofeedback technology [13]. However, signals need 

to pass through biological tissues such as the skull and meninges, which greatly attenuates the EEG 

signals. Therefore, minimizing interference and accurately processing EEG data to recognize motion 

intentions are crucial. Sachin Kansal and others have used EEG data from a 32-channel EPOC Flex 

headgear and a deep learning model optimized by a Genetic Algorithm (GA) and Long Short-Term 

Memory (LSTM) to classify upper limb motion intentions, achieving accurate control over three degrees 

of freedom for the upper limb [14]. Luttfi A and colleagues have achieved up to 97.4% accuracy by 
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using statistical features like Arithmetic Mean (AM), Standard Deviation (SD), and Skewness (S) and 

applying the ReliefF Deep Neural Networks (DNN) method for feature selection, significantly 

improving the processing of EEG signals compared to traditional methods, making control mechanisms 

more sensitive and intuitive [15]. 

2.2.  Assistive Control Technologies for Intelligent Prosthetics 

Prosthetics employ intelligent technologies to capture external information and their own biomechanical 

data, facilitating the operation of the prosthetic and the correction of gait. Advanced assistive 

technologies enable more precise intelligent control of prosthetics. Biomechanical signals primarily 

record kinematic and dynamic information during motion, such as joint angles, inclinations, and linear 

accelerations, gathered through inertial sensors. This motion data is then decoded using various 

algorithms to produce matched joint angles and angular velocities, reducing the response delay of the 

prosthetic and enhancing the accuracy and robustness of recognizing and adjusting to the patient's 

movement intentions [16]. 

For example, joint coordination based on physiological gait employs statistical regression methods 

to estimate missing motion using the complementary limb motion estimation (CLME) strategy to control 

an active knee joint device used in stair descent experiments, minimizing the prosthetic's response delay 

[17]. Additionally, specific trajectories set for different motion patterns are recognized and triggered by 

classifiers. During obstacle crossing, heuristic algorithm-based swing phase trajectory control allows 

the patient to maintain an appropriate knee flexion angle, increasing the clearance over the obstacle with 

the foot [18]. 

3.  Sensory Feedback Technologies for Intelligent Prosthetics 

In the application and testing of rehabilitation aids and prosthetics, most sensory feedback is conveyed 

through indirect, non-motor-related means such as visual and auditory channels. However, the human 

somatosensory system includes sensory receptors, afferent peripheral nerves carrying stimulus 

information, and somatosensory cortical areas of the brain. This system encompasses touch, pressure, 

temperature, itch, joint angles, and proprioception of one's own limb movements [22]. Studies have 

shown that rich sensory feedback not only significantly improves task performance and cognitive labor 

but also reduces phantom limb pain [19,20]. Therefore, researching how to sense and deliver rich 

feedback effects is essential for achieving integration between humans and machines. 

Achieving rich sensory feedback may involve electrically stimulating peripheral nerves to induce 

perceptions of skin and proprioceptive sensations [21]. Using square electrical pulses on specific nerve 

bundles with selected electrode intensity and stimulation duration can evoke sensations of touch, joint 

movement, and position sense [22]. This method, using the patient's phantom mapping, electrically 

stimulates specific peripheral nerves to generate sensory feedback from the prosthetic. J. A. GEORGE 

and others have implanted the Utah Slanted Electrode Array (USEA) into the median and ulnar nerves, 

inducing localized sensations in the phantom hand through electrical stimulation and using biomimetic 

algorithms for feedback, resulting in test efficiency and accuracy far superior to non-biomimetic 

feedback [23]. Electrically stimulating peripheral nerves to induce tactile and other sensory information 

holds immense potential for development. 

Non-biomimetic feedback can also be considered, using other senses to substitute for the original 

proprioception. For example, applying a stretching torque proportional to the gripping force at the elbow 

to identify the stiffness and weight of different objects, although this is only applicable for amputations 

below the elbow joint. Alternatively, adhesives attached to the skin can stretch the skin to provide 

feedback on the weight of the grasped object. Jason Wheeler and others have designed a wearable device 

that rotates and stretches the skin to provide position and motion state information, with errors smaller 

than those without feedback [24]. Or using vibrators that apply continuous varying amplitudes of 

vibration when the prosthetic comes into contact with an object, which can better assist patients in 

completing grasping tasks compared to applying vibrations of different frequencies [25]. Although non-

biomimetic feedback lacks the control precision and comfort of biomimetic feedback, it often has 
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advantages such as lower cost and portability, allowing for mass production. Other problems of the 

approaches using remapped mechano-, vibro-tactile or electro-cutaneous feedback include: artefacts on 

the recoding system used for the prosthesis control due to the stimulation28, the miniaturization of the 

systems, power consumption and the quality of the sensation elicited, which is not very pleasant.   

Moreover, a new sensory feedback system can be considered from the perspective of modal matching. 

Modal matching is a feedback strategy that conveys prosthetic sensor information to the human body in 

the same modal manner, emphasizing the consistency of the physical form of the stimulus. This is 

achieved by replicating the original sensations at the residual limb or other areas such as the chest or the 

contralateral limb. In the design of today's multimodal tactile feedback systems, patients can intuitively 

perceive vertical forces, temperatures, and the roughness of objects. Although multimodal tactors have 

the ability to deliver significantly more information than a traditional single-mode feedback device, the 

utility of providing additional signals needs to be further evaluated. 

Neither substitution nor modality-matched methods provide input through the original sensory 

pathways of the amputee Citation. The ideal system would combine the benefits of modality and 

somatotopic-matching systems to allow the participant to feel a relevant stimulus at the correct location 

on their missing limb Citation. 

Accurate control of intelligent prosthetics initially requires active control based on human motion 

intentions, followed by assistive control based on deep learning, and finally timely correction based on 

sensory feedback, as shown in Figure 1, the flowchart of intelligent prosthetic control. 

 

Figure 1. Flowchart of Intelligent Prosthetic Control 

4.  Conclusion 

Intelligent prosthetic technology involves artificial intelligence and human-machine interaction, 

presenting numerous scientific and technological challenges that require further research and 

improvement by scholars. This paper aimed to introduce prosthetic control technologies based on the 

decoding of human movement intentions and sensory feedback. It discussed the collection and decoding 

of motion information from two perspectives: human-machine interaction control technology and 

assistive prosthetic control technology. It also introduced prosthetic sensory feedback, covering sensory 
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substitution, sensory modalities, and the induction of sensations through peripheral nerve electrical 

stimulation. In the closed-loop control of prosthetics, the interaction between the output of human 

movement and the input of sensory feedback is crucial, and finding the dynamic equilibrium between 

them is key. In the future, the focus of research in the rehabilitation field will be on the biomimetic 

structural design of intelligent prosthetics and the integration of human-machine systems in complex 

environments, which will still require extensive clinical experimentation for validation. 
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