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Abstract. This study aims to provide earlier, and faster schizophrenia diagnosis based on 

neurocognitive, structural, and behavioral measures using machine learning. This is because 

current ways of diagnosis, while accurate, delay patients’ ability to seek medical care before 

observable, lasting symptoms develop and are prone to error and discrimination. To provide 

diagnosis, we used Linear Support Vector Machine (linear SVM), Random Forest (RF), 

Multilayer Perceptron (MLP), and k-Nearest Neighbor (kNN), all trained with neurocognitive 

and behavioral measures combined with either structural or functional MRI data or both of 99 

subjects from the OpenNeuro public dataset. 100 iterations of classification were run, and results 

showed a higher-than-average accuracy for all classifiers using all combinations of parameters, 

with a highest accuracy of 0.75 using linear SVM trained with behavioral and neurocognitive 

measures and fMRI data. We found correlations between structural changes in AAL3 brain 

regions and n-back working memory task performance, noting that the inferior parietal gyrus, 

right precuneus, supplementary motor area, and the central lateral thalamic nucleus have the 

highest feature importance. This means that future studies can select these features for further 

clinical examination or for machine learning diagnosis. We conclude that linear SVM provides 

the highest average diagnostic accuracy, and that fMRI data often leads to more accurate 

algorithmic decisions than sMRI data and thus should be weighed more in future studies.  

Keywords: machine learning, schizophrenia, working memory, MRI. 

1.  Introduction 

Schizophrenia is a psychiatric disorder with characteristic symptoms such as delusions, hallucinations, 

disorganized speech, grossly disorganized or catatonic behavior, and negative symptoms as described 

in DSM-V [1]. The average age of onset is from late teens to early 30s, and tends to be earlier in males 

(from late teens to early 20s), than in females (from late 20s to early 30s) [2-3]. Up to 2023, there are 

an estimated 24 million people in the world who are diagnosed with schizophrenia [4-8]. 

Traditional ways of diagnosis rely on identifying two or more symptoms that last for at least one 

month and eliminating possibilities of other medical conditions such as substance-induced psychosis or 

depressive and bipolar disorder. The current diagnostic process poses several issues preventing patients 

from receiving adequate help as early as possible. When lasting, observable symptoms have already 

arisen, the disorder is often in an advanced stage, making treatment difficult or ineffective. Additionally, 

clinical diagnosis is prone to error due to the similarity of many schizophrenia symptoms with those of 

other disorders, and it is also prone to discrimination, especially that against females, blacks, and 
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individuals with learning disabilities. Therefore, we aim to use machine learning to perform 

schizophrenia diagnosis using neurocognitive and behavioral measures involved in traditional diagnosis 

to provide earlier and faster diagnosis and build the foundation for risk factor assessment. Behaviorally, 

schizophrenia affects the normal functioning of many cognitive abilities, particularly working memory. 

Working memory falls under short-term memory and is a psychological and cognitive construct that 

provides temporary storage for information needed to perform complex cognitive tasks such as 

reasoning, learning, and language comprehension.  

In recent years, magnetic resonance imaging (MRI) techniques have been applied to the diagnosis of 

schizophrenia, with past research revealing the relevance of total brain volume decrease, ventricular 

enlargement, reduction in hippocampal and thalamic volumes, enlargement in globus pallidus volume, 

and changes to the neocortical temporal lobe regions [10]. In addition, abnormalities in cortical thickness, 

and gray and white matter distribution [10-11], as well as changes in connectivity among brain networks 

and systems, are associated with schizophrenia [12]. 

To analyze brain imaging data that reflect brain structural changes associated with disorders, 

researchers have trained machine learning algorithms to analyze MR images of schizophrenia patients 

versus controls. Examples of commonly used machine learning algorithms include Random Forest (RF), 

Support Vector Machine (SVM), Ridge, Lasso, Gradient boosting, and logistic regression. Other studies 

have also used deep learning and convolutional neural networks. This study uses an open dataset and 

applies linear SVM, RF, multilayer perceptron (MLP), and k-Nearest Neighbor (kNN) to classify 

participants as schizophrenic or healthy based on demographic, cognitive, brain anatomical, and 

functional MRI data, and find important features in schizophrenia pathology. Our model expands from 

preexisting models in that it uses demographic and clinical data of patients that would be incorporated 

in clinical diagnosis currently but have not been in previous classifiers. We also aim to compare the 

performance of four classifiers when trained with different combinations of data. This will tell us 

whether structural or functional data contribute more to accurate diagnosis for each classifier. 

2.  Materials and Methods 

2.1.  Participants 

We used an open dataset named “Working Memory in Healthy and Schizophrenic Individuals” on 

openneuro.com [14]. Participants in the study were recruited at Washington University School of 

Medicine in St. Louis. The open dataset consists of 99 participants (40 female, 59 male), including 23 

participants diagnosed with Schizophrenia based on semi-structured interview and Structured Clinical 

Interview for DSM-IV Axis I Disorders [15]. One participant (sub-03) was removed from the analyses 

due to erroneous and incomplete measures. Demographic information on study participants can be found 

in Table S1, and more details on participation eligibility criteria can be found in [16]. 

2.2.  Clinical and Cognitive Measures 

A series of clinical and cognitive measures were collected from each participant. The clinical measures 

were based on the Scale for the Assessment of Positive Symptoms (SAPS) and Scale for the Assessment 

of Negative Symptoms (SANS), whose sub-scores were grouped to yield measures on three composite 

scores: positive symptom domain, negative symptom domain, and disorganization symptom domain. 

Details on the computation of these composite scores can be found in the Supplemental Materials of 

Repovš and Barch (2012). Cognitive abilities were assessed using subscales from the Wechsler Adult 

Intelligence Scale, Wechsler Abbreviated Scale of Intelligence, Wechsler Memory Scale–Third Edition 

[17], N-back task [18], Continuous Performance Task, California Verbal Learning Test [19], Trails B 

[20], category and verbal fluency tasks [21], Wisconsin Card Sort [22]. These sub-scores were grouped 

and combined into four composite scores, reflecting participants’ intelligence, working memory, 

episodic memory, and executive function. Summary statistics of these clinical and cognitive composite 

scores are shown in Table S1. 
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2.3.  N-back Working Memory Task 

All participants performed three N-back tasks, in separate runs of functional MRI scanning, with 

different levels of demand on their working memory load. The order of these tasks was counterbalanced 

across participants. In the 0-back task, participants responded to whether the letter shown on the screen 

was the same as a pre-specified letter (“A” and “X”), where there was little working memory load. In 

the 1-back task with intermediate working memory load, participants responded to whether the current 

letter was the same as the immediately preceding letter. In the 2-back task, participants responded to 

whether the current letter was the same as the letter shown 2 trials before, and thus had the highest 

working memory load. However, in the OpenNeuro dataset, all trials were coded as “non-target” perhaps 

due to some coding error. We were therefore not able to determine the actual type of individual 

experimental trials, i.e., whether the participant should have responded or not. As such, both the 

behavioral and fMRI analyses were conducted at the condition level, e.g., mean accuracy and fMRI 

activity during each N-back task for each participant. 

2.4.  MRI Scanning 

Magnetic resonance imaging (MRI) is divided into the subtypes structural MRI (sMRI) and functional 

MRI (fMRI), with sMRI mainly used to record structural brain information while subjects are not 

completing a specific cognitive task and fMRI mainly used to record brain regional activity while 

subjects complete cognitive activities [23]. sMRI is based on translating local differences in water 

content in the brain into a gray scale through which the outline of the patient’s brain can be created. 

Structural magnetic resonance images provide information regarding the shape, size, and some regional 

information about the brain. From the resulting images, abnormal tissues with changes in tissue density 

or composition as well as overall and regional brain structural changes can be detected and analyzed, 

and this information used in disease diagnosis [24]. 

fMRI works by measuring small changes in the magnetic field strength caused by paramagnetic 

deoxyhemoglobin in the blood vessels. Changes in the concentration of deoxyhemoglobin reflect 

regional consumption of oxygen, which is an indication of local metabolic and neural activity. fMRI has 

been widely applied to clinical trials such as disease detection and diagnosis, surgical planning, 

monitoring treatment outcomes, and searching for biomarkers in pharmacologic and training programs. 

2.4.1.  Scanning Metrics. Scanning was completed at Washington University Medical School using a 

3T Tim TRIO Scanner. Structural images were acquired at a spatial resolution (voxel size) of 1 mm × 1 

mm × 1 mm. Functional images of the working memory task were acquired in 3 runs of 17.1 min of 

scanning (13.1 min of task performance) with a repetition time (TR) of 2.5 seconds and a spatial 

resolution (voxel size) of 4 mm × 4 mm × 4 mm. Each participant completed three functional runs of 

the working memory tasks. More details can be found in the published study [16]. 

2.5.  sMRI Preprocessing and Analysis 

2.5.1.  Preprocessing. sMRI data preprocessing was run on MATLAB R2023a with the toolboxes 

SPM12 and CAT12. The preprocessing process included brain extraction, spatial normalization (to a 

template brain), and tissue segmentation (gray matter, white matter, and cerebrospinal fluid). 

2.5.2.  Structural Regions of interest (SROIs). We conducted a literature review of schizophrenia-related 

or -diagnostic features in brain anatomy. Typical brain anatomical changes include ventricle 

enlargement, gyrus volume reduction, and gray matter volume and density reduction distributed over 

several regions, including amygdala, thalamus, hippocampus, and insula [11, 16, 25-47]. We used 

Neuromorphometrics parcellation of the brain to extract relevant volumetric features (see Table S2 in 

Supplementary Materials) [48]. 
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2.6.  fMRI Preprocessing and Analysis 

2.6.1.  Preprocessing. fMRI preprocessing was done by the original authors using fMRIPrep 21.0.1 [49]. 

fMRI preprocessing procedures include realigning functional images to a reference image to correct for 

head motion across time, co-registering functional images to the participant’s own structural MRI image 

for better spatial alignment, resampling the functional images into a standard template brain space (MNI 

152) for ease of comparison, and spatially smoothing the signal with a Gaussian kernel of 6mm full-

width half-maximum to improve signal-to-noise ratio. More details on fMRI preprocessing can be found 

in the fMRIPrep-generated methods description from “Working Memory in Healthy and Schizophrenic 

Individuals”. 

2.6.2.  First-level analysis. To separate behavior-related signals from noise, we conducted a first-level 

analysis [50] using the SPM12 toolbox in MATLAB. A general linear model (GLM) with a regressor 

that indicates the expected hemodynamic response of individual experimental trials, by convolving the 

task duration with the canonical hemodynamic response function [50], was fitted to the preprocessed 

BOLD signal time series. Nuisance regressors of head motion and signal in the white matter and 

cerebrospinal fluid were also included in the GLM to remove their artifacts. The GLMs yield a 

regression coefficient (beta) that reflects how closely the observed BOLD signal mirrored the expected 

activity, thereby providing us a measure of neural activity. We obtained the neural activity estimates for 

each of the 3 working memory tasks for each participant. 

2.6.3.  Functional Regions of Interest. To identify the brain regions implicated in working memory, we 

referred to a meta-analysis of 46 existing fMRI studies on working memory in younger adults (age range 

comparable to our sample) [46]. The meta-analysis identified multiple regions in the dorsal frontal 

cortex, inferior parietal lobule, and precuneus (see Figure 2 and Table 3 of [46]). A term search of 

“working memory” on Neurosynth, an automated online meta-analysis, yielded very similar activation 

patterns across the brain [51]. We parcellated the brain using the Automated Anatomical Labeling 3 

(AAL3; [43]) atlas and selected relevant parcels (see Table S3 for functional regions of interest and 

Table 1 below for all features used in classification, including behavioral, sMRI, and fMRI data.) 

Table 1. Behavioral, structural, and functional features used in classification 

Behavioral Structural Functional 

gender third ventricle precentral gyrus (PreCG) 

age lateral ventricles 
left superior frontal gyrus, 

dorsolateral (SFG) 

1-back target score amygdala middle frontal gyrus (MFG) 

2-back target score hippocampus inferior frontal gyrus, opercular part (IFGoperc) 

 parahippocampal gyrus supplementary motor area (SMA) 

 superior temporal gyrus left superior frontal gyrus, medial (SFGmedial) 

 fusiform gyrus insula (INS) 

 insula 
inferior parietal gyrus, excluding supramarginal and 

angular gyri (IPG) 

 right caudate nucleus right angular gyrus (ANG) 

 middle temporal gyrus precuneus (PCUN) 

 supramarginal gyrus right ventral lateral nucleus of the thalamus (tAV) 

 angular gyrus  

 thalamus  

* If the left or right side is unspecified, then the whole structure is considered. 
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2.7.  Classification Setup 

Using the scikit-learn package in Python [52], we implemented four machine learning classification 

methods: linear SVM, RF, MLP, and kNN. All algorithms were trained to perform a binary classification 

task: Control vs. Schizophrenic. Linear SVM segregates a given dataset into multiple categories with a 

single straight line. RF is a random composition of various decision trees through which the composition 

fits various sub-samples of a dataset and uses averaging to improve predictive accuracy and control 

over-fitting. kNN classifies new data points based on the classification of the k nearest data points to the 

given data points. We compared the predictive accuracy and feature importance for each classifier. 

2.7.1.  Feature Preprocessing. Data cleaning was done on all subjects before building the classifiers. 

Missing data were imputed with median values. Global standardization of features was done across all 

participants. 

2.7.2.  Cross-validation. We employed 100-fold cross-validation. All classification results reported 

below are the averaged performance from 100 iterations. 

2.7.3.  Train-Test Split. For each iteration, the dataset was randomly split into a training set and a test 

set, with the requirement that each test set contained 5 CON and 5 SCZ, leaving 70 CON + 18 SCZ for 

classifier training. All numeric columns in the training set were standardized (mean=0, sd=1), and the 

same transformation was applied to the test set. 

2.7.4.  Data Augmentation. Data augmentation was performed to match the number of SCZ and CON 

subjects in the training set to resolve class imbalance, which could lead to classifier bias. We made a 

total of 53 copies of existing SCZ subjects in the training set and added Gaussian noise (mean=0, sd=0.2) 

to all of their numeric features, such that the final training set contained 71 observations of each class. 

3.  Results 

3.1.  Behavioral Analysis 

We first conducted behavioral analysis on the demographics, psychopathology, and neurocognitive 

measures of the patients. This is to rule out any confounds such as educational level and learning abilities 

that might affect their working memory performance and to ascertain whether the control and the 

schizophrenic group are similar in terms of age, gender, and racial makeup. We found that there are no 

statistically significant differences in these measures between the two groups. Additionally, 

psychopathology and neurocognitive measures validate clinical diagnosis of the subjects because there 

are statistical differences in performance scores between the two groups. More details can be found in 

Table 2. 

Table 2. Behavioral Analysis of CON vs. SCZ individuals 

Variable 

Mean 

Difference 

(SCZ-CON) 

t p p-Bonferroni 

Demographics 

age 1.96 1.90 0.06 0.18 

years in school -0.80 -1.19 0.24 0.72 

parents’ years in school -0.29 -0.56 0.58 1.74 

Psychopathology 

The raw scores from the clinical measures were first standardized by z scores using the means and 

standard deviations computed across all subjects who have participated in research studies at the Conte 
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Center for the Neuroscience of Mental Disorders (CCNMD) at Washington University, and the z scores 

from specific measures were then averaged to yield the below 3 domains. 

positive symptoms domain  1.29 1.66 1.1E-15 3E-15*** 

negative symptoms domain  1.27 10.25 4.32E-17 1.30E-16 *** 

disorganized symptoms domain  0.99 -4.71 9.47E-05 2.84E-4 *** 

SANS (Scale for Assessment of Negative Symptoms) 

sans8 1.32 7.55 2.47E-11 1.24E-10 *** 

sans13 1.12 6.95 4.49E-10 2.25E-9 *** 

sans17 2.38 10.40 2.07E-17 1.04E-16 *** 

sans22 1.79 8.12 1.61E-12 8.05E-12 *** 

sans25 -0.69 2.47 0.02 0.1 

SAPS (Scale for Assessment of Positive Symptoms) 

saps7 1.48 6.98 3.77E-10 1.51E-9 *** 

saps20 1.74 9.78 4.45E-16 1.78E-15 *** 

saps25 0.42 2.69 0.01 0.05 * 

saps34 0.86 6.70 1.42E-09 7.10E-9 *** 

Neurocognition 

episodic memory domain -0.97 -6.79 2.62E-08 1.05E-07 *** 

working memory domain -0.75 -4.69 8.88E-06 3.55E-05 *** 

IQ domain -0.57 -3.05 0.004 0.016 * 

executive function domain  -0.63 -4.25 4.86E-05 1.94E-04*** 

Individual Working Memory Tests 

Continuous Performance Task 4-item d’ -0.64 -3.95 2.34E-04 0.0028 ** 

Trails B Time to Completion 23.13 4.00 3.62E-04 0.0043 ** 

Wisconsin Card Sort Perseverative Error 

Score 

10.32 2.59 0.016 0.19 

Wechsler Abbreviated Intelligence Scale 

Vocabulary 

-2.04 -3.05 0.004 0.048 * 

WAIS Matrix Reasoning -1.37 -2.27 0.029 0.35 

Wechsler Memory Scale Logical Memory -3.21 -4.78 2.49E-05 3.00E-04 *** 

WMS Immediate Recall of Family 

Pictures 

-2.51 -3.63 0.001 0.012 * 

WMS Letter-number Sequencing -2.22 -3.64 0.001 0.012 * 

Spatial Span Test -2.46 -3.58 0.001 0.012 * 

Digit Span Test -1.94 -3.43 0.001 0.012 * 

 

Through our behavioral analysis, we found that demographics were statistically similar for both 

groups and thus did not pose as a confound. Psychopathology tests confirmed the average accuracy of 

clinical schizophrenia diagnosis. Schizophrenia patients also showed working memory impairment, 

though there was no statistical difference between executive function between the two groups. 

Table 2. (continued). 
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3.2.  N-back Task Performance 

We compared the letter n-back task target performance between the two groups and found that there are 

statistically significant differences for the n-back 1 and 2 tasks but not for the n-back 0 task. This makes 

sense because the n-back 0 task does not use working memory whereas the second 2 tasks do. This 

shows that working memory is indeed impaired in schizophrenic individuals. See more details in Table 

3 below. 

3.3.  Classifier Accuracy 

We trained all four classifiers with the following three combinations of data types and recorded the 

average accuracy of 100 iterations: a) behavioral + structural; b) behavioral + functional; c) behavioral 

+ structural + functional. 

Behavioral data included psychopathology and neurocognitive measures because two sample t tests 

have shown that there are statistical differences between the two group’s scores in these areas, as well 

as subject performance in the letter n-back tasks. Gender was also considered as a factor in classifier 

training since there is a slight gender imbalance in our samples and because it is considered in clinical 

diagnosis as well. Structural data included anatomical metrics of regions of interest recorded in structural 

MRI images of the subjects. These metrics were purely structural such as volume, thickness, matter 

distribution, and shape because these were recorded when subjects were at rest. When accompanied by 

psychopathology and neurocognitive measures, working memory task performance was an accurate 

indicator of each subject’s cognitive abilities, especially, their working memory functioning. 

The purpose of comparing classifier accuracy across multiple types of training data was to investigate 

which type(s) of data contributed more to classifier decisions and thus can be used to provide more 

accurate diagnosis. We found that combinations including functional data usually yielded higher 

accuracies across multiple classifiers. 

We also compared diagnostic accuracy across the four classifiers to examine which one works best 

when trained with the data available. This suggests to future researchers which algorithm(s) might work 

better. We found that linear SVM has the best performance on average and achieved our highest 

accuracy of 0.75 when trained with behavioral and functional data. More information regarding our 

classifier performance can be found in Table 3 and Figure 1. 

Table 3. Comparison of Algorithmic Accuracy based on Structural vs. Functional Data (100 

iterations) 

 Linear SVM RF MLP kNN 

Acc. t p Acc. t p Acc. t p Acc. t p 

Accuracy 

based on 

structural 

data 

0.67 28.34 0.00 0.57 8.66 0.00 0.66 26.23 0.00 0.62 21.0 0.00 

Accuracy 

based on 

functional 

data 

0.75 17.81 0.00 0.58 17.81 0.00 0.72 14.45 0.00 0.61 8.14 0.00 

Accuracy 

based on both 

0.64 10.95 0.00 0.52 10.95 0.01 0.68 12.61 0.00 0.57 4.87 0.00 
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(a) accuracy based on 

structural data  

(b) accuracy based on 

functional data 

(c) accuracy based on both 

structural and functional data 

 

Figure 1. Accuracy by classifier 

We plotted feature importance to identify the features contributing the most to algorithmic decisions 

for three classifiers–linear SVM, random forest, and kNN under different data type conditions. We found 

that there are many overlaps in the top ten features of importance for the three classifiers, which means 

that the brain regions associated with working memory functioning and other schizophrenia symptoms 

are largely universal across different algorithms. The result informs physicians of features that should 

be paid extra attention to during diagnosis. More information about feature importance by classifier can 

be found in Figure 2. 

   
(a) linear SVM (b) random forest (c) kNN 

Figure 2. Selected features of importance by classifier including all data types. 

4.  Discussion 

In this study, we demonstrated the possibility of using objective, general-purpose measures of behavior 

and the brain to diagnose schizophrenia. These behavioral and brain measures are relatively easy to 

acquire and therefore the implementation may be fairly accessible to the general public. As such, this 

set of procedures has the potential to aid the diagnosis of schizophrenia early on, when the patients and 

family experience little symptoms and would not have thought about consulting with psychiatrists. 

This study is novel in its comprehensive nature: we both incorporated additional information in 

training classifiers and compared performance across multiple classifiers. Past research has explored the 

possibility of using either functional or structural MRI data to detect schizophrenia [53-56], but little 

research has also included patient background information as would be in a clinical setting. Neither has 

a lot of research been done to compare the effectiveness of using functional versus structural MRI 

images in diagnosis, but we found that functional data leads to better classifier performance while the 

performance based on functional versus both functional and structural data are more similar. This also 
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indicates that functional data such as fMRI while completing working memory tasks are valuable in 

clinical diagnosis as well and physicians can consider weighing them more than structural data. The 

focus on working memory performance itself is relatively novel in the field of machine learning 

diagnosis of schizophrenia. Additionally, we have only noted one research comparing classifier 

performance in prediction of hospitalized patients with schizophrenia or other mental health disorders 

[57]. While covering many classifiers in their research, all of their subjects are either diagnosed with 

schizophrenia or other mental health disorders. We improved in that area by selecting subjects with or 

without schizophrenia, which more closely resembles the population in clinical settings. 

The results from this study are limited in its small sample size and the number of neurocognitive 

measures and regions of interest used to train our algorithms. Therefore, we suggest three possible 

directions for future research. First, we suggest the use of larger sample sizes, when possible, for better 

classifier training. Since the number of subjects from the public dataset was relatively small, and there 

was a heavy imbalance of schizophrenic to healthy individuals due to the nature of the previous study, 

we trained our classifiers using augmented data. However, it will be desirable to use more real subject 

data both of schizophrenic and healthy individuals for classifier training. Secondly, future studies can 

try additional behavioral measures, working memory tasks, or other neurocognitive measures to see 

whether those yield higher diagnosis accuracy. Our results suggest that classification based on 

neurocognitive measures and fMRI data seems to give higher accuracy, which can help inform future 

research in choosing their features. Finally, future studies can find a collection of behavioral and neural 

measures that can be applied to the diagnosis of multiple mental health, neurodegenerative, or 

psychiatric disorders, such that the utility of the procedures is not limited to schizophrenia. 

5.  Conclusion 

In this study we trained Linear SVM, RF, MLP, and kNN classifiers to diagnose patients as 

schizophrenic or healthy based on neurocognitive, structural, and functional data. We trained the four 

classifiers using combinations of afore-mentioned neurocognitive measures and structural or functional 

MRI data to compare which combination yields higher accuracy. To eliminate confounds in these data, 

we first conducted a behavioral analysis which yielded that there are no statistical differences in 

demographic measures between the control and schizophrenic group and the latter does show 

psychopathology and neurocognitive scores corroborating their clinical diagnosis. In terms of classifier 

performance, we found that behavioral and functional measures might yield a higher accuracy if linear 

SVM is used, but that the best combination differs from classifier to classifier. Overall, we found a 

higher than chance diagnostic accuracy for all classifiers used, with the highest being 75% accuracy 

using linear SVM based on neurocognitive and functional MRI data. This suggests that algorithms can 

be effectively used in schizophrenia diagnosis in addition to traditional methods though the technology 

is not mature enough to replace the traditional methods. 
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7.  Supplementary materials 

7.1.  Demographic, clinical, and cognitive measure statistical analysis 

We calculated the mean and standard deviation of demographic, clinical and cognitive measures of the 

control and schizophrenic group to compare the differences between them. Details about these statistics 

can be found in Table S1. 
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Table S1. Demographic, clinical, and cognitive measures 

Measure Group  

 
Healthy Controls 

(CON)  

Schizophrenic 

individuals (SCZ) 

 

 Mean 

Standard 

Deviation 

(SD) 

Mean 

Standa

rd 

Deviati

on 

(SD) 

 

Age 22.30 4.49 24.26 3.74  

Gender (% 

male) 
56.00% N/A 73.91% N/A 

 

Years in 

school 
13.00 3.09 12.13 1.87 

 

Parents’ 

years in 

school 

12.93 3.06 14.57 2.48 

 

Positive 

symptoms 
-0.32 0.30 0.97 1.04 

 

saps7 0 0 1.48 1.86  

saps20 0 0 1.87 1.39  

saps25 0.15 0.46 0.57 1.08  

saps34 0.01 0.12 0.87 1.10  

Negative 

symptoms 

scores 

-0.27 0.42 1.00 0.79 

 

sans8 0.20 0.52 1.52 1.20  

sans13 0.09 0.37 1.22 1.24  

sans17 0.53 0.86 2.91 1.24  

sans22 0.43 0.82 2.22 1.20  

sans25 1.14 1.23 1.83 1.15  

disorganizati

on 

symptoms 

-0.20 0.32 0.79 1.00 

 

N-BACK PERFORMANCE    

 

Mean 

Difference in 

Accuracy 

(SCZ-CON) 

t p-Bonferroni 

0-back 

accuracy 
    

   

target 0.96 0.09 0.92 0.17 -0.04 1.09 0.87 

nontarget 0.98 0.10 0.94 0.15    

1-back 

accuracy 
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target 0.91 0.13 0.79 0.18 -0.12 2.98 0.03 * 

nontarget 0.96 0.11 0.90 0.14    

2-back 

accuracy 
    

   

target 0.21 0.17 0.68 0.28 -0.18 2.83 0.03 * 

nontarget 0.92 0.85 0.80 0.25    

Neuropsychological assessment    

IQ -0.30 0.79 -0.87 0.78    

Working 

memory 
0.32 0.68 -0.43 0.64 

   

Episodic 

memory 
0.17 0.69 -0.80 0.57 

   

Executive 

function 
0.30 0.54 -0.32 0.82 

   

Of the 101 participants (99 presented in public dataset) aged 18 or older from whom the original authors 

collected resting state data, there were 12 who were excluded for poor quality imaging data (4 SCZ, 8 

CON), and 15 who were excluded because they did not have N-back data (6 SCZ, 9 CON). Data for 

subject-03, specifically, had to be discarded in our statistical calculations due to outliers in columns 

sans17, sans22, sans25, d4prime, LFLUNOVS, and CFLUNOVA, and no data for the remaining 

neurocognitive and working memory assessments. These outliers are likely due to excessive movement 

and failure to complete the whole protocol. 

7.2.  Regions of Interest 

We selected structural and functional regions of interest as recorded in Table S2 and Table S3. Both 

categories were selected based on literature review and all regions of interest were used to train 

classifiers. Structural regions are given in terms of their neuromorphometrics atlas label. Functional 

regions are defined based on the Automated Anatomical Labelling atlas 3 (AAL3). 

Table S2. Structure MRI Regions of Interest and Correlating AAL3 Labels 

Region Name Neuromorphometrics 

Label 

Structural change 

Third ventricle neuromorphometrics 4 Vcs f volumetric enlargement 

L&R ventricle neuromorphometrics_51,52_ Vcsf volumetric enlargement 

L&R amygdala neuromorphometrics_31,32_ Vgm volumetric reduction (in first 

episode patients) 

L&R hippocampus neuromorphometrics_47,48_ Vgm 

(+ Vwm) 

volumetric reduction 

L&R parahippocampal 

gyrus 

neuromorphometrics_ 170,17 

1_Vgm 

volumetric reduction 

L&R superior temporal 

gyrus 

neuromorphometrics_200,20 

1_Vgm 

volumetric reduction 

L&R fusiform gyrus gray 

matter 

neuromorphometrics_ 122,12 

3_Vgm 

volumetric reduction 

Insula gray matter neuromorphometrics_ 102, 103, 

172, 173_Vgm 

volumetric reduction 

Right caudate nucleus 

gray matter 

neuromorphometrics_36_Vg m volumetric excess 

Table S1. (continued). 
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L&R middle temporal 

gyrus gray matter 

neuromorphometrics_ 154,15 

5_Vgm 

volumetric excess 

L&R supramarginal 

gyrus 

neuromorphometrics_ 194,19 

5_Vgm 

volumetric reduction 

L&R angular gyrus neuromorphometrics_ 106,10 

7_Vgm 

volumetric increase 

L&R thalamus neuromorphometrics_59,60_ Vgm volumetric reduction; inward 

deformation of anterior and 

posterior regions 

 

Table S3. Functional Regions of Interest and CorrespondingAAL3 labels 

No. 
Anatomical 

Name 

Associated 

Neurocognitive Function 
Location in MNI152 Brain Template 

1,2 
L&R Precentral 

gyrus (PreCG) 

Contains the primary motor 

cortex, which is responsible 

for controlling voluntary 

movements [58]. 

 

 

4 

L Superior frontal 

gyrus, dorsolateral 

(SFG) 

Left superior frontal gyrus is 

involved in working memory, 

spatial processing and other 

higher cognitive processes 

[59]. 

 

 

5,6 

L & R Middle 

frontal gyrus 

(MFG) 

Left middle frontal gyrus is 

involved in literacy and the 

right middle frontal gyrus is 

involved in numeracy [60]. 

 

 

7,8 

L & R Inferior 

frontal gyrus, 

opercular part 

(IFGoperc) 

The left inferior frontal gyrus 

is involved in many cognitive 

functions including language, 

executive functioning, social 

cognition, and inhibition of 

inappropriate motor 

responses [61]. 

 

 

15, 

16 

L & R 

Supplementary 

motor area (SMA) 

The SMA plays a role in self-

initiated (voluntary) actions 

and is part of multiple 

voluntary motor loops [62]. 

 

 
 

19 

L Superior 

frontal gyrus, 

medial 

(SFGmedial) 

The medial superior frontal 

gyrus is involved in working 

memory and other higher 

cognitive functions [59]. The 

right medial superior frontal 

gyrus has especially been 
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No. 
Anatomical 

Name 

Associated 

Neurocognitive Function 
Location in MNI152 Brain Template 

noted to function in 

redirecting attention [63]. 

33, 

34 

L & R Insula 

(INS) 

The insula has many 

functions including 

sensorimotor processing, 

emotion and decision 

making, attention and 

salience processing, and 

speech [64]. 

 
 

65, 

66 

L & R Inferior 

parietal gyrus, 

excluding 

supramarginal and 

angular gyri (IPG) 

The inferior parietal gyrus is 

involved in attentional, 

semantic, and social 

cognitive functioning [65].  

70 
R Angular gyrus 

(ANG) 

The angular gyrus is the most 

frequent activated site for 

semantic processing, and 

plays an important role in 

speech, sensory information 

integration, and semantic 

processing [66]. 

 

 

71, 

72 

L & R Precuneus 

(PCUN) 

The precuneus is involved in 

recollection and memory, 

perception, episodic memory, 

and other cognitive processes 

[67].  

128 

R Ventral Lateral 

nucleus of the 

thalamus (tAV) 

The ventral lateral nucleus of 

the thalamus plays an 

important role in motor 

control and receiving, 

integrating, and projecting 

inputs from cerebellum, 

striatum, and cortex to the 

primary motor cortex [68]. 
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