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Abstract. The "dark matter" of the protein universe, consisting of proteins lacking structural 

information or functional annotations, represents a significant challenge in understanding the 

complexity of life. Recent breakthroughs in artificial intelligence (AI), particularly in protein 

structure prediction, have revolutionized our ability to illuminate this uncharted territory. AI-

based methods such as AlphaFold and RoseTTAFold can predict protein structures with 

unprecedented accuracy and scale, while large-scale databases provide access to the predicted 

structural models for hundreds of millions of proteins. Leveraging these AI tools and databases, 

researchers can uncover novel protein families, folds, and functions, and even design new 

proteins, paving the way for advances in basic biology, biotechnology, and medicine. This review 

discusses the recent progress of AI-enabled exploration of the "dark matter" of the protein 

universe, highlights recent advancements, and outlines future challenges and opportunities in 

this field. 

Keywords: protein universe, AI-driven structure prediction, protein structural, functional 

annotation, de novo protein design. 

1.  Introduction 

Proteins are the fundamental building blocks of life, playing crucial roles in virtually all biological 

processes. Despite significant advances in genome sequencing, protein structural and functional 

characterization, a substantial portion of the protein universe remains uncharted [1]. This "dark matter" 

of the protein universe consists of proteins whose structures or functions are still unknown. Elucidating 

the structure, function, and evolutionary relationships of these uncharacterized proteins is crucial for 

advancing our understanding of biology and for unlocking their potential in biotechnological and 

biomedical applications [2]. Traditionally, the study of uncharacterized proteins has relied on 

experimental methods such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, 

and cryo-electron microscopy (cryo-EM) for structure determination. However, these techniques are 

labor-intensive, time-consuming, expensive, and often challenging to apply to proteins that are difficult 

to express, purify, or crystalize [3]. Computational approaches, such as homology-based modeling, have 

been used to predict protein structures based on sequence similarity to known structures. Nevertheless, 

these methods have limited applicability when studying proteins with low sequence homology (below 

35% homology) to characterized proteins, which is often the case for the "dark matter" of the protein 

universe [4]. 
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Recent breakthroughs in artificial intelligence (AI) have revolutionized the field of protein structure 

prediction. Deep learning-based methods, such as AlphaFold [5] and RoseTTAFold [6], have achieved 

unprecedented accuracy and speed in predicting protein structures from their amino acid sequences. 

These AI-enabled structure prediction methods have the potential to illuminate the "dark matter" of the 

protein universe by providing high-quality structural models for previously uncharacterized proteins [7]. 

By leveraging these predicted structures, researchers can gain valuable insights into the function, 

evolution, and potential design of new proteins for novel applications. This study seeks to highlight the 

recent AI-enabled advancements in the exploration of the "dark matter" of the protein universe through 

literature review and analyses. It focuses particularly on the breakthroughs in AI-driven prediction of 

protein and protein complex structures, the dramatic increase in accessible structural information, the 

improved annotation and understanding of previously uncharted protein families and functions, and AI-

facilitated design of novel proteins. This review aims to enhance our understanding of AI's 

transformative impact on exploring and expanding the protein universe, and to inspire continued 

innovation and application in the field. 

2.  AI-enabled protein structure prediction methods and databases 

The field of protein structure prediction has witnessed a remarkable transformation in recent years, 

largely driven by the advent of deep learning-based methods. These AI-enabled approaches have 

significantly outperformed traditional homology-based structure prediction methods and have set new 

benchmarks in speed and accuracy [1]. 

One of the most prominent breakthroughs in AI-based protein structure prediction is AlphaFold, 

developed by DeepMind [5, 8]. AlphaFold employs a deep learning model that leverages evolutionary, 

physical, and geometric constraints to predict the 3D structure of a protein from its amino acid sequence. 

The model was trained on a vast dataset of experimentally determined protein structures and has 

demonstrated exceptional performance in the Critical Assessment of Protein Structure Prediction (CASP) 

competition [9]. AlphaFold's success has been attributed to its ability to capture complex patterns and 

long-range interactions between amino acid residues, enabling it to generate highly accurate structural 

models even for proteins with limited or no sequence homology to known structures. 

Another notable AI-based method is RoseTTAFold, developed by the Baker Lab at the University 

of Washington [6]. RoseTTAFold combines deep learning with a three-track neural network architecture 

to predict protein structures. The method incorporates co-evolutionary information, protein sequence, 

and residue-residue distances, and atom coordinates to generate high-quality structural models. 

RoseTTAFold has also shown impressive performance in CASP and has been successfully applied to 

predict the structures of proteins from a wide range of organisms. 

A recent study by Krishna et al. [10] expanded on the capabilities of RoseTTAFold by developing 

RoseTTAFold All-Atom, which includes innovative graphic representations of other biologically 

relevant molecules in addition to proteins. This advancement leverages a sophisticated neural network 

architecture to provide precise predictions of protein complex structures, particularly with nucleic acids, 

small molecule ligands, and post-translational modifications including glycosylations. Similarly, the 

AlphaFold 3 model, described by Abramson et al. [11], represents another substantial advancement in 

biomolecular interaction prediction. This model features a diffusion-based architecture capable of joint 

structure prediction of complexes, including proteins, nucleic acids, small molecules, ions, and modified 

residues. AlphaFold 3 demonstrates significantly improved accuracy over previous tools, particularly in 

predicting protein-ligand interactions, protein-nucleic acid interactions, and antibody-antigen 

predictions. By integrating these capabilities into a unified deep-learning framework, AlphaFold 3 sets 

a new benchmark for high-accuracy modeling across a diverse range of biomolecular interactions, thus 

expanding the potential applications in protein modeling and drug design. Table 1 briefly summarizes 

the key advancement of AI-based structure prediction tools. 
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Table 1. Comparison of AI-based Protein Structure Prediction Systems 
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The impact of AI-based protein structure prediction has been further amplified by the development 

of large-scale structure databases, such as the AlphaFold Protein Structure Database (AlphaFold DB) 

[12]. The AlphaFold DB, created by DeepMind and EMBL-EBI, contains predicted structures for 

millions of proteins across various organisms, including a significant portion of the human proteome. 

As of September 2021, the Protein Data Bank (PDB) contained only about 180,000 experimentally 

determined structures, covering just over 55,000 distinct proteins [3]. In contrast, the initial release of 

AlphaFold DB provides over 360,000 predicted structures across 21 proteomes, significantly expanding 

the structural coverage of the known protein-sequence space [12]. The AlphaFold DB currently contains 

over 214 million structures [13, 14], which is a massive increase compared to the PDB (Figure 1). The 

database provides researchers with easy access to high-quality structural models, including those that 

were previously uncharacterized. The AlphaFold DB has become a valuable resource for the scientific 

community, enabling researchers to explore the structural basis of protein evolution and function, study 

protein-protein interactions, and identify potential drug candidates [15]. 
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Figure 1. Comparison of the number of protein structure models in accessible protein database before 

(2021) and after (current as of June 2024) AI-enabled structure prediction tools were introduced and 

open to the public. 

The combination of state-of-the-art AI-based protein structure prediction methods and 

comprehensive structure databases has revolutionized the field of structural biology. These advances 

have opened new avenues for exploring the "dark matter" of the protein universe and have the potential 

to accelerate the discovery of novel protein families, folds, and functions [16]. 

3.  AI-enabled protein function prediction 

Unveiling the functional gems hidden within the dark matter of the protein universe goes beyond 

structure prediction. AI can be trained to predict protein function based on sequence or structure data. 

By analyzing known protein sequences and their associated functions, AI models can learn to identify 

patterns that correlate with specific activities [17]. This opens the door to predicting the function of 

entirely novel protein sequences, potentially leading to the discovery of proteins with previously 

unknown applications in medicine, biotechnology, and beyond. 

Several studies have demonstrated the power of AI in protein function prediction. For example, 

DeepFRI [16], a graph convolutional network, predicts protein functions by leveraging sequence 

features extracted from a protein language model and protein structures. It outperforms current leading 

methods and scales to the size of current sequence repositories. Another study by Bileschi et al. 

introduces a deep learning model that learns the language of protein sequences and uses this knowledge 

to predict protein function directly from the sequence [18]. This AI-enabled study has extended the 

coverage of Pfam by >9.5%, exceeded additions made over the last decade, and predicted function for 

360 human reference proteome proteins with no previous Pfam annotation. This approach demonstrates 

the potential of AI in this domain. 

By rapidly and accurately predicting the functions of uncharacterized proteins, researchers can 

prioritize targets for experimental validation and further investigation, accelerating the discovery of 

novel proteins with valuable applications [19]. 

4.  Large-scale exploration of the protein universe 

Recent advances in AI-enabled protein structure prediction have led to the generation of structural 

models for a significant portion of the known protein universe. The AlphaFold Protein Structure 

Database (AlphaFold DB) contains over 214 million predicted structures, covering most proteins in 

UniProtKB [12]. This wealth of structural data presents an unprecedented opportunity to explore the 
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"dark matter" of the protein universe, i.e., the vast number of proteins that lack structural and functional 

annotations. 

Two recent studies by Durairaj et al. and Barrio-Hernandez et al. have utilized the AlphaFold DB to 

investigate the extent of this "dark matter" and uncover novel protein families and folds [13, 14]. Both 

studies employed large-scale clustering and analysis methods to efficiently process the vast amount of 

structural data. 

Barrio-Hernandez et al. developed a highly scalable structure-based clustering algorithm, Foldseek 

cluster, capable of handling hundreds of millions of structures [13]. They clustered the entire AlphaFold 

DB, identifying 2.30 million non-singleton structural clusters. Remarkably, 31% of these clusters lacked 

annotations, representing probable previously undescribed structures. Although these unannotated 

clusters covered only 4% of the proteins in the AlphaFold DB, they provide a new resource for studying 

novel protein families and folds. 

Similarly, Durairaj et al. constructed a sequence similarity network of over 6 million UniRef50 

clusters with high-confidence AlphaFold models (pLDDT > 90) [14]. They found that 34% of these 

clusters were functionally "dark," lacking annotations that could provide insights into their biological 

roles. By exploring this network, they discovered 290 putative new protein families and at least one new 

protein fold, the β-flower fold. Notably, they experimentally validated a new superfamily of translation-

targeting toxin-antitoxin systems, dubbed TumE-TumA. 

Both studies showcase the power of combining sequence and structural information to uncover 

uncharted areas in the protein universe. Durairaj et al. identified the β-flower fold, a symmetric β-barrel 

structure reminiscent of the Tubby C-terminal domain, and added several new Pfam families based on 

their analyses [14]. Barrio-Hernandez et al. used structural comparisons to predict domain families and 

their relationships, identifying examples of remote structural similarity that expand the evolutionary 

coverage of previously known families [13]. For instance, they found human immune-related proteins 

with putative remote homology in prokaryotic species, illustrating the potential for cross-kingdom 

evolution of immunity-related proteins. 

The experimental validation of the TumE-TumA toxin-antitoxin system by Durairaj et al. 

underscores the importance of combining computational predictions with wet lab experiments to verify 

newly discovered protein families [14]. Such collaborative efforts between computational and 

experimental biologists will be crucial in unraveling the biological roles of the "dark matter" proteins. 

These studies have significant implications for understanding protein function and evolution. By 

shedding light on the uncharted regions of the protein universe, they pave the way for discovering novel 

enzymatic activities, regulatory mechanisms, and structural scaffolds. The identification of remote 

homologies and evolutionary connections across kingdoms can provide insights into the emergence and 

diversification of protein families. Moreover, the characterization of "dark matter" proteins may lead to 

new biotechnological and biomedical applications, such as the development of novel biocatalysts, 

antimicrobial agents, or therapeutic targets. 

5.  AI-enabled de novo protein design 

The power of AI extends beyond discovery and into the realm of protein design. De novo protein design, 

the creation of proteins with desired functions, has traditionally been a laborious and hit-or-miss process 

[20]. However, AI-driven design utilizes powerful algorithms to iteratively refine protein sequences, 

rapidly converging on structures with the targeted properties [21]. This has the potential to revolutionize 

fields like medicine, where designer proteins could be used to create novel drugs or targeted therapies. 

Additionally, AI-designed proteins could find applications in materials science, bioremediation, and 

other areas. 

Recent studies have showcased the capabilities of AI in de novo protein design. For example, 

Anishchenko et al. [22] developed a method using deep network hallucination to create novel proteins 

with sequences unrelated to naturally occurring ones. They utilized the trRosetta structure prediction 

network to generate starting residue-residue distance maps from random amino acid sequences. Through 

Monte Carlo sampling and optimization, they produced diverse protein sequences and structures. The 
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synthetic genes encoding these sequences were expressed in E. coli, and several proteins folded into 

stable structures consistent with the hallucinated models, demonstrating the potential of deep networks 

to design new, functional proteins (Figure 2A). 

Another study by Watson et al. [23] introduced a novel approach called RFdiffusion, leveraging fine-

tuned RoseTTAFold for protein structure denoising tasks. This method enables the generation of diverse 

protein structures and functional designs, including monomer designs, symmetric oligomers, and 

complex enzyme active site scaffolds. RFdiffusion's capabilities were demonstrated through 

experimental validations such as Cryo-EM structure elucidation, confirming the designed structures' 

accuracy and functionality (Figure 2B).  

Recently, exciting progress was made in AI-enabled de novo design of small molecule binders, which 

used the RFdiffusion All-atom model to generate protein structures that can bind diverse small 

molecules [10]. The design process started with random distributions of residues around the target small 

molecules and employed iterative denoising to create coherent protein backbones with complementary 

pockets. Following sequence design using LigandMPNN, Rosetta GALigandDock energy calculations 

were used to evaluate the protein-small molecule interface and AlphaFold 2 predictions to evaluate the 

extent to which the sequence encodes the designed structure. Experimental characterization of these 

binders demonstrated successful binding to small molecule ligands such as digoxigenin and heme. For 

digoxigenin, the highest affinity binder showed a Kd of 343 nM and high thermostability. For heme 

binders, 90 out of 168 designs had UV/Vis spectra consistent with Cys-bound heme, with 33 

experimentally purified as monomeric proteins and showing heme-binding in size exclusion 

chromatography. For one representative protein, HEM_3.C9, the crystal structure was determined and 

the accuracy of the designed protein structure was confirmed (Figure 2C). This integrated approach 

shows a significant advancement in the rational de novo design of protein binders to small molecules. 

The progress demonstrates the potential of AI in designing proteins with desired properties, pushing 

the boundaries of what is possible in protein engineering. As AI-driven design methods continue to 

advance, we can expect to see an increasing number of de novo designed novel proteins with tailored 

functions, further expanding the boundary of protein universe in biotechnology and medicine. 

 

 

 
A B C 

Figure 2. Experimental determination of structures of de novo designed proteins, which demonstrate 

closely matches of the AI-designed models. (A) Crystal structure (PDB# 7K3H) of a de novo designed 

protein dimer, 0217, with each subunit shown in green and red, respectively. (B) Cryo-EM structure 

(PDB# 8SK7) of a de novo designed Influenza HA binder, HA_20 (shown in red), bound to Influenza 

HA (shown in green). (C) Crystal structure (PDB# 8VC8) of a de novo designed heme-binding protein 

HEM_3.C9 (shown in green), in complex with heme (shown in red). 

6.  Challenges and future directions 

While AI-enabled exploration of the protein universe has made remarkable progress, significant 

challenges remain in refining these methods, integrating predicted structures with experimental data, 

and leveraging novel protein families and folds for various applications. Moreover, a substantial portion 

of the protein universe remains as "dark matter," requiring innovative approaches for annotation and 

characterization. 

Proceedings of  the 4th International  Conference on Biological  Engineering and Medical  Science 
DOI:  10.54254/2753-8818/59/20241365 

90 



One of the primary challenges is to continue refining AI-enabled structure prediction methods to 

improve their accuracy and robustness. Incorporating additional constraints from physics-based 

modeling, co-evolutionary analysis, and experimental data could help overcome limitations, particularly 

for proteins with unique structural features, intrinsically disordered regions, transmembrane regions, or 

limited evolutionary information [24, 25]. Further optimizing and developing methods that can 

accurately and reliably predict protein-protein interactions, protein-ligand binding, and the impact of 

mutations on structure and function will greatly expand the utility of these tools [26]. 

Another important challenge is the experimental validation of AI-generated predictions and designs. 

While AI methods can rapidly generate hypotheses about protein structure, function, and design, these 

predictions must be verified through experimental studies. Developing high-throughput methods for 

protein expression, purification, and characterization will be essential to keep pace with the growing 

number of AI-generated predictions and designs. Collaborative efforts between computational and 

experimental researchers will be crucial in this regard, ensuring that the most promising leads are 

prioritized for validation and further investigation [24]. 

7.  Conclusion 

AI-enabled exploration of the protein universe has made remarkable progress. By integrating AI-driven 

protein structure prediction, function prediction, annotation, and de novo design, researchers have 

illuminated the dark matter of the protein universe and unlocked its potential for basic biology and 

applied sciences. However, significant challenges and opportunities lie ahead for future research. 

Enhancements in AI algorithms are needed to improve accuracy in predicting structures and dynamic 

movements of proteins and protein complexes. Additionally, there's a pressing need for high-throughput, 

cost-effective experimental techniques to validate the vast number of AI-generated hypotheses. Potential 

solutions include the use of advanced automation and robotic technologies in laboratories. Looking 

forward, as we continue to push the boundaries of our understanding of protein universe, we can 

anticipate more transformative advances driven by the synergy between AI and protein science, which 

can revolutionize our understanding of basic biology and enhance our ability to engineer novel 

biological materials and systems.  
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