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Abstract. Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by 

social impairment and repetitive stereotyped behaviors. This widespread neurological disorder 

not only results in symptoms that affect patients' social lives, such as behavioral and social 

disorders, but also imposes significant mental and economic burdens on their families. Therefore, 

research on the causes of ASD is of great practical value and significance. Previous studies have 

demonstrated a high genetic association with ASD and have identified specific ASD-related 

genes and single nucleotide polymorphisms (SNPs). However, these studies have primarily 

focused on establishing correlations rather than establishing causality between specific genes, 

SNPs, and ASD. Therefore, this experiment utilized public data from Genome-Wide Association 

Studies (GWAS) and employed a novel Bayesian model called CARMA (causal robust mapping 

method in meta-analysis) to identify SNPs strongly correlated with ASD. Notably, this study 
identified 14 novel pathogenic SNPs, four of which were deemed significant. Furthermore, 

functional annotations were performed on the pathogenic SNPs to assess their impact on gene 

expression in different brain regions. This analysis revealed the cerebellum, thalamus, and 

substantia nigra of the midbrain as the three brain regions with the highest correlation to ASD. 

Additionally, protein interaction analysis was conducted, revealing GATA-4 and NKX2-2 as the 

genes with the strongest correlation to ASD. The findings of this study provide new insights and 

data for future research into the genetics and biology of ASD, particularly in the field of basic 

research. 

Keywords: Autism spectrum disorder (ASD), Bayesian modeling, causal robust mapping 

method in meta-analysis (CARMA), genome-wide association analysis (GWAS), single 

nucleotide polymorphisms (SNPs). 

1.  Introduction 
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental condition affecting social 

interaction and exhibiting repetitive behaviors, with a global incidence of around 1% in children [1, 2]. 

While the etiology of ASD is multifactorial, genetic predisposition plays a pivotal role, supported by 
family and twin studies [3, 4, 5]. Although potential ASD-related genes have been mapped to 

chromosomes 2, 7, and 13, the quest for specific causative genes continues amidst inconsistent findings 

To advance our understanding, Genome-Wide Association Studies (GWAS) have been pivotal, 

identifying candidate genes such as NEGR1 and PTBP2 in large cohorts.  [7]. [7]. A significant locus at 
10q24.32, associated with PITX3 and CUEDC2, has also emerged, highlighting the complexity of 

ASD's genetic landscape [8].  
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Despite GWAS revelations, establishing causality among the myriad of associated genes and SNPs 

has been challenging. This study introduces the CARMA (causal robust mapping method in meta-

analysis) algorithm, a Bayesian approach applied to meta-analysis, to pinpoint causal genes with high 

posterior probability derived from extensive GWAS data. [9]. By harnessing CARMA, we have 
identified a suite of causal genes and SNPs linked to ASD, shedding new light on the disorder's genetic 

architecture and paving the way for targeted therapeutic interventions. 

2.  Methods 

2.1.  Accessing ASD-related GWAS Data 

We sourced the ASD Genome-Wide Association Study (GWAS) dataset from the iPSYCH and PGC 

initiatives, encompassing p-values for SNPs linked to autism. [7]. Jakob Grove et al.'s analysis identified 

five significant ASD-associated loci, providing a foundation for our study without establishing causality. 

2.2.  Filtering GWAS Data 

Utilizing the "qqman" R package, we visualized the distribution of significant SNPs across 

chromosomes via a Manhattan plot. We applied a stringent p-value filter (p < 5 × 10-7) to distill regions 
of interest, acknowledging that significant loci might exhibit linkage disequilibrium (LD) with others 

not surpassing the threshold. To capture a comprehensive view, we expanded the significance regions 

to include correlated SNPs, employing the dplyr package for data manipulation. 

2.3.  Calculating Linkage Disequilibrium (LD) 

We calculated LD values (r2) for extracted SNPs using genotype data from the 1000 Genomes Project 

(https://github.com/statgen/locuszoom-standalone). The Plink 1.9 software facilitated LD computation 

within a 1000 kb sliding window, setting an r2 threshold of 0.001 to ensure inclusion of meaningful LD 
relationships. . 

2.4.  CARMA Algorithm without Annotation Information 

While p-values and linkage disequilibrium (LD) values are instrumental in identifying correlations 
between SNPs and ASD, they fall short in establishing causality. To address this, we applied the 

CARMA Bayesian model, selected for its robust handling of discrepancies between GWAS and LD data, 

thereby enhancing statistical validity and minimizing false positives. [9].  

In this study, two CARMA analyses were conducted: one with annotation information and another 
without. For the CARMA analysis without annotation information, the LD values between SNPs and 

the Z-values were used as inputs to the model. The Z-values represent the relationship between each 

data point and the mean of the dataset, and can be computed using the formula log(OR)/SE. After 
completing the CARMA model calculation, each SNP is assigned a corresponding posterior inclusion 

probability (PIP). A higher PIP value indicates a stronger causal relationship between the SNP and ASD, 

suggesting a higher likelihood of it being the causative gene for ASD. 
We prioritized SNPs with significant p-values (p < 5 × 10^-7) and substantial PIP values (PIP > 0.5), 

recognizing these thresholds as indicators of potential ASD causality. Locuszoom was employed for 

visualizing these SNPs on chromosomes 8 and 20, providing a concise summary of their correlation and 

causality with ASD. 

2.5.  CARMA Algorithm with Annotation Information 

Following the initial CARMA analysis, we integrated functional annotations to refine our model. 

Utilizing data from the PolyFun platform, we curated SNP annotations specifically for regions of interest 
on chromosomes 8 and 20, aligning with significant loci identified in our prior analysis.  We extracted 

annotations for defined significance regions: positions 21,111,000 to 21,535,000 on chromosome 20 and 

10,569,000 to 10,800,000 on chromosome 8.For the CARMA analysis with annotation information, 
three datasets are used as inputs to the model: LD values, Z values, and SNP annotation information. 
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Once the run is complete, the PIP values derived from the CARMA algorithm with annotation 

information can be obtained. 

2.6.  Comparison of results obtained by CARMA algorithm with and without annotation information 

Integrating functional annotations can boost the accuracy of models analyzing GWAS data, as 
demonstrated by Yang et al. where incorporating annotations significantly improved the statistical 

power of their CARMA algorithm [9]. Here, running CARMA with and without functional annotations 

yielded divergent posterior inclusion probabilities (PIP) for candidate SNPs. To pinpoint high-
confidence risk variants, we first identified SNPs showing consistent causality signal (PIP > 0.5) across 

both methods through Venn diagram intersection. For the remaining candidates, we selected the top PIP-

ranked SNPs from each approach as potentially pathogenic loci driving ASD risk. 

2.7.  Adding Additional Functional Annotations for Salient SNPs 
For the distilled set of high-confidence ASD risk SNPs, we annotated their minor allele frequencies 

across populations (from SNPNexus) and expression quantitative trait loci (eQTL) p-values in brain 

regions (from BRAINEAC).  
Population frequencies contextualize the variants' differential risk architectures, while eQTL data 

illuminates their regulatory effects on gene expression. Stringent eQTL p-value thresholds (p < 1e-2) 

highlighted SNPs exhibiting strongest cis/trans-regulatory impacts, prioritizing those likely disrupting 
key neurodevelopmental pathways in specific brain regions. 

2.8.  Analysis of Protein Interactions in Brain Regions 

Focusing on genes significantly perturbed by the prioritized risk SNPs, we interrogated their encoded 

proteins' interactions with a high-confidence ASD network. 
This curated network comprised 185 autosomal, dominantly-inherited genes exhibiting elevated 

mutation burdens in ASD probands versus non-affected individuals, integrated with known protein 

interactors from STRING (https://string-db.org/)  [11]. Genes whose proteins exhibited higher network 
connectivity were considered more likely to broadly dysregulate ASD-relevant pathways upon genomic 

insult. This guilt-by-association approach nominated key dysregulated genes for disrupting core ASD 

biology. 

3.  Results 

3.1.  Finding ASD-associated SNPs by p-values 

Interrogating GWAS summary statistics from iPSYCH and PGC (9,112,386 SNPs), we generated 

Manhattan plots to pinpoint chromosomes enriched for ASD association signals (Fig. 1). This 
highlighted chromosomes 8 and 20, which harbored clusters of SNPs with small P-values. Applying a 

stringent genome-wide threshold (P < 5e-7), we identified 361 significant SNPs on chr20 (range: 

14,760,747-21,534,970) and 20 SNPs on chr8 (10,571,591-48,036,474) strongly associated with ASD 
risk (Table 1). 

To capture additional linked SNPs, we expanded the regions to chr20:21,111,000-21,535,000 (958 

SNPs) and chr8:10,569,000-10,800,000 (1,071 SNPs) based on patterns of association significance 

decay. These expanded loci nominally associated with ASD were prioritized for downstream integrative 
analyses to pinpoint high-confidence risk variants and dysregulated genes. 
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Figure 1. Manhattan plot corresponding to the dataset. The red line represents the significance level 

value set for this study (p < 5 × 10-7). The blue line represents a less stringent significance level value 

(p < 5 × 10-5). Points above the red line are considered to be significantly correlated with ASD. 

3.2.  Results of linkage disequilibrium calculations 

After filtering the SNPs with significant ASD correlations and expanding the range to include more 

association locus, the LD values of 985 SNPs on chromosome 20 and 1,071 SNPs on chromosome 8 
could be calculated. Figure 2 shows a heatmap of the LD values between the ten SNPs with the lowest 

p-values on chromosome 20 (Figure 2A) and chromosome 8 (Figure 2B). 

 

Figure 2. Heatmap of LD values for the top ten correlated SNPs within the region of significance. 
A) Heatmap of LD values among the ten SNPs with the smallest p-values on chromosome 20. B) Heat 

map of LD values among the ten SNPs with the smallest p-values on chromosome 8. 

Proceedings of  the 4th International  Conference on Biological  Engineering and Medical  Science 
DOI:  10.54254/2753-8818/59/20241373 

127 



 

 

3.3.  Results of CARMA algorithm without annotation information 

By running the CARMA algorithm without annotation information, the PIP values of individual SNPs 

can be obtained. In this study, the threshold for causality was set at PIP > 0.5, indicating a significant 

causality between SNPs with PIP > 0.5 and ASD. Calculations revealed eight SNPs with PIP > 0.5 on 
chromosome 20 and seven SNPs with PIP > 0.5 on chromosome 8. These SNPs were located on the KIZ, 

XRN2, NKX2-4, NKX2-2, PINX1, XKR6, and SOX7 genes (Figure 3 & 4). 

 

Figure 3. Genomic localization of SNPs on chromosome 20 with causality to ASD obtained by the 

unannotated CARMA algorithm. Points with red circles are pathogenic SNPs (PIP < 0.5), purple 
diamonds are SNPs with the highest correlation with ASD (those with the smallest p-value), and the 

gray horizontal lines are the genes to which each SNP belongs. 

 

Figure 4. Genomic localization of SNPs on chromosome 8 with causality to ASD obtained by the 
unannotated CARMA algorithm. Points with red circles are pathogenic SNPs (PIP < 0.5), purple 

diamonds are SNPs with the highest correlation with ASD (those with the smallest p-value), and the 

gray horizontal lines are the genes to which each SNP belongs. 
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3.4.  Annotated Information CARMA Algorithm Results 

According to Yang, Z. et al., incorporating annotation information into the CARMA algorithm enhances 

its accuracy. Therefore, building upon the previous step, additional annotation information was included 

in the model, and the PIP values of each SNP were recalculated The results of the calculations 
demonstrated that the CARMA algorithm with annotation information generated different outcomes 

compared to the CARMA algorithm without annotation information. Specifically, there were 10 SNPs 

with PIP > 0.5 on chromosome 20, while there were 6 SNPs with PIP > 0.5 on chromosome 8. These 
SNPs were located on the KIZ, XRN2, NKX2-4, NKX2-2, PINX1, XKR6, and SOX7 genes (Figure 4 & 

5).  

 

Figure 5. Genomic localization of SNPs on chromosome 20 causally linked to ASD, as obtained by 

the annotated CARMA algorithm. Points with red circles are pathogenic SNPs (PIP < 0.5), purple 

diamonds are SNPs with the highest correlation with ASD (those with the smallest p-value), and the 
gray horizontal lines are the genes to which each SNP belongs. 

 

Figure 6. Genomic localization of SNPs on chromosome 8 causally linked to ASD, as obtained by 

the annotated CARMA algorithm. Points with red circles are pathogenic SNPs (PIP < 0.5), purple 

diamonds are SNPs with the highest correlation with ASD (those with the smallest p-value), and the 
gray horizontal lines are the genes to which each SNP belongs. 
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3.5.  Summary of pathogenic SNPs on chromosome 8 and chromosome 20 by comparing results 

Contrasting results from CARMA with/without functional annotations revealed key patterns (Fig. 7,8). 

Annotated analyses yielded higher mean posterior inclusion probabilities (PIP) for pathogenic SNPs. 

On chr20, prioritized SNPs exhibited extremely strong ASD association (all p < 5e-15), suggesting high 
causality. However, putative chr8 risk variants showed weaker effects, with only 30% surpassing 

genome-wide significance (p < 5e-7), motivating deeper interrogation of this locus. 

Once the overall pattern was summarized, the results obtained from the different algorithms were 
further analyzed to identify the significant SNPs with the most notable effect on ASD for downstream 

analysis. Two criteria were used to summarize the significant SNPs: (1) whether the SNPs were 

identified as pathogenic by both algorithms. Although the CARMA algorithm with annotated 

information was found to be superior to the CARMA algorithm without annotated information based on 
the study conducted by Yang, Z. et al., to be conservative, we considered the results obtained by both 

algorithms. If a SNP was identified as pathogenic by both algorithms, it was more likely to be strongly 

causally associated with ASD and therefore categorized as a significant SNP. As a result, rs2025811 on 
chromosome 20 and rs3848794 were identified as significant SNPs (Figure 9). (2) However, no SNPs 

on chromosome 8 were recognized as pathogenic by both algorithms. To include pathogenicity genes 

on chromosome 8 for downstream analysis, we selected the top two SNPs with the highest PIP values 
from both algorithms and recognized them as significant SNPs (rs10099100 and rs714370 from 

annotated CARMA, as well as rs7820334 and rs6980908 from the non-annotated algorithm). 

 

Figure 7. PIP-p plot of pathogenic SNPs on chromosome 20. A) PIP-p map of pathogenic SNPs on 

chromosome 20 obtained by the annotated CARMA algorithm. B) PIP-p map of pathogenic SNPs on 

chromosome 20 obtained by the unannotated CARMA algorithm. 
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Figure 8. PIP-p plot of pathogenic SNPs on chromosome 8. A) PIP-p map of pathogenic SNPs on 

chromosome 8 obtained by the annotated CARMA algorithm. B) PIP-p map of pathogenic SNPs on 

chromosome 8 obtained by the unannotated CARMA algorithm. 

 

Figure 9. Venn plots of pathogenic SNPs obtained by the annotated CARMA algorithm and the 

unannotated CARMA algorithm on chromosome 20. 

3.6.  Associated brain regions and population variability in ASD 
For the six significant SNPs mentioned before, we can conduct additional functional annotations to 

analyze them and summarize the probability of ASD in different populations, as well as the correlation 

between different brain regions and ASD. From the data in Table 3, the minor allele frequencies of 
different SNPs have some differences in different populations. Among them, rs2025811 and rs3848794 

on chromosome 20 display the highest minor allele frequencies in African and Asian populations. This 

suggests that the impact of rs2025811 and rs3848794 on ASD is most significant in these two 

populations. Similarly, rs10099100, rs714370, rs7820334, and rs6980908 on chromosome 8 exhibit the 
highest minor allele frequencies in European and African populations, indicating that SNPs on 

chromosome 8 have a more pronounced effect in these two populations. It is noteworthy that the minor 

allele frequencies of rs2025811 and rs3848794 in Asian populations significantly differ from those in 
European populations, suggesting that they may be ASD risk loci specific to Asian populations. 
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Furthermore, the extent of influence of different SNPs on gene expression in various brain regions 

can be summarized through eQTL analysis. A smaller p-value in the eQTL analysis indicates a higher 

likelihood of pathogenic SNPs in that brain region affecting gene expression, ultimately contributing to 

the development of ASD. By comparing the p-values of eQTL analysis across different brain regions, 
we can conclude that the cerebellum, thalamus, and substantia nigra of the midbrain are more strongly 

associated with ASD. 

Table 4. Minor allele frequencies in different populations 

CHR SNP AFR freq AMR freq ASN freq EUR freq 

20 
rs2025811 0.98 0.86 1 0.86 

rs3848794 0.97 0.83 0.99 0.83 

8 

rs10099100 0.39 0.26 0.03 0.34 

rs714370 0.05 0.14 0 0.2 

rs7820334 0.4 0.25 0.03 0.31 

rs6980908 0.18 0.08 0.09 0.09 

 

In table 4, AFR Frq refers to African population suballele frequencies, AMR Frq refers to American 

population suballele frequencies, ASN Frq refers to Asian population suballele frequencies, and EUR 

Frq refers to European population suballele frequencies. 

Table 5. p-value for eQTL analysis of significant pathogenicity SNPs on chromosome 8 

rsid geneSymbol CRBL FCTX HIPP OCTX THAL WHMT 

 

BLK 
5.00×10
-3      

GATA4 
 

4.70×10
-3     

GATA4 
   

4.10×10
-3   

BLK 
     

1.20×10
-4 

PINX1,SOX7 
7.90×10
-3      

GATA4 
  

5.80×10
-3    

XKR6,MIR598 
   

6.80×10
-3   

BLK 
    

2.80×10
-5  

FAM167A 
     

1.90×10
-3 

NEIL2,C8orf49 
     

8.80×10
-3 

rs1009910

0 

PINX1,SOX7 
1.20×10
-3      

BLK 
 

5.80×10
-3     

PINX1,SOX7 
  

3.70×10
-3    
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RP1L1 
   

5.60×10
-3   

FAM167A 
     

8.40×10
-3 

rs7820334 

PINX1,SOX7 
1.80×10
-3      

BLK 
 

4.90×10
-3     

C8orf12 
  

1.40×10
-3    

PINX1,SOX7 
  

4.40×10
-3    

PRSS55,UNQ939

1    

5.30×10
-4   

TDH 
    

3.10×10
-3  

BLK 
    

4.00×10
-3  

MSRA 
     

1.70×10
-3 

 

In table 5, CRBL refers to cerebellum, FCTX refers to prefrontal cortex, HIPP refers to hippocampus, 

OCTX refers to occipital cortex, THAL refers to thalamus, and WHMT refers to white matter. 

Table 6. p-value for eQTL analysis of significant pathogenicity SNPs on chromosome 20 

rsid geneSymbol CRBL HIPP MEDU SNIG THAL WHMT 

rs384879

4 

NKX2-2 
3.30×10
-4      

PAX1 
1.10×10
-3      

PAX1   
9.50×10
-3    

XRN2    
7.70×10
-4   

NKX2-4 
 

  
8.20×10
-3   

C20orf74,RALGAP
A2     

9.70×10
-3  

XRN2 
     

2.10×10
-3 

rs202581

1 

INSM1 
8.10×10
-3           

C20orf74,RALGAP

A2 
 

3.50×10
-3     

PAX1   
3.10×10
-3    

C20orf19,PLK1S1    
8.10×10
-4   

Table 5. (continued). 
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C20orf74 
    

9.80×10
-3  

XRN2 
    

9.80×10
-3  

C20orf26 
    

8.50×10
-3  

 

In table 6, CRBL refers to cerebellum, FCTX refers to prefrontal cortex, HIPP refers to hippocampus, 
OCTX refers to occipital cortex, THAL refers to thalamus, and WHMT refers to white matter. 

3.7.  Protein interaction scoring results 

Protein interaction analysis of the genes affected by pathogenic SNPs in the brain region summarized in 
the previous step, as well as the 185 ASD-associated genes summarized by Thomas et al., reveals that 

the proteins expressed by 17 genes (Table 7) exhibit interactions with other proteins. Among them, the 

genes GATA-4 and NKX2-2 scored the highest, indicating that when pathogenic SNPs influence their 
expression, it would result in the largest number of affected proteins and consequently have the greatest 

impact on ASD. 

Table 7. Protein Interaction Scoring Results 

gene name score 

GATA4 10 

NKX2-2 10 

CTSB 6 

XKR6 6 

TNKS 6 

MSRA 6 

BLK 4 

SOX7 4 

4.  Discussion 

Through integrative genomics analyses leveraging GWAS data and novel causal mapping algorithms, 

we nominate six high-confidence ASD risk SNPs (rs2025811, rs3848794, rs10099100, rs714370, 
rs7820334, rs6980908) spanning chromosomes 8 and 20. Incorporating functional annotations 

illuminated distinct population-specific risk architectures and prioritized the cerebellum, thalamus and 

substantia nigra as key brain regions potentially disrupted by these variants' regulatory effects on 
neurodevelopmental gene expression programs.Our multi-pronged approach, coupling cutting-edge 

statistical genetics with deeply phenotyped cohorts, uncovered novel pathogenic loci while 

corroborating prior ASD gene discoveries (KIZ, XRN2, NKX2-4, NKX2-2, PINX1, XKR6, SOX7) 

reported by Grove et al.  [7]. This consensus highlights the validity of our integrative framework for 
mapping core etiological mechanisms. 

In the experimental results of Grove et al., it was indicated that two SNPs, rs910805 and rs10099100, 

displayed a strong association with ASD, and these same SNPs were also identified among the 
pathogenic SNPs derived from our project. In comparison, it can be seen that the experimental results 

of Grove et al. primarily focused on the correlation between SNPs and ASD, without further analysis of 

their causality. However, our experiment demonstrated the causal relationship between the 
aforementioned two SNPs and ASD using the CARMA algorithm, building upon Grove's experimental 

findings. Notably, in addition to the SNPs already reported by Grove et al., we identified 27 novel loci 

Table 6. (continued). 

Proceedings of  the 4th International  Conference on Biological  Engineering and Medical  Science 
DOI:  10.54254/2753-8818/59/20241373 

134 



 

 

that exhibit a strong causal association with ASD, thereby introducing entirely new possibilities for 

understanding the genetic basis of ASD. 

Within this cohort of pathogenic SNPs, we conducted further screening and identified six additional 

significant SNPs for downstream analysis. By incorporating additional functional annotations, we 
discovered several brain regions strongly associated with ASD. Among them, the cerebellum, thalamus, 

and substantia nigra of the midbrain exhibited the strongest associations with ASD, as genes in these 

regions were most likely affected by pathogenic SNPs. These findings align with a substantial body of 
evidence from previous studies supporting the conclusions of our project regarding these three brain 

regions. For instance, Verly et al.'s study indicated a weak link between the right cerebellum of ASD 

patients and the supratentorial region responsible for language modulation, as demonstrated by fMRI 

data [12]. Our experiment utilized both GWAS data and the CARMA algorithm, which corroborated 
the observed association between the cerebellum and ASD. Additionally, previous research by Neil D. 

Woodward et al. suggested that ASD patients commonly exhibit deficits in thalamocortical connectivity 

[13], which aligns with our study's conclusion that ASD-causing SNPs have a significant impact on 
thalamic function. Furthermore, Denis Pavăl's study highlighted the presence of neurons in the 

substantia nigra that project to the dorsal part of the striatum, a brain region involved in motor behavior 

control. Consequently, damage to the substantia nigra may contribute to repetitive stereotyped behaviors 
observed in ASD patients [9]. Our study indicated a high probability of pathogenic SNPs affecting the 

midbrain substantia nigra, which likely contributes to the typical behavioral deficits in ASD. 

In addition, we analyzed the relevance of the aforementioned genes to ASD from the perspective of 

protein interactions. Using the String system, we discovered that the proteins expressed by 17 genes in 
this cohort exhibited interactions with other proteins previously reported to be associated with ASD. 

Among these interactions, GATA-4 and NKX2-2 proteins demonstrated the highest interaction scores. 

This suggests that pathogenic SNPs, when influencing the expression of these genes, have the most 
substantial impact on the functions of the related proteins. Therefore, GATA-4 and NKX2-2 genes are 

considered to exert the greatest influence on ASD. 

However, the present study does have certain limitations. First, the individual samples in the GWAS 

dataset we used were all born in Denmark. It is important to note that there may be slight variations in 
the frequency of ASD suballeles among different populations. Therefore, conclusions drawn from a 

single GWAS sample may not always accurately generalize to the entire population. However, this 

limitation can be addressed by incorporating data from diverse databases in future studies. Another 
limitation is that during the calculation of LD values, SNPs in the dataset lose some of their data. Since 

LD values are essential input parameters for running the CARMA algorithm, there may be SNPs that 

have a causal relationship with ASD but cannot undergo CARMA calculations due to the absence of LD 
values. As a result, these SNPs may not be included in the summarized pathogenic SNPs. 

5.  Conclusion 

Through integrative genomics analyses leveraging GWAS data and causal statistical algorithms with 

and without functional annotations, we identified six high-confidence pathogenic SNPs driving ASD 
risk: rs2025811, rs3848794, rs10099100, rs714370, rs7820334, and rs6980908 spanning chromosomes 

8 and 20. Incorporating regulatory genomic annotations prioritized the thalamus, cerebellum, and 

substantia nigra as key brain regions disrupted by the regulatory impacts of these risk variants on 
neurodevelopmental gene expression. These insights nominate specific neural circuits warranting deeper 

interrogation of pathogenic mechanisms underlying ASD. 

Acknowledgments 
Authors wishing to acknowledge assistance or encouragement from colleagues, special work by 

technical staff or financial support from organizations should do so in an unnumbered 

Acknowledgments section immediately following the last numbered section of the paper. 

Proceedings of  the 4th International  Conference on Biological  Engineering and Medical  Science 
DOI:  10.54254/2753-8818/59/20241373 

135 



 

 

References 

[1] Lord, C., Elsabbagh, M., Baird, G. & Veenstra-Vanderweele, J. Autism spectrum disorder. The 

Lancet 392, 508–520 (2018). 

[2] Zeidan, J. et al. Global prevalence of autism: A systematic review update. Autism Res. 15, 778–
790 (2022). 

[3] Rosenberg, R. E. et al. Characteristics and concordance of autism spectrum disorders among 277 

twin pairs. Arch. Pediatr. Adolesc. Med. 163, 907–914 (2009). 
[4] Geschwind, D. H. Genetics of Autism Spectrum Disorders. Trends Cogn. Sci. 15, 409–416 (2011). 

[5] Bailey, A. et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol. 

Med. 25, 63–77 (1995). 

[6] Szatmari, P. The causes of autism spectrum disorders: Multiple factors have been identified, but 
a unifying cascade of events is still elusive. BMJ 326, 173–174 (2003). 

[7] Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. 

Genet. 51, 431–444 (2019). 
[8] Anney, R. J. L. et al. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum 

disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. 

Mol. Autism 8, 21 (2017). 
[9] Yang, Z. et al. CARMA is a new Bayesian model for fine-mapping in genome-wide association 

meta-analyses. Nat. Genet. 55, 1057–1065 (2023). 

[10] Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of complex 

trait heritability. Nat. Genet. 52, 1355–1363 (2020). 
[11] Rolland, T. et al. Phenotypic effects of genetic variants associated with autism. Nat. Med. 29, 

1671–1680 (2023). 

[12] Verly, M. et al. Altered functional connectivity of the language network in ASD: Role of classical 
language areas and cerebellum. NeuroImage Clin. 4, 374–382 (2014). 

[13] Woodward, N. D., Giraldo-Chica, M., Rogers, B. & Cascio, C. J. Thalamocortical 

dysconnectivity in autism spectrum disorder: An analysis of the Autism Brain Imaging Data 

Exchange. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 76–84 (2017). 

Proceedings of  the 4th International  Conference on Biological  Engineering and Medical  Science 
DOI:  10.54254/2753-8818/59/20241373 

136 


