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Abstract. Electroencephalography (EEG) represents a pivotal technology in Brain-Computer 

Interface (BCI) research, offering insights into brain activity through non-invasive 

methodologies. However, EEG signals are frequently contaminated by noise sources, 

necessitating the application of denoising techniques to improve signal quality. This paper 

reviews a denoising model combining Long Short-Term Memory (LSTM) networks and Deep 

Complex Convolutional Recurrent Network (DCCRN) for effective EEG noise reduction. The 

combination of LSTM and DCCRN offers a powerful approach to mitigate diverse noise 

components in EEG data, as both networks are adept at addressing gradient vanishing and 

explosion issues, respectively, and handling complex-valued operations. The DCCRN-LSTM 

model has the potential to enhance the quality of EEG data, thereby improving the accuracy and 

robustness of subsequent signal processing tasks. The application of DCCRN, which is 

predominantly used in speech denoising, introduces new methodologies to the realm of EEG 

signal processing, and it has the potential to be a significant contributor to the future field of 

EEG noise reduction. 
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1.  Introduction 

The brain computer interface (BCI) concept was first proposed in 1973. This technology involves the 

establishment of a direct connection between a computer and the brain of a human or animal, creating a 

communication and control system that bypasses traditional muscle and nerve pathways [1]. Following 

its initial proposal, BCI technology underwent extensive development without any breakthroughs for an 

extended period. Nevertheless, it was not until the 1990s that significant progress was made, driven by 

advances in computer science, neurology, and brain research. This technology has made significant 

advances in several fields, including clinical medicine, neurorehabilitation, art, and entertainment. BCI 

systems can be classified according to the methods employed for acquiring signals, namely non-invasive 

and invasive systems. Non-invasive systems offer a resolution of approximately 0.05 seconds and 1 

millimeter, while invasive systems provide a much finer resolution of about 0.003 seconds and 0.05 

millimeters [2], as detailed in Sections 2.1 and 2.2. However, in the development of BCI technology for 

many years, the processing of noise and artefacts has been a major difficulty, this paper will use literature 

analysis and other methods to study Noise and artefacts in EEG signals are processed using the DCCRN-

LSTM algorithm to preserve privacy and enhance valid information in EEGs, which can reduce the 
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interference of noise for the effective information in EEG and provide a potential noise reduction method 

for the field of EEG analysis. This study focuses on EEG noise reduction technology based on DCCRN-

LSTM. For evaluating related articles the criterion was the relevance of EEG and DCCRN-LSTM to 

this paper, which are the key areas of concern in this thesis. 

2.  Classification of BCI systems based on different ways of acquiring signals 

2.1.  Invasive Method 

Invasive BCI involves the placement of electrodes directly into the brain. This approach offers higher 

temporal and spatial resolution than non-invasive methods. However, it typically necessitates a 

craniotomy, which involves the removal of a portion of the skull, the placement of the electrodes or 

probes onto the cerebral cortex, and then the restoration of the skull. Consequently, invasive BCI is more 

expensive and carries greater risks, including the potential for infection and the degradation of recorded 

signals over time. 

2.2.  Non-Invasive Method 

Typical non-invasive technologies include Near-infrared Spectroscopy (NIRS), Magnetoencephalo-

graphy (MEG), Functional Magnetic Resonance Imaging (fMRI), and EEG. While non-invasive brain-

computer interfaces (BCIs) offer lower temporal and spatial resolution than the invasive method, they 

do not require surgical implantation. Instead, they can be easily implemented using a headband or hat, 

making them cost-effective and relatively safe. By placing electrodes on the scalp and applying 

conductive gel, or using headgear to secure the electrodes and directly record neural signals, these 

systems provide the benefits of affordability, ease of operation, and safety [3]. Consequently, non-

invasive BCI technology is widely adopted and utilized. The Electroencephalogram (EEG), is a 

technique that captures electrical impulses produced by brain neurons by placing electrodes and other 

electronic components on the scalp [4]. However, EEG signals are frequently susceptible to a variety of 

disturbances, including those resulting from human physiological processes or non-physiological 

sources, such as mechanical equipment. The nonlinear, random, non-correlated, and non-Gaussian 

characteristics of EEG signals render the effectiveness of traditional wavelet transform or filter methods 

in eliminating these interferences severely limited. In order to address this challenge, deep learning-

based methods have demonstrated significant potential in the realm of noise reduction. This article 

presents a novel approach that employs a combination of DCCRN and LSTM to mitigate EEG noise. 

3.  Key algorithms for noise reduction and EEG enhancement 

3.1.  LSTM 

Long Short-Term Memory (LSTM) is a framework derived from RNN (Recurrent Neural Networks) 

[5]. In traditional RNNs, connections are typically established between hidden layers, with the input to 

a hidden layer including both the output from the input layer and the output from the hidden layer at the 

previous time step. While RNNs offer advantages in analysing time series data, they frequently 

encounter issues such as long-term dependency problems, gradient vanishing, and gradient explosion 

[6]. LSTM effectively addresses these challenges by preserving long-term sequence information and 

mitigating the issues of gradient vanishing and explosion. Compared to the AutoRegressive Integrated 

Moving Average (ARIMA) time series model, LSTM is more adept at handling complex time series 

prediction tasks, particularly those involving long-term dependencies. 

The fundamental gate mechanism of LSTM comprises the input, forget, and output gates. The 

introduction of the forget gate enables LSTM to retain information over extended periods. Upon receipt 

of a novel input, LSTM combines the input with the output from the preceding time step to generate a 

distinct vector. Subsequently, the aforementioned vector is subjected to a sigmoid neural layer. If the 

value is close to 0, the component information has been “forgotten.” Conversely, a value close to 1 

indicates the retention of complete memory. This principle is exemplified by the following formula. 
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ft = σ(Wf ⋅ [y
t−1

, xt] + af) (1) 

Where ftrepresents the decision vector of the forget gate, σ, Wf, respectively represent the sigmoid 

activation function and the weight of the forget gate of dimension dc × (dx + dℎ); y
t−1

, xt are the 

output at time t-1 and the input at time t; af represents the offset of the forget gate. 

The output value of the current LSTM is: 
y

t
= tanh(Ct ∗ ot)  (2) 

Ctrepresents the new cell state, otrepresents the decision vector of the output gate. 

it = σ(Wi[yt−1
, xt] + ai) (3) 

C̅t = tanh(Wc[y
t−1

, xt] + ac) (4) 

In equations (3) and (4), it represents the decision vector of the input gate, and C̅t represents the 

candidate information. 

Ct = C̅t−1 ∗ ft + C̅t ∗ it (5) 

ot = σ(Wo[y
t−1

, xt] + ao) (6) 

In the context of EEG denoising, the LSTM model can learn features from long time series data. 

During  training, the LSTM model utilises the learned features and patterns to effectively denoise the 

EEG signals. The LSTM model can predict and remove noise components from the EEG data, thereby 

improving the signal-to-noise ratio. 

3.2.  DCCRN 

Machine learning models are typically classified into time series models and regression models. In the 

context previously outlined, the LSTM model is employed due to its capacity to learn features from long 

time series data. Consequently, this section employs a time series model for modelling purposes. The 

Deep Complex Convolution Recurrent Network (DCCRN) is a network model that combines the 

structures of Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long 

Short-Term Memory (LSTM) to address the issue of time series dependencies. It is distinctive in that it 

incorporates complex convolutional layers and LSTM layers. The complex network is capable of 

capturing the correlation between amplitude and phase angle through complex multiplication, thereby 

enabling a more comprehensive representation of signal characteristics [7]. 

 

Figure 1. DCCRN Flowchart 
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The encoder/decoder block comprises a complex two-dimensional convolutional neural network 

(Conv2d), batch normalization, and a real-valued parametric rectified linear unit (PreLU) [8]. The 

complex-valued convolution filter K can be represented as K =  Kr + jKi, where Kr is the real part 

of the complex convolution kernel, and Ki is the imaginary part of the complex convolution kernel. 

The input complex matrix M can be expressed as M =  Mr + jMi. In conclusion, the complex output 

expression is derived through the operation X ⊗ W, as illustrated in Equation (7). 

Fout = (Mr ∗ Kr − Mi ∗ Ki) + j(Mr ∗ Ki + Mi ∗ Kr) (7) 

In formula (7), Fout denotes the output feature of one complex layer. 

According to the real part Mr and imaginary part Mi of the complex input, the output Fout of the 

complex LSTM can be expressed as: 

Frr = LSTMr(Mr); Fir = LSTMr(Mi) (8) 

Fri = LSTMi(Mr); Fii = LSTMi(Mi) (9) 

Fout = (Frr − Fii) + j(Fri + Fir) (10) 

LSTMr and LSTMi represent the real and imaginary parts in the traditional LSTM  model, while 

Fri represents the result calculated by LSTMi and input Mr. 

The original design of DCCRN was intended for speech enhancement tasks, with a particular focus 

on phase-aware speech enhancement. Although DCCRN was not initially designed for EEG noise 

reduction, its deep learning capabilities and complex number processing offer a promising potential 

solution for this application. Nevertheless, further research and experimental validation are required to 

ascertain the efficacy of this approach in EEG noise reduction. In particular, the application of complex 

number processing to EEG data, along with the adjustment and optimisation of the network structure, 

necessitates further extensive exploration and investigation. 

3.3.  Section summary 

As a recurrent neural network structure, LSTM is particularly adept at processing time series data and 

capturing long-term dependencies. In EEG signal processing, LSTM is an effective tool for modelling 

complex patterns in time series. This is crucial for noise reduction tasks due to the presence of helpful 

information and noise in EEG signals over extended time scales. In contrast, DCCRN has been 

developed for the specific purpose of processing complex-valued data. It offers the advantages of low 

training parameters and computational costs and does not require prior knowledge. In the context of 

EEG signal processing, the use of complex-valued operations enables the capture of both amplitude and 

phase information, which is of particular importance in retaining key features within the signal and in 

the removal of noise. The integration of LSTM and DCCRN within an algorithm has the potential to 

enhance noise reduction efficiency, resulting in reduced computing time and resource consumption. The 

long-term dependency capture capability of LSTM, when combined with the complex value operation 

processing capability of DCCRN, results in a synergistic effect, enabling the algorithm to more 

effectively identify and separate noise components in EEG signals, thereby improving the overall noise 

reduction effect. The principles, advantages, and disadvantages of various algorithms are presented in 

Table 1. 

Table 1. Principles, advantages and disadvantages of various algorithms 

Algorithm 

Name 
Principle Advantage Disadvantage 

LSTM 

The control of the forget gate, input 

gate, and output gate enables the 

processing of long-term 

dependencies in time series data. 

Capable of resisting 

the phenomenon of 

vanishing and 

exploding 

gradients. 

Not applicable to 

spatial data 
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DCCRN 

Optimizing Scale-Invariant Source-

to-Noise Ratio (SI-SNR) loss by 

combining complex CNN, complex 

batch normalization layer and 

complex LSTM 

Excellent 

performance and 

high parameter 

efficiency 

High 

computational 

complexity 

Regression 

methods 

By establishing a relationship model 

between features and original 

signals, the error between predicted 

values and actual values is 

minimized, and the coefficient 

parameters in the linear regression 

model are estimated. 

Simplify the model 

and reduce the 

amount of 

calculation 

Need to get a 

better noise source 

signal 

Wavelet 

Transform 

Decompose the signal into sub-

signals of different frequencies and 

filter out noise by selecting 

appropriate wavelet basis functions 

and threshold processing methods 

[9] 

The time-frequency 

characteristics are 

optimal. 

High 

computational 

complexity 

Principal 

component 

analysis 

Eigenvalue implementation based 

on covariance matrix [10] 

Computationally 

efficient, no 

additional 

information 

required 

Difficulty 

distinguishing 

interference when 

drift potential is 

similar to EEG 

signal 

Adaptive 

filtering 

The weights are iteratively adjusted 

according to the optimization 

algorithm to quantify the noise in 

the main input 

High adaptability 

Requires 

additional 

reference input 

4.  Conclusion 

This paper reviews EEG denoising technology based on the DCCRN-LSTM model. The LSTM’s ability 

to mitigate gradient explosion and vanish with the DCCRN’s strengths in complex-valued operations 

enables the effective processing of various noise components in EEG signals. The successful application 

of this technology can significantly enhance the quality of EEG data, thereby improving the accuracy 

and robustness of signal processing. Although DCCRN is currently primarily employed in speech 

denoising, it introduces novel concepts and methodologies to EEG signal processing. However, the 

method mentioned in this paper still has some shortcomings. The DCCRN-LSTM algorithm is not 

widely used in the field of EEG, so the method may have poor performance for certain types of signals 

and noise in EEG, which needs to be optimised and improved after further use and observation of the 

model, and there is also some room for improvement in the large computational complexity of the model. 

Future research will focus on optimising the model structure and parameters of the DCCRN-LSTM 

model to improve its performance in EEG noise reduction, followed by further investigation of the 

possibility of combining it with other algorithms to enhance the noise reduction effect. In addition, the 

application of this algorithm in other fields needs to be explored to increase its wide range of applications. 

By addressing these limitations of the DCCRN-LSTM model, and for future focused directions, the 

model has great potential in the field of EEG noise reduction, which will improve the processing 

capability of EEG signals and provide a potential solution to the noise reduction problem for more 

directions. 

Table 1. (continued). 
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