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Abstract. Thermophilic proteins are critical in biology due to their enhanced thermal stability. 

Different machine learning approaches have been applied to estimate protein thermal stability. 

Current study categorizes the previous research into classification and regression tasks and 

explores the impact of different data representations, including tabular, sequence, and graph data 

on evaluation performance. Pipelines for prediction using different representations are 

thoroughly described. Current challenges, such as insufficient and imbalanced datasets, are 

addressed with potential solutions, such as transfer learning and re-sampling methods. 

Additionally, model interpretability, discussing various approaches to obtain model explanations 

and highlighting that some explanations are inconsistent have also been included in current study. 

Such comprehensive overview provides insights into existing methodologies and suggests 

potential research directions and improvements. 

Keywords: The paper must have at least three keywords. Protein Thermal Stability, Machine 

Learning, Thermophilic Proteins, Protein Sequence. 

1.  Introduction 

The applications of thermally stable proteins span various industries, including drug design, biological 

techniques, and food chemistry [1]. Proteins’ ability to stay structurally and functionally intact at high 

temperatures is essential for these applications and determines their usability in various contexts [2]. 

The Melting Temperature (Tm) represents protein thermal stability, signifying the temperature where 

50% of the proteins lose their natural structure and activity. In some researches proteins are classified 

as thermophilic or non-thermophilic based on their thermal stability [3-12]. In summary, calculating or 

predicting the thermal stability of proteins is a significant task in bioinformatics and industry.  

Before the widespread application of deep learning techniques, experimental approaches were 

commonly used to evaluate the thermal stability of proteins. For example, the Thermal Proteome 

Profiling (TPP) method performs mass spectrometry on the supernatant of proteins at different 

temperatures and plots a melting curve to determine the Tm [2]. However, such experimental methods 

have several drawbacks: they are labour-intensive, require high material and equipment costs, and are 

time-consuming, making it nearly impossible to determine the thermal stability of a large number of 

proteins. Additionally, experimental methods can introduce errors during sample preparation, 

temperature control, and other steps. Moreover, not all proteins are suitable for experimental methods 

[2]. In summary, experimental approaches are not ideal for measuring the thermal stability of proteins. 
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On the other hand, computational methods, such as statistical or machine-learning-based approaches, 

stand out for their lower cost and acceptable computational time. Machine learning methods are widely 

used for their ability to learn from data and provide accurate results. These models typically approach 

this prediction as either a classification or regression task. Regression provides specific prediction values, 

while classification categorizes proteins into different groups, such as high/low stability or temperature 

intervals. There are three types of machine learning techniques for this task: feature-based models (e.g., 

Multi-Layer Perceptron), sequence-based models (e.g., Recurrent Neural Networks), graph-based 

models (e.g., Graph Neural Networks). An illustration of how different representations are generated 

and used is shown in Figure 1. In the upcoming sections, we will explore state-of-the-art research with 

different data representations in detail, provide suggestions on the applications of different models, and 

propose possible future research directions. 

 

Figure 1. Illustration of how different representations are generated and utilized for different models. 

Sequence models directly use raw sequence data, tabular and graph data require generation software. 

2.  Tasks and datasets 

2.1.  Regression and classification tasks 

Research efforts in predicting protein thermal stability can be grouped into two major methods. Some 

studies treat this as a classification task, where proteins are classified as thermophilic or non-

thermophilic [3-12]. Other studies use regression models to predict the Tm value of proteins [1-2,13]. 

Classification tasks categorize proteins based on their Optimal Growth Temperature (OGT), while 

regression tasks directly predict the Melting Temperature (Tm) of proteins. Some studies found Tm and 

OGT are closely related [14,15]. Tm directly indicates thermal stability, whereas OGT represents 

thermal stability through the hypothesis that species with higher OGT have proteins with better thermal 

stability. The threshold of OGT that determines thermophilic classification varies in different studies. 

Some studies use 50°C as the threshold, which is not an objective threshold [11]. Although OGT can 

indicate thermal stability, the relationship is indirect and subject to variance. Instead of using a single 

threshold, Lin and Chen classified proteins with OGT > 60°C as thermophilic and OGT < 30°C as non-

thermophilic [16]. This standard addresses the indirect relationship but also ignores proteins with an 

OGT between 30°C and 60°C. Most subsequent classification studies follow this criterion or directly 

use Lin and Chen’s labelled dataset [3-5,7-9,11].  

Generally, regression tasks are more difficult and considered superior to classification tasks because 

they provide precise prediction values. In recent years, with more sophisticated feature extraction and 
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machine learning techniques, regression tasks with different data representations have begun to emerge 

[1,2,13]. Another difference is that these tasks are evaluated by different metrics. In machine learning, 

regression tasks are assessed with the similarity of model predictions and actually values, by metrics 

such as R-squared and Pearson Correlation Coefficient (PCC). Classification tasks are assessed based 

on how accurately the model classifies instances using metrics such as Accuracy, Precision, Recall, and 

ROC-AUC. Besides predicting thermal stability, some research focuses on predicting changes in 

stability with protein mutations (amino acid variants) [17]. This study focuses on the direct prediction 

of thermal stability. 

2.2.  Datasets for model training  

2.2.1.  Dataset status. Supervised models, which are machine learning models that predict target values, 

are trained on pre-labelled datasets. Most regression tasks are trained on the Meltome atlas dataset, 

which contains the Tm values of 48,000 proteins from 13 species, with Tm values spanning from 30°C 

to 90°C [18]. Another Tm dataset used in the ProTstab model, the initial version of ProTstab2, contains 

3,520 proteins from humans and bacteria [13,19]. For classification tasks, the situation is more 

complicated. Lin and Chen’s dataset is widely used in many studies; it contains 915 thermophilic 

proteins and 793 non-thermophilic proteins [16]. Some subsequent studies directly use this dataset or 

combine it with other datasets [5-9]. Meanwhile, some researchers collect their own datasets, which are 

then used in later studies. For example, iThermo collected a dataset of 1,442 thermophilic proteins and 

1,366 non-thermophilic proteins, later used in the BertThermo model [4,11]. Furthermore, some studies 

focus on creating a protein thermal dataset only, such as the ProtDataTherm database [20]. However, 

current classification research prefers using datasets that have already been validated and tested in other 

researches. For fair model comparisons, researchers test their models and other state-of-the-art models 

with independent blind-test datasets, often retrieved from unrelated research [12]. In summary, the 

current situation of protein thermal stability databases is quite complicated. 

2.2.2.  Insufficient data. The performance of machine learning models is determined by the amount of 

training data available, as larger datasets improve the model’s generalization ability. Large protein 

language models (pLMs), like ESM and ProtTrans, undergo training using a vast dataset comprising 

millions of protein sequences [21-23]. However, current protein thermal databases are quite limited in 

size. ProthermDB, a thermodynamic database for proteins and mutants, contains 120,000 records, but 

fewer than 10,000 of them include Tm values [24]. As noted in Section 2.2.1, the current Tm database 

contains approximately tens of thousands of entries, while the thermophilic proteins database contains 

several hundred to a few thousand entries. 

Experimental methods are not ideal for expanding datasets due to high material and time costs, and 

they are not universally suitable for all proteins [1-5,10,12,13]. Transfer learning offers a promising 

solution by learning protein representations from other related tasks and then using these extracted 

representations as input features for thermal prediction. Semi-supervised learning involves learning 

protein representations from unlabeled data by creating tasks like predicting pseudo-labels, followed by 

labelled downstream tasks. Both approaches can address the issue of limited dataset size. For example, 

BertThermo pre-trained a BERT model on an unlabeled dataset and fine-tuned it on labelled data [4,25]. 

TemStaPro used the pLM ProtTrans for generating representations [12,23]. 

2.2.3.  Imbalanced data. There is an imbalance in the natural occurrence of thermophilic and non-

thermophilic proteins, with non-thermophilic proteins being more prevalent [3]. For example, in the 

dataset collected for DeepTM, 83% of protein Tm values range from 40°C to 60°C, while only 0.4% are 

lower than 30°C [1]. This type of imbalanced data leads to biased models that perform better with 

instances close to the major instances in the feature space. In DeepTM, their model performs better in 

the temperature range of 50°C to 60°C than 60°C to 80°C, where there are 4,785 instances in the first 
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interval and 2,005 in the second. This imbalance problem can be addressed with two main approaches: 

re-sampling and data augmentation. 

Re-sampling is a data preprocessing technique specifically designed for imbalanced data and can be 

divided into two categories: undersampling, which reduces the majority data instances, and 

oversampling, which increases the minority data instances. SMOTE, or Synthetic Minority Over-

sampling Technique, is a widely-used method that generates new instances between minority instances 

in the feature space [26]. BertThermo applied the SMOTE oversampling technique to their imbalanced 

dataset with 1,443 negative and 1,366 positive instances [4]. On the other hand, DeepTP applied an 

undersampling technique to randomly remove mesophilic proteins to achieve a balanced dataset [3]. 

However, considering the issue of insufficient data, oversampling might be a more suitable approach. 

Data augmentation is a technique originally designed to address insufficient data, includes techniques 

such as “uniform sampling” (US) and “extended uniform sampling” (EUS) introduced by Jung et al [2]. 

These techniques modify the Tm values of proteins from a uniform distribution, with the distribution's 

bounds corresponding to the Tm range of the respective organism. However, there is a trade-off: while 

applying such a method can address the problem of imbalanced data by ensuring the sampled data 

follows a uniform distribution, the Tm values in the training set are not ground truth values but randomly 

sampled values. Using such a dataset with synthetic target values could potentially lead to poor 

performance and lower interpretability. Nevertheless, as per Lang et al.'s research, they succeeded in 

attaining top-tier prediction accuracy. 

Moreover, since there are more thermophilic proteins than non-thermophilic ones in nature, models 

are likely to encounter applications in industry where they need to make predictions on imbalanced 

datasets. Therefore, model performance on imbalanced test datasets should be evaluated [3]. For 

example, DeepTP constructed an imbalanced test dataset with 30 thermophilic proteins and 1,800 non-

thermophilic proteins [3]. 

2.3.  Protein sequence pre-processing 

After acquiring the raw dataset, several pre-processing steps are necessary before forming the training, 

validation, and test datasets. These steps are as follows: 

(1) Remove duplicates, especially when the dataset is created by merging multiple existing datasets 

[1, 9]. 

(2) Remove protein sequences that are not annotated or manually reviewed [5,7,11]. 

(3) Remove sequences with non-standard or ambiguous amino acid residues [1,6,7,11,13] (e.g., 

‘B’, ’U’, ’X’, ’Z’). 

(4) Remove sequences that are part of another protein or contain other protein fragments [3,5,7,11]. 

(5) Remove sequences whose target value is obtained from prediction or homology instead of 

experiments [5,9,11]. 

(6) Remove sequences with extreme target values or sequence lengths [1,3]. 

(7) Apply the CD-HIT method. CD-HIT is a clustering method initially introduced by Li et al. in 

2001, which represents a set of similar sequences with a single sequence, thereby removing highly 

similar sequences [27]. This step is crucial because similar sequences can affect the model similarly to 

imbalanced data [1,3,5-7,10,11]. 

3.  Tabular representation and models 

A typical pipeline for tabular-feature-based protein thermal stability prediction includes feature 

generation, feature selection, model training, and testing. 

3.1.  Feature generation 

Predicting the thermal stability of proteins using properties that are easy to compute is one of the most 

classic methods. The extracted properties are presented in a tabular data format. This data representation 

integrates well with simple machine learning methods, such as Multi-Layer Perceptron. There are 

mainly two types of features for proteins: Physicochemical properties (e.g., hydrophobicity and polarity), 
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which need to be calculated using specialized software. Or sequence-based features that describe the 

composition of protein sequences, such as AAC (Amino Acid Composition), which can be computed 

by software or manually. 

The automatic generation of protein properties is a well-researched area, with numerous mature 

software tools, programming language packages, and web services developed for this purpose. For 

example, the iFeature Python package can generate 53 types of feature descriptors [28]. The R package 

Protr generated 6,295 different descriptors for the ProTstab2 model [13,29]. Web services like ProtDCal 

can compute a multitude of protein features, including 3D structure and physical and chemical 

parameters [30]. 

3.2.  Feature selection 

Although thousands of feature descriptors can be automatically generated, having more features does 

not necessarily lead to a better model. Irrelevant, noisy, or useless features can force the model to learn 

incorrect patterns and decrease performance. Highly relevant or similar features might interact and cause 

overfitting, resulting in the model excelling on the training set but exhibiting poor generalization to new 

data. Additionally, fewer features result in faster training times. Feature selection methods currently fall 

into three main categories: 

(1) Feature selection methods that allow specifying the number of features: Recursive Feature 

Elimination (RFE) is a typical feature selection technique that recursively removes the least important 

features and outputs a feature importance ranking, allowing researchers to manually select the number 

of features to use [31]. Similarly, Analysis of Variance (ANOVA) computes the ANOVA F-value for 

each feature (a high F-value indicates significant influence on the target value) and outputs a feature 

importance ranking [32,11]. The number of top-important features to use can be determined using 

techniques like cross-validation or treated as a hyperparameter. 

(2) Feature selection methods do not specify the number of features: RFECV is a variation of RFE 

that performs feature elimination during cross-validation, automatically computing the optimal subset 

of features. Despite its convenience, RFECV does not always guarantee the best performance. For 

example, the ProTstab2 model achieved better performance with 200 RFE-selected features compared 

to 1,214 RFECV-selected features [2]. 

(3) Principal Component Analysis (PCA): PCA is a dimensionality reduction method and is 

extensively used in diverse machine learning models [8]. Technically, it is not a feature selection method, 

as it does not calculate important features but instead creates a projection from high-dimensional raw 

features to low-dimensional new features while retaining the maximum variance. PCA generates new 

features rather than selecting existing ones. The drawback of PCA is that the new features lack 

interpretability, as their original meanings are unknown. 

3.3.  Model training 

After generating and selecting features, each protein is encoded as a fixed-length feature vector. 

Numerous simple machine learning models can utilize these vectors as inputs, including both regression 

and classification models. For example, TMPpred used a Support Vector Machine (SVM), while Guo 

et al. employed the LIBSVM model [5,7]. Simple machine learning models are easy and fast to train, 

allowing researchers to test multiple models to identify the best performance. For example, Feng et al. 

utilized four simple models while ProTstab2 tested seven models [13,8]. 

Stacking is an ensemble learning method where simple models are treated as base models, and the 

outputs of these base models are used as inputs to a new meta-model. For example, the SAPPHIRE 

model combined 12 groups of features with six simple models, resulting in 72 base models. This 72-

dimensional vector was then trained using a Partial Least Squares (PLS) model [10]. The stacking 

method can significantly improve model performance. 
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4.  Sequence representation and models 

Simple machine learning models can only accept fixed-length vectors as inputs. However, converting 

protein sequences into tabular feature descriptors often results in information loss. With advancements 

in Natural Language Processing (NLP) models, and considering the parallels between protein sequences 

and natural language, NLP techniques are increasingly used for analyzing protein sequences [2-4,9,12]. 

Although these models have complex structures, they are easier to use because manual feature selection 

is not required. A typical pipeline for protein sequence models involves generating amino acid 

embeddings, creating sequence representations, and then using regression or classification models, often 

implemented with several fully connected layers. 

4.1.  Sequence embeddings 

The first step in protein sequence models is creating amino acid embedding vectors. The simplest 

method for doing this is one-hot encoding, which creates a sparse vector for each amino acid, where 

only the index for that amino acid is set to 1 and all others are set to 0. A more popular method is to 

encode amino acids as integers and use embedding layers to generate the embedding vectors. For 

example, DeepTP created embedding vectors using encodings based on amino acid composition and 

physicochemical properties [3]. Most modern models utilize pre-trained embedding models. ProtTrans 

embeddings are used by DeepSTABp and TemStaPro [2,12,23]. Pre-trained pLM embeddings are 

generally a better choice since they are trained on large datasets and are easier to use than implementing 

custom embedding methods. 

4.2.  Sequence models 

In NLP, after generating word embeddings, the sequence is represented by a matrix of embedding 

vectors. This matrix is then input into complex models like Bidirectional Long Short-Term Memory 

(BiLSTM) networks or transformers, as well as simpler models like 1-D Convolutional Neural Networks 

(CNNs), to create a vector representation for each sequence. This is followed by fully connected layers 

for regression or classification. The DeepTP model follows this pipeline, using CNN and BiLSTM layers 

for sequence representation [3]. However, most protein thermal stability prediction models obtain 

sequence representations by simple average pooling, which computes the average of all embedding 

vectors [2,4,9]. Although these methods achieve good performance, sequence models like BiLSTM are 

generally a better choice because they can capture relationships between amino acids and generate more 

informative sequence representations. 

In addition to the methods mentioned above, models like TemStaPro directly generate sequence 

representations from pre-trained language models (pLMs) rather than from amino acid embeddings [12]. 

Moreover, the BertThermo model uses simple classification models such as Logistic Regression after 

obtaining the sequence representations [4]. In summary, the optimal method for processing amino acids 

to obtain a protein representation that enhances performance remains an open question. 

The combination of feature descriptors and sequence representations is another promising direction 

for future advancements. Sequence models may sometimes fail to extract certain meaningful 

information. For example, the DeepSTABp model combined sequence representation with the Optimal 

Growth Temperature (OGT) of proteins [2]. Similarly, DeepTP generated 205 features in the same way 

as ProTstab2 and combined them with sequence representations [13,3]. This type of ensemble model 

offers better results and interpretability than using sequence models alone [3]. 

5.  Graph representation and models 

Mathematical graphs are defined as sets of nodes and edges. In the context of proteins, amino acids can 

be considered as nodes, and interactions between them, such as residue connections, can be considered 

as edges. Graph Neural Networks (GNNs) are specifically designed to process graph-based datasets, 

taking the structure of proteins into account. GNNs represent nodes and edges as vectors, update these 

vectors, and then input them into fully connected layers for regression or classification. Based on 

different update algorithms, GNNs can be categorized into several types: Graph Convolutional 
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Networks (GCNs) and Message Passing Neural Networks (MPNNs) differ primarily in their updating 

mechanisms. GCNs utilize convolutional operations, while MPNNs employ manually defined passing 

and updating functions. There are also more advanced structures, such as Graph Attention Networks, 

which apply attention mechanisms to MPNNs. Although GNNs deliver outstanding performance, they 

are relatively new, and few studies have utilized them. For example, the DeepTM model with a GCN 

showed superior performance compared to the ProTstab2 model [1,13]. 

To represent proteins as graphs, nodes and edges must be represented as feature vectors. This process, 

similar to feature selection for tabular data, requires manual selection and domain knowledge. For 

example, in the DeepTM model, researchers selected various features such as blocks of amino acid 

substitution matrices to represent nodes [1]. (In node representation, an amino acid is usually depicted 

by its relationships with other amino acids.) Similar to tabular feature descriptors, plenty of software are 

available, such as HHBLITS computes amino acid properties [33]. However, unlike tabular data, where 

thousands of features are generated, nodes and edges are typically represented with dozens or hundreds 

of features. Table 1 shows the differences in data size among the three representations. They also differ 

in compositional level, with one representing amino acids and the other representing entire sequences. 

Due to the complex model structure and the long protein sequences with many nodes and edges, the 

training time is significantly longer compared to simple machine learning models. Generally, GNNs are 

preferred over tabular data models. With the increasing variety of GNNs, further research on different 

models or node representations remains to be explored. 

Table 1. Difference of representation size 

 Data size for a single protein 

Tabular Thousands of descriptors. E.g. ProTstab2 used 6395 feature descriptors [13]. 

Sequence 
A sequence of thousands of proteins. E.g. DeepTP limited the maximum sequence 

length to be 1500 [3]. 

Graph 

Thousands of nodes, dozens or hundreds of features for each node. A contact map 

whose size is the square of node number. E.g. DeepTM limited the maximum 

sequence length to be 1028 with 135 features for each node [1]. 

6.  Model interpretability 

Complicated machine learning models are often considered ‘black boxes’ because their internal 

mechanisms are not well understood. Without insight into the inner workings of these models, users 

may lack confidence in their predictions, and extracting knowledge from them can be challenging. 

Model interpretability methods aim to address this problem by providing explanations of how models 

operate, such as through feature importance and interactions. Although there is no unified formal 

definition of model interpretability, research often provides explanations in similar ways. In protein 

thermal stability research, feature importance is extracted during the feature selection phase for tabular 

representations, offering explanations for model behaviour. For example, ProTstab2 identifies amino 

acid frequency as the most important feature, with an importance score of 85 [13]. Feng et al. found 

Lysine to be the most crucial amino acid for thermal stability, aligning with Lin’s findings [8,16]. There 

are also universal methods that focus on input-output relationships without delving into the inner 

structure of models, offering interpretations after the model is trained. The SHAP (Shapley Additive 

Explanations) method evaluates the significance of features using principles from game theory [34]. The 

SAPPHIRE model used the SHAP method to compute feature importance for their 72 base models [10]. 

Other methods, such as Permutation, which calculates feature importance by randomly shuffling feature 

values and assessing performance differences, can also provide structure-agnostic explanations. An 

illustration of these two methods is shown in Figure 2. 
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Figure 2. An illustration of how model explanations for tabular representations are extracted. For black-

box models, feature importance is determined by analysing input-output relationships, while simpler 

models can inherently provide feature importance. 

Different data representations provide varying levels of explanation. Feature-descriptor-based 

models offer explanations at the level of protein properties, while graph-based models provide insights 

at the amino acid level. Sequence-based models are more challenging to interpret, as protein sequences 

are less intuitive for humans compared to feature properties. Although these models can indicate the 

importance of tokens and calculate the percentage of amino acids at specific token positions, their 

interpretations are generally more complex than those of other representations. Additionally, 

explanations can sometimes be inconsistent. For example, while Guo et al. and Feng et al. identify lysine 

as the most important amino acid for thermal stability, the iThermo model suggests that tyrosine is the 

most important [5,8,11]. Such inconsistencies may arise from differences in databases, models, or 

explanation methods. Defining clear model explanations and achieving consistent interpretations remain 

significant challenges for future research. 

7.  Conclusion 

With the growing popularity of machine learning methods, protein thermal prediction has emerged as a 

well-studied research area in recent years. This study has addressed the complexities and challenges 

associated with the availability and retrieval of suitable datasets for model training focusing on three 

different representations of proteins—tabular, sequence, and graph—and discussed their respective 

similarities, differences, and working pipelines. Tabular representation is well-researched and supported 

by various available software tools. Sequence representation offers convenience and ease of use. Graph 

representation demonstrates outstanding performance and presents significant potential for further 

research. Additionally, the functionality of model explanations in thermal prediction models has also 

been addressed highlighting the challenges associated with interpreting these models. Overall, this study 

provides valuable insights into the current methodologies, identifies key challenges, and highlights 

future research opportunities in the field of protein thermal prediction. 
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