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Abstract. Cancer is a huge health issue around the world, and genetic abnormalities are one of 

the leading causes. Gene editing has gained importance in cancer research with the advent of 

CRISPR technology, particularly the CRISPR/Cas system, which is utilized in cancer detection 

and treatment because of its high specificity and sensitivity. Meanwhile, as a branch of machine 

learning, deep learning has shown great potential in cancer detection and treatment by 

constructing and training multi-layer neural networks. Deep learning algorithms increase the 

accuracy of early cancer diagnosis by detecting gene mutations and expression patterns linked 

to cancer. This article reviews the most recent applications of CRISPR combined with deep 

learning in cancer detection and treatment. CRISPR technology has shown outstanding 

performance in nucleic acid testing, virus detection, and protein detection; In terms of treatment, 

it can be utilized to remove cancer-related genes by gene editing , enhance immune cell function, 

and improve the efficiency of immunotherapy. Deep learning techniques play an important role 

in cancer diagnosis, prognosis prediction, and CRISPR targeted and off target prediction. 

Combining CRISPR and deep learning is expected to improve cancer detection and treatment 

methods, providing new directions for future research. 
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1.  Introduction 

Cancer is a class of diseases distinguished by the proliferation and spread of aberrant cells which can 

not be controlled. Cancer is produced by abnormal genetic modifications such as proto-oncogene 

activation, tumor suppressor gene inactivation, and the accumulation of various genetic abnormalities. 

Facing a severe global health problem posed by cancer, understanding the mechanisms of genomics, 

cellular, and microenvironmental changes in cancer formation is crucial for its prevention, detection, 

and treatment. Since the discovery of Clustered Regularly Interspaced Short Palindromic Repeats 

(CRISPR) technology, It is commonly used for gene editing in biology, medicine, and agriculture. 

Proteins of CRISPR and CRISPR-associated (Cas) are core compositions of the adaptive immune 

system of ancient bacterial and have now developed into powerful gene editing tools. The adaptive 

immune response of CRISPR/Cas9 is generated by bacteria over time that can resist both invading 

viruses and foreign DNA. The CRISPR/Cas9 system which is classified as a type II CRISPR system 

comprises a single guide RNA (sgRNA) and the Cas9 nuclease. This system induces double-strand 

breaks (DSBs) at particular DNA target sites through the sgRNA, which guides the Cas9 nuclease to the 

targeted DNA sequence. These DSBs are typically repaired by one of two mechanisms: homology-
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directed repair if there are available homologous sequences, or non-homologous end-joining if the 

homologous sequences are absent. CRISPR/Cas9 gene-editing technology allows specific DNA 

modifications in target genes, enabling various aspects of genome editing in cells, such as 

immunotherapy and knockout of drug-resistant genes, advancing cancer diagnosis and treatment. 

Deep learning is a sub-domain of machine learning. It constructs and trains multi-layer neural 

networks to solve complex tasks by simulating the way the human brain processes data and creates 

patterns. Deep learning adjusts network weights through forward and backward propagation algorithms 

by designing and training multi-layer neural networks, achieving automatic feature extraction and 

pattern recognition of complex data. In cancer detection and treatment, deep learning shows tremendous 

potential. Tumors can be automatically identified and classified through analyzing medical images with 

convolutional neural networks (CNNs), which improve the accuracy of early can diagnosis. Deep 

learning can identify cancer-associated gene mutations and expression patterns by processing large-scale 

genomic data, providing precise molecular diagnostics. This paper aims to investigate the most recent 

uses of deep learning in cancer detection and treatment with CRISPR, providing a reference for future 

research on enhancing diagnosis and treatment approaches in cancer. 

2.  Application of CRISPR in Cancer Detection 

CRISPR/Cas-mediated nucleic acid detection methods are simpler and faster than traditional PCR 

approaches. Notably, CRISPR/Cas12a and CRISPR/Cas13a show excellent specificity and sensitivity. 

When paired with isothermal nucleic acid amplification techniques, CRISPR/Cas-based technologies 

have detection sensitivity comparable to PCR. Furthermore, the CRISPR/Cas system's ability to 

discriminate single-base mismatches results in extremely precise detection. These are the reasons why 

CRISPR performs well and be suitable for cancer detection. 

Class II CRISPR/Cas systems include several subtypes, such as type II, V, and VI, each with different 

Cas proteins (e.g., Cas9, Cas12, Cas13). Cas9 can recognize and cleaves double-stranded DNA at 

specific protospacer adjacent motif (PAM) sequences; Cas12a can cleave double-stranded DNA 

containing 5'-TTTN-3' PAM sequences and activate side chain cleavage signal amplification. Cas13a 

can recognize and cleave RNA at specific PFS sequences. Cas14a can recognize and degrade ssDNA 

[1]. These characteristics of Cas proteins make class II CRISPR/Cas systems efficient tools for detecting 

various analytes. 

Viral infection is one of the causes of cancer, so nucleic acid detection can be an essential method 

for cancer detection and routine identification of viral infections and disease progression. The 

CRISPR/Cas system now has been extensively utilized in the development of various nucleic acid 

biosensors, taking advantage of its recognition ability for single base mutations and efficient signal 

amplification characteristics. Researchers have combined CRISPR/Cas9 with the technology of 

sequence-based amplification of nuclear acid to enhance the specificity of viral nucleic acid detection. 

For example, CRISPR/Cas12a-assisted isothermal amplification enabled sensitive detection of human 

papillomavirus (HPV) DNA [2]. 

Electrochemical biosensor platforms and fluorescence signals are also common methods for target 

detection. One method that can achieve ultra sensitive detection of target analytes is to integrate 

isothermal nucleic acid amplification with CRISPR/Cas systems. Additionally, ctDNA detection utilizes 

the presence of circulating tumor DNA in the blood for cancer diagnosis. Low expression of microRNA 

(miRNA) is associated with certain cancer types, and the combination of PCR and CRISPR/Cas12a 

system can detect miRNA [3]. 

Abnormal protein expression can be related to cancer. Abnormal protein expression can be associated 

with cancer, as evidenced by higher levels of carcinoembryonic antigen in patients compared to healthy 

individuals. There are similar situations regarding the levels of prostate specific antigen as well as alpha 

fetoprotein [4]. Using horseradish peroxidase-labeled detection antibodies to provide colorimetric 

signals and RNA transcripts can activate the CRISPR/Cas13a system, which improves fluorescence 

signals for quantitative investigation of target proteins. 
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Extracellular vesicles (EVs, membrane vesicles shed by cells) contain nucleic acids, proteins, and 

lipids in bodily fluids and can reflect the characteristics of parent cells, potentially associating with 

cancer. Researchers have developed methods to detect nasopharyngeal carcinoma EV proteins using the 

CRISPR system. High sensitivity was demonstrated in the isothermal detection of multiple EV miRNAs 

using rolling loop amplification and CRISPR/Cas9 system [5]. 

3.  Methods of CRISPR in Cancer Therapy 

CRISPR can edit cancer-related genes and enhance the anti-cancer abilities of immune cells, with 

immunotherapy emerging as a novel treatment strategy. T-cell killing regulators in cancer cells have 

been identified through whole-genome screening of co-cultured cancer cells and cytotoxic T cells [5]. 

Therapy of chimeric antigen receptor (CAR) T cells involves collecting autologous T cells and 

engineering them to attack cancer antigens ex vivo before injecting them back into the patient. The 

CRISPR-Cas9 system can also enhance the function of CAR T cells by interrupting the genes that inhibit 

receptors or signaling molecules. This enables the implementation of CAR T cell therapy for B-cell 

malignant tumors. CRISPR/Cas9 technology can also eliminate genes encoding inhibitory receptors on 

T cell surfaces, like programmed death protein 1 (PD-1) and cytotoxic T-lymphocyte antigen 4, 

improving T cell immunotherapy efficiency [1]. CRISPR-Cas9 edited PD-1 gene knockout have shown 

success in enhancing T cell effector functions in certain cancer types [6]. 

In cancer genomics operations, CRISPR/Cas9 can correct genetic abnormalities that control cancer 

formation and development. One cancer treatment strategy is knocking off chemotherapy resistance 

genes or genes required for cancer cell survival. The CRISPR-Cas9 system can activate tumor 

suppressor genes, restrict the proliferation and migration of cancer cells, induce cells apoptosis, and 

therefore slow the progression of cancer. One example is that the CRISPR/Cas9 system has been used 

to silence the endogenous cyclin-dependent kinase 11 gene whose abnormal expression is associated 

with the occurrence of various cancers. This method has been tested in osteosarcoma cell lines and 

inactivate drug-resistant genes in order to improve chemotherapy efficiency as a potential cancer 

treatment method. 

Moreover, the CRISPR-Cas9 system can explore and intervene in cancer-related epigenetic changes, 

playing a significant role in tumor-associated gene expression [7]. CRISPR-Cas9 mediates epigenetic 

alternation and transcriptional regulation, while also requiring site specificity, which can be easily 

achieved through the use of dead Cas9 (dCas9). Because dCas9 can associate to the object genome DNA 

sequence, and it can fuse with various transcriptional regulatory domains or bind with epigenetic 

modification factors, which can affect the proliferation of cancer cells. CRISPR-Cas9 mediated genome 

modification can regulate specific proteins, influencing cancer cell function and behavior. 

The CRISPR/Cas9 system shows tremendous potential in eliminating or inactivating oncogenic viral 

infections. This technology may directly target and destroy critical viral genes and has been used to treat 

a variety of human viruses, including hepatitis B virus (HBV), HPV, etc. Knocking down HPV 

oncogenes E6 and E7 prevents cervical cancer growth; CRISPR-Cas9 technologies specific in HBV can 

successfully disrupt HBV covalently closed circular DNA [8]. 

4.  Application of Deep Learning in Cancer Detection and Therapy 

Traditional machine learning methods are often limited in dealing with the lack of clinical information 

on specific primary cancer sites when diagnosing cancers of unknown origin. They rely on a few 

characteristic genes and are difficult to predict more cancer types and subtypes. Deep learning 

algorithms improve the diagnostic accuracy of primary unknown cancers by utilizing a large number of 

features of the genome and transcriptome. The Pan-Cancer Analysis of Whole Genomes consortium 

utilized deep learning models to individually and collectively predict how multiple types of cancer 

originate, demonstrating the potential of deep learning in diagnosing primary unknown cancers. 

To determine the presence of tumor cells in patient samples, it is essential to evaluate cancer-related 

biomarkers and characterize tumor type, staging, and grading, typically done through histopathology or 

cytopathology by microscopic observation. Deep learning technologies, particularly deep CNNs based 
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on histological images, can automate cancer grading [9]. Semantic segmentation algorithms can be used 

to detect specific regions in histopathological images, and generative adversarial networks (GANs) can 

help with object location accuracy, allowing relevant staff to comprehend and process cancer histology 

images. Emantic segmentation methods can be applied to histopathological images to locate specific 

regions, and GANs can assist in accurately locating objects, helping relevant personnel understand and 

process cancer histological images. 

Traditional survival prediction methods such as Cox proportional hazards regression have some 

limitations when applied to genomic and transcriptome data, while deep learning models can improve 

the accuracy of prognosis prediction by utilizing nonlinear relationships. Cox-nnet is a model that 

combines Cox regression and neural networks, which can effectively utilize the depth features extracted 

from hidden layers to predict survival [10]. This model has achieved excellent accuracy on RNA seq 

data for various types of cancer and successfully identified biological information related to prognosis. 

The PASNet and Cox PASNet models combine neural networks and biological pathway information to 

identify important pathways and genes that affect cancer prognosis. 

5.  Deep Learning Assists CRISPR in Cancer Detection and Treatment 

Traditional machine learning models can be used for CRISPR/Cas9 off-target and on-target predictions. 

However, deep learning, based on new sequence encoding strategies, feature engineering, attention 

mechanisms, and other technologies and models, offers more possibilities for CRISPR off-target and 

on-target predictions. 

For the situations of off target, some studies have adopted novel deep learning architectures such as 

CnnCrispr and piCRISPR, relying on global statistical information or physical information features. 

These models show better predictive performance, while algorithms of traditional machine learning and 

classification regression do not perform as well as the former. According to a new sequence encoding 

scheme based on deep neural networks, CNN and feedforward neural network deep learning networks 

is stable and superior to some methods for advanced off target scoring prediction. Also, the performance 

of some machine learning classifiers are not as good as deep learning schemes [11]. 

CNN-based DeepCas9 is an efficient deep learning framework. Ten distinct CRISPR/Cas9 datasets 

were used in experiments to demonstrate that DeepCas9 is more effective than more conventional 

machine learning techniques, such as logistic regression and random forests, at predicting targeting 

activity. RNA guides can be recognized and predicted using DeepSgRNA. To reach the most advanced 

sgRNA prediction efficiency, it depends on the hierarchical feature generation capacity of CNN. The 

DeepCRISPR deep learning system can predict the efficacy of sgRNA targeting knockout and off-target 

cutting in the same time. The researchers used a original single hot coding strategy that combines four-

channel sgRNA-DNA sequence encoding, where every feature is considered as an independent channel, 

with epigenetic feature encoding to achieve better prediction results [12]. 

Some deep learning models based on attention mechanisms have achieved some promising results. 

Convolutional, recurrent, attention, and dense layers are combined in the CNN, BLSTM, and attention 

layers-based CRISPR-IP off-target prediction model to overcome information loss in sequence encoding 

and learn from local to global features. AttCRISPR improves model interpretability and predictive 

performance by using spatial and temporal attention modules. CRISPR-ONT and CRISPR-OFFT are 

used to predict the on-target and off-target activities of sgRNA, respectively, with enhanced 

interpretability. 

Deep learning involves four processes in predicting sgRNA activity. First, compile the data and 

extract sgRNAs with high cutting efficiency from published publications. Remove superfluous samples 

for more accurate evaluation. The generated data is divided into training dataset and testing dataset. 

Second, to represent data. Use numerical encoding to encode these input sequences. Common data 

encoding techniques include one-hot encoding and word2vec embedding. Third, train deep learning 

models. Input sgRNAs that have high cutting efficiency to train in deep learning models. Meanwhile, 

some feature information got from the sequences of sgRNA can also be used as input data to increase 

prediction accuracy. Finally, evaluate performance. One optimization method is k-fold cross validation, 
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which can optimize the hyperparameters of deep learning. To estimate generalization performance, the 

trained model should be applied to the candidate dataset [12]. 

The development of prediction tools of CNNs based sgRNA activity has also accelerated the process, 

as more and more CRISPR genome editing data is available. CNNs are the most frequent type of deep 

neural network for detecting abstract information in vast datasets. The strategy of weight sharing is used 

to obtain the hierarchical spatial pattern of the input. The parameter update is implemented using 

backpropagation algorithms. DeepCRISPR trains an autoencoder based on a deep convolutional 

denoising neural network through unsupervised learning techniques to learn abstract information of 

sgRNA sequences [13]. Additionally, the model combines extra epigenetic information to improve 

predictive capability. Recurrent neural networks (RNN) are artificial neural networks capable of 

processing variable-length input sequences. Due to their recurrent connections, RNNs are often used for 

ordered sequence problems. Long short-term memory networks (LSTM) can model hidden layers using 

memory units, overcoming gradient explosion or vanishing problems. These memory units have the 

input, output and forget gate, which operate the information flow that aids in predicting network outputs. 

LSTMs effectively capture dynamic information sequentially to assist in the classification of serialized 

data through cyclic connections of nodes in the hidden layer. For example, a DeepHF based on BiLSTM 

achieved the measurement of sgRNA targeting activity of variants and wild-type Streptococcus 

pyogenes Cas9 in human cells [14]. CNNs are limited to learning local patterns and function best when 

the input contains some spatially invariant patterns, but RNNs, which are derived from feedforward 

networks, can retain input data. C-RNNCrispr combines CNN and RNN to complement each other and 

achieve targeted activity prediction. A bidirectional gated recurrent unit layer is applied to capture the 

features of the sequence recognized by CNN in forward direction and backward direction . 

The design of sgRNA requires finding target sites in the genome, which can be achieved by scanning 

PAM sequences. For the prediction of target sequences, researchers have developed a model to predict 

the targeting efficacy of sgRNA. The model first uses Support Vector Machine (SVM) to select the 

optimal subset from numerous features, and then uses a logistic regression classifier to train the features 

selected by SVM, thereby generating a model for predicting the targeted efficacy of sgRNA. The 

development of CRISPRpred has improved the efficiency of predicting targeting activity. WU-CRISPR 

identifies new structural and sequence features from specific datasets and builds an SVM-based sgRNA 

potency prediction model. It leverages machine learning approaches for effective sgRNA design and is 

simple to use [15]. 

For off target detection, researchers analyzed the off target effect on merged filtered data without 

considering how PAM works. Instead, they provided a detailed description of various mismatches of 

sgRNA and DNA, including substitution of PAM, mismatches, insertions, and deletions. They proposed 

an algorithm called Cutting Frequency Determination (CFD) score to rank potential off target effects. 

They compared the CFD score with Hsu Zhang's off target effect measurement results and found that 

the CFD score performed better in various tests. That is to say, their algorithm can effectively prevent 

high-frequency off target effects [16]. In addition, some tools and algorithms such as CROP-IT, E-

CRISPR, and sgRNACas9 can also be used to estimate the potential in off target of sgRNA. 

Additionally, some factors influence the performance of CRISPR gene editing, and key factors such 

as sgRNA length and spacer regions, characteristics of Cpf1 protein, sgRNA sequence constraints, and 

pol III promoter termination signals need attention. 

6.  Conclusion 

The CRISPR/Cas system and deep learning show significant potential and unique advantages in cancer 

detection and treatment. CRISPR technology brings revolutionary changes to research and treatment of 

cancer with its versatility in gene editing, immune therapy, and viral gene targeting. Deep learning 

algorithms enhance the accuracy of cancer type diagnosis and prognosis prediction by leveraging big 

data and complex bioinformatics features. Combining CRISPR and deep learning enhances the 

understanding of cancer molecular mechanisms, improves the precision and efficiency of CRISPR 
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technology through sgRNA design and targeting prediction models, and lays a solid foundation for 

personalized treatment and precision medicine. 

CRISPR still faces a series of challenges in off target effects, delivery efficiency and safety, editing 

efficiency and cellular adaptability. Deep learning also faces issues such as data heterogeneity, data size, 

and model interpretability. However, as technology advances and algorithms are optimized, deep 

learning will play an increasingly crucial role in the accuracy and efficiency of gene editing, expanding 

the value of application of CRISPR systems in cancer genomics research. Deep learning will help 

analyze complex cancer biomarkers and treatment response prediction models, thereby promoting the 

development of personalized medicine. Integrating multimodal biological data such as genome, 

transcriptome, and proteome can construct more comprehensive cancer detection and treatment models. 

In the future, CRISPR and deep learning models will be employed for large-scale gene function research 

and drug screening, expediting the discovery and development of new anti-cancer medications and 

advancing cancer treatment. 
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