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Abstract. The COVID-19 pandemic has significantly affected global public health and the 

economy. Clinically, compared to nucleic acid testing, CT imaging offers a more intuitive 

display of disease progression, particularly in cases where patients exhibit atypical symptoms or 

when nucleic acid test results are inconclusive. In such scenarios, CT imaging serves as a 

valuable supplementary diagnostic tool. However, the task of classifying COVID-19 CT images 

presents numerous challenges. Firstly, the imaging features associated with COVID-19 exhibit 

significant heterogeneity, often overlapping with those of other pulmonary diseases such as 

pneumonia or tuberculosis, which complicates the classification process. Additionally, CT 

images typically contain noise and artifacts that can interfere with The model's capability to 

accurately differentiate between various conditions. This paper proposes a ResNet-based method 

for the classification of COVID-19 CT images. Experimental results demonstrate that the 

ResNet-based approach offers significant advantages, delivering high accuracy and strong 

generalization capabilities in classifying images related to COVID-19. 
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1.  Introduction 

COVID-19 represents a worldwide public health emergency triggered by the SARS-CoV-2 virus, which 

rapidly spread worldwide, leading to millions of infections and Governments and international 

organizations have implemented various measures to limit the transmission of the virus, including travel 

restrictions, home quarantines, social distancing, and mask-wearing. Although vaccination efforts have 

been somewhat successful in reducing severe cases and mortality, the emergence of virus variants 

continues to challenge containment efforts. COVID-19 has not only had profound negative effects on 

the global economy and society but has also exacerbated social inequalities and mental health issues 

while increasing pressure on public health systems. This crisis has highlighted the vulnerabilities of 

global health systems and the importance of international cooperation. 

In the fight against COVID-19, global public health systems have faced numerous challenges, 

including the virus's high transmissibility, the scarcity of medical resources, and the uncertainty of 

information. In this context, efficient diagnostic tools are of paramount importance. While PCR, antigen, 

and antibody tests are the primary diagnostic methods, they are hindered by certain complexities and 

delays, limiting their efficiency and timeliness. In contrast, chest CT scans can provide more detailed 

lung images, clearly showing subtle changes in lung lesions, making them suitable for early detection 

and disease monitoring. CT imaging can not only quickly identify lung manifestations in infected 
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individuals but also more accurately assess the progression of the disease. Therefore, finding fast and 

accurate diagnostic methods, particularly those that utilize CT imaging analysis, has become an urgent 

priority. 

Traditional medical imaging analysis methods mainly rely on radiologists to manually evaluate CT 

images. These approaches are not only time-intensive but also vulnerable to subjective influences, which 

may result in inconsistencies and inaccuracies in diagnosis. However, with computer vision technology 

developing rapidly, automated image analysis has gradually shown great potential. As a crucial branch 

of artificial intelligence, computer vision processes images automatically, allowing valuable information 

to be quickly extracted, thereby assisting physicians in making more accurate diagnoses and decisions. 

Convolutional neural networks (CNNs) have emerged as the central technology for image 

classification tasks within the domain of deep learning. Inspired by the human visual system, CNNs 

utilize several layers of convolutional operations to automatically derive features from images, enabling 

efficient image content classification. Early CNN models like LeNet-5 and AlexNet significantly 

improved image recognition accuracy by introducing multiple layers of convolution and pooling 

operations [1][2]. In recent years, ResNet has emerged as a crucial deep learning architecture by 

introducing residual connections that effectively address the vanishing gradient problem in deep network 

training, significantly improving classification performance. The innovation of ResNet lies in its skip 

connections, allowing the network to directly learn residuals, thereby achieving deeper feature 

identification and categorization. 

The continuous advancement of deep learning has led to the remarkable performance of 

convolutional neural networks (CNNs) in the field of image processing. Particularly in COVID-19 

image recognition, the pre-trained ResNet model has demonstrated its significant promise in automated 

analysis of medical images through efficient feature extraction and accurate classification. By applying 

deep learning technology to CT image classification, this study aims to utilize the pre-trained ResNet 

model to enhance the speed and precision of COVID-19 diagnosis, alleviate the workload of physicians, 

and provide valuable insights for image analysis in future public health crises. 

2.  Previous works  

Medical image classification is a significant research area in medical informatics. Achieving automated 

medical image classification is a key component of intelligent medical diagnostic technologies. With 

the swift progress of medical imaging technology, a range of machine learning methods have been 

extensively employed for the automated classification and diagnosis of medical images, aiming to 

enhance diagnostic accuracy and efficiency. Traditional image classification methods mainly include 

logistic regression, support vector machines (SVM), decision trees, and naive Bayes classifiers. 

Logistic regression, a simple and efficient statistical model, is primarily used for predicting binary 

classification outcomes. Its advantage lies in its computational efficiency. however, due to its linear 

nature, logistic regression struggles when handling complex patterns in medical images [3]. Support 

vector machines (SVM), based on supervised learning algorithms, achieve linear or nonlinear 

classification by selecting hyperplanes with the maximum margin. SVMs are known for their high 

accuracy and ability to handle small samples and high-dimensional data effectively, but they exhibit 

high computational complexity when dealing with large-scale data [4]. Decision trees are non-

parametric machine learning models that classify and regress by partitioning the feature space. They are 

characterized by good interpretability, ease of visualization, and the ability to capture nonlinear 

relationships, yet they are prone to overfitting with smaller datasets [5]. The Naive Bayes classifier, 

which relies on Bayes' theorem, is computationally simple and efficient, maintaining low computational 

complexity even with high-dimensional inputs. However, its assumption of conditional independence 

among features may not hold in real-world applications, affecting classification performance [6]. 

Although traditional machine learning methods have played a significant role in medical image 

classification, they face numerous challenges. These methods typically rely on manual feature extraction, 

making it difficult to automatically learn complex spatial features and contextual information from 

images. Traditional methods assume that data are linearly separable, making it difficult to capture the 
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nonlinear patterns and higher-level features present in medical images. Additionally, the performance 

of traditional machine learning models is limited by their model complexity and ability to handle high-

dimensional data [7]. For example, logistic regression and naive Bayes models, due to their simple 

structure, are ineffective in processing the complex patterns in medical images. While SVMs and 

decision trees offer more flexibility, they still face limitations when handling large-scale, high-

dimensional, and complexly structured data. 

Compared to traditional methods, deep learning models, CNNs, offer notable advantages in the 

classification of medical images. CNNs are capable of autonomously learning and extracting spatial 

hierarchical features and complex patterns from images, thereby minimizing the reliance on manual 

feature extraction. These models abstract image features layer by layer through a multi-layer structure, 

allowing them to capture subtle differences and higher-level semantic information in medical images. 

This ability to automatically learn features and extract deep features has enabled deep learning models 

to excel in large-scale medical image classification tasks, significantly enhancing classification 

performance [8]. 

3.  Dataset and Preprocessing 

The dataset used in this study is the COVID-19 Radiography Database, provided by Tawsifur Rahman 

and his colleagues and made publicly available on the Kaggle platform. The dataset consists of a set of 

chest X-rays classified into four categories: COVID-19, Normal, Viral Pneumonia, and Lung Opacity, 

with specific sample counts of 3,616, 10,192, 1,345, and 6,012 images, respectively. The image 

resolutions vary, with the majority being 299×299 pixels and 256×256 pixels [9-10]. 

A systematic preprocessing was performed to make the data appropriate for training and evaluating 

machine learning models. Initially, all images were resized to a consistent resolution of 224×224 pixels. 

This resizing was aimed at standardizing the input dimensions, reducing computational overhead, and 

simplifying the model architecture. Next, to enhance model training stability and accelerate the 

convergence of the gradient descent process, the pixel values of the images were normalized to the range 

[0, 1], by dividing each pixel value by 255. Finally, the dataset was divided into training and validation 

sets in an 80:20 ratio, ensuring that the model was trained on a diverse dataset and its generalization 

ability could be effectively evaluated. 

4.  Model 

In this study, we employed a CNN based on the ResNet50 architecture for categorizing COVID-19 

radiographic images. The ResNet50 model, pre-trained on the ImageNet dataset, was used as the base 

network. This pre-training enabled the model to acquire comprehensive image features, enhancing its 

performance on specific tasks. To adapt to our dataset, the model's input layer was set to an image size 

of 128×128×3 to ensure consistency in the input data and meet the network's computational 

requirements. Specifically, we retained the convolutional layers of ResNet50 but removed the top 

classification layer to allow for further fine-tuning on the COVID-19 radiographic image dataset. To 

improve classification performance, we added a global average pooling layer, a fully connected layer, 

and an output layer on top of ResNet50. The global average pooling layer was employed to condense 

the spatial dimensions of the feature maps into a single value, which helped decrease the number of 

parameters and reduce computational complexity; The fully connected layer was configured with 1,024 

neurons using a ReLU activation function, while the output layer consisted of 4 neurons and utilized the 

Softmax function for multi-class classification. The detailed model architecture is presented in Table 1. 
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Table 1. Model Framework. 

Layer Name number of parameters 

1 Resnet50 23,587,712 

2 GlobalAveragePooling2D 0 

3 Dense (1024 units, ReLU) 1,049,600 

4 Dropout (0.5) 0 

5 Output Layer (4 units, Softmax) 4,100 

 

The model underwent training for 100 epochs, with early stopping implemented to avoid overfitting. 

In this study, categorical cross-entropy served as the loss function, which is especially appropriate for 

multi-class classification tasks, focusing on reducing the disparity between the predicted and actual class 

distributions. The loss function is calculated as:  

Loss = −∑ y
i
log(ŷ

i
)

N

i=1

 

where N is the number of classes, yiis the indicator variable for the true class, andŷi is the model's 

predicted probability that the sample belongs to class i. To accelerate the convergence process and adjust 

the learning rate, the Adam optimizer was employed with the learning rate adjusted to 0.00001. 

5.  Results 

 

Figure 1. Accuracy and Loss Curves. 

Figure 1 (left) shows the variation in test accuracy across training epochs. As depicted, the model's 

accuracy rapidly improves during the initial epochs, rising from approximately 62.5% to nearly 82.5%. 

This rapid growth in accuracy indicates that the model is successfully capturing the image features and 

gradually adapting to the dataset. As training continues, the rate of accuracy improvement slows down, 

and the accuracy stabilizes after around the 50th epoch. This suggests that the model has mostly 

converged, and further increasing the number of epochs does little to enhance accuracy. Ultimately, the 

model's accuracy stabilizes at around 82.33%, demonstrating good performance in the task of classifying 

COVID-19 radiographic images. Figure 1 (right) illustrates the trend in test loss over the course of 

training. It can be observed that the loss decreases rapidly in the early stages of training, dropping from 

nearly 1.0 to below 0.5. This indicates that the model is effectively optimizing its parameters and 

reducing prediction error. With the number of epochs increasing, the rate of loss reduction slows down, 

and the loss stabilizes after around the 50th epoch, indicating that the model has gradually converged, 

with no significant signs of overfitting. 
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Figure 2. Confusion Matrix. 

Figure 2 presents the confusion matrix for the validation set, which evaluates the model's 

classification performance across different categories. From the figure, it can be seen that the model's 

performance in the COVID category is less than satisfactory. Although it correctly classified 102 

COVID images, a considerable number of COVID images were misclassified into other categories: 174 

were misclassified as Lung Opacity, 288 as Normal, and 49 as Viral Pneumonia. This indicates that the 

model faces significant challenges in identifying COVID images, particularly in confusing them with 

Normal and Lung Opacity categories. For the Lung Opacity category, the model correctly classified 321 

images, but a substantial number of samples were misclassified. Notably, 576 Lung Opacity images 

were misclassified as Normal, 201 as COVID, and 63 as Viral Pneumonia. This suggests that the model 

has some difficulty distinguishing between Lung Opacity and Normal images, likely due to similarities 

in their radiographic features. In the Normal category, the model performed relatively well, correctly 

classifying 1,049 samples. However, 631 Normal images were misclassified as Lung Opacity, 376 as 

COVID, and 140 as Viral Pneumonia. This indicates that, despite a higher correct classification rate for 

the Normal category, Normal images are still prone to misclassification, especially as Lung Opacity, 

which may reflect overlapping features between these two categories. The classification performance 

for the Viral Pneumonia category was relatively poor, with the model correctly classifying only 17 

samples, while a large number of Viral Pneumonia images were misclassified into other categories: 44 

as COVID, 76 as Lung Opacity, and 125 as Normal. This suggests that the model struggles to accurately 

identify Viral Pneumonia images, particularly tending to confuse them with Normal images. 

6.  Discussion and Conclusion 

This study successfully constructed an efficient CNN for categorizing COVID-19 radiographic images 

by utilizing a pre-trained ResNet50 model and transfer learning technique. Experimental results 

indicated that the model attained an accuracy of 82.33% on the test set, validating its potential 

application in COVID-19 diagnosis. The model effectively distinguishes COVID-19 positive cases from 

other types of lung images, providing a reliable auxiliary diagnostic tool for medical professionals. 

Despite the significant achievements of this study, several limitations need further exploration and 

resolution. First, the size and diversity of the dataset remain important constraints. The dataset used in 

this study is relatively limited in scale and primarily focuses on specific types of radiographic images. 

Subsequent research should focus on assembling larger and more varied datasets to more 

comprehensively validate the model's generalization ability and robustness, ensuring its applicability 

across different clinical scenarios. Second, although the ResNet50 model demonstrated excellent 

performance, its high computational complexity and significant demand for computing resources may 

limit its application in resource-constrained environments. Future studies might consider adopting more 

lightweight model architectures, such as MobileNet, to reduce computational costs and enable broader 

applications, particularly in mobile devices or telemedicine contexts. Additionally, while the current 
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CNN model can provide highly accurate classification results, its internal workings are intricate and lack 

transparency, which makes it challenging for medical professionals to completely trust the model. Future 

research should integrate Explainable AI (XAI) methods to enhance the transparency and 

trustworthiness of the model, thereby increasing its acceptance in clinical practice. Addressing these 

limitations, future research should focus on expanding dataset diversity, model simplification, and 

improving interpretability to promote the widespread application and practical deployment of CNNs in 

the automatic categorization of COVID-19 radiographic images. 

Based on this research, future work can be optimized and expanded in the following areas to further 

advance the use of deep learning models in COVID-19 and other medical image analyses. First, the 

diversity and scale of the dataset are key to further improving the model's generalization ability. Future 

research should collect more diverse large-scale datasets that cover different regions, populations, and 

healthcare institutions, which will not only help improve the model's robustness but also ensure its 

applicability and accuracy on a global scale. Meanwhile, with the emergence of new viral variants and 

diseases, continuous updates to the dataset will also be necessary. Second, the light weighting and 

efficiency of the model are important directions for future development. Although the ResNet50 model 

has demonstrated excellent performance, its high computational complexity limits its application in 

resource-constrained environments. Future efforts could explore the use of more lightweight models, 

such as MobileNet or EfficientNet, to reduce computational costs, enabling real-time applications of the 

model on mobile devices or in telemedicine systems. Techniques such as model quantization and 

pruning can further alleviate the computational burden. Regarding model interpretability, while current 

deep learning models are highly accurate, their "black-box" nature remains a challenge. Future research 

should integrate Explainable AI (XAI) technologies to make the decision-making process of the model 

more transparent through methods like visualization and attention mechanisms. This transparency will 

help physicians better understand the basis for the model's predictions, thereby increasing its acceptance 

in clinical practice. The integration of multimodal data is another promising area for future exploration. 

Current research mainly relies on single imaging data, but future studies could consider combining other 

types of medical data, such as electronic health records (EHR) and laboratory test results. This 

multimodal data fusion would provide more comprehensive information for disease diagnosis, thus 

improving the accuracy and reliability of the diagnoses. Finally, clinical validation and application are 

critical steps in translating research findings into practical benefits. Future research should involve 

multicenter clinical trials to validate the model's effectiveness in real-world settings and develop user-

friendly clinical tools that allow physicians to easily incorporate deep learning models into routine 

diagnostic workflows. This would help increase diagnostic efficiency, improve patient care quality, and 

promote the widespread adoption of deep learning technologies in the healthcare sector. By exploring 

these research avenues and making corresponding enhancements, the application prospects of deep 

learning models in COVID-19 and other medical image analyses will be even more promising, 

contributing significantly to the advancement of healthcare. 
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