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Abstract. Protein engineering stands at the forefront of biotechnology, aiming to modify natural 

proteins or create new ones tailored to specific functional requirements. The three-dimensional 

structures of proteins, particularly their folding patterns, are critical in defining their biological 

roles. Accurate prediction and detailed examination of these protein folding structures are crucial 

in protein engineering. The close relationship between protein structure and function highlights 

the importance of understanding protein folding dynamics to successfully manipulate protein 

designs for intended uses. Genetic algorithms (GA), taking inspiration from natural evolutionary 

principles, employ a heuristic search approach that integrates elements of randomness. In 

contrast, simulated annealing (SA) leverages stochastic optimization techniques based on the 

Monte Carlo method, theoretically capable of approximating the global optimum with a high 

degree of accuracy. Additionally, generalized ensemble methods are increasingly used to explore 

protein folding processes. This paper explores the fundamental principles and practical 

applications of these algorithms in simulating protein folding dynamics, aiming to enhance the 

methodologies used in protein engineering. This exploration not only aids in the refinement of 

protein design but also extends the potential applications of engineered proteins in various 

scientific and industrial fields. 
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1.  Introduction 

The intrinsic connection between a protein's function and its three-dimensional structure has long been 
a cornerstone of biochemical research. The seminal work of C.B. Anfinsen in the early 1960s highlighted 
the profound relationship between a protein’s amino acid sequence and its spatial configuration. 
Anfinsen's experiments demonstrated that proteins could refold into their functional forms under 
suitable conditions, suggesting that all necessary information for protein folding is encoded within the 
amino acid sequence itself. This discovery not only revolutionized our understanding of protein structure 

but also laid the groundwork for modern protein engineering by linking sequence to structure in a 
predictable way. 

Despite the advancements in understanding the theoretical framework of protein folding, the 
challenge persists in accurately predicting and modeling how a protein’s sequence dictates its three-
dimensional structure. The process of protein folding is governed by a complex interplay of forces, 
making the accurate prediction of a protein's native conformation a formidable task. Furthermore, 
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understanding the dynamic and thermodynamic properties that contribute to the stability and function 
of protein structures remains a critical hurdle. These complexities necessitate the development of 
sophisticated computational methods and models to simulate protein folding processes accurately, 
enhancing our capability to engineer novel proteins and develop therapeutic interventions. 

This paper contributes to the field of protein folding by delineating the fundamental principles that 
govern protein structure and folding dynamics. Initially, it introduces the basic principles of protein 
folding, followed by an exploration of the most commonly employed simulation models that provide 
insights into protein dynamics. Subsequently, the paper details the application of three innovative 
methods designed to enhance the accuracy and efficiency of protein folding simulations. Finally, it 
discusses the persistent challenges and future directions in protein folding research, emphasizing the 
need for more refined predictive models that can accurately mirror the complex nature of protein 
dynamics and their implications in health and disease. Through these discussions, the paper aims to 

furnish a clearer understanding and a stronger theoretical framework to support ongoing and future 
scientific inquiries into protein engineering and related disciplines. 

2.  Relevant Theories 

2.1.  Principles of protein folding 

In the intricate process of protein folding, the protein's structure undergoes transformations to attain its 
final three-dimensional (3D) conformation, which ultimately imparts specific functionality. The nature 
of amino acids plays a pivotal role in this folding process. 

Firstly, proteins are composed of a diverse array of amino acids, which during folding, segregate 
based on their hydrophilic and hydrophobic properties. Hydrophilic residues, often characterized by 

hydroxyl, carboxyl, or amino groups, tend to localize on the protein's exterior surface, interacting with 
water molecules. Conversely, hydrophobic residues, often featuring long carbon chains or aromatic rings, 
congregate within the protein's interior, away from the aqueous environment. 

With regards to the secondary structures of proteins, α-helices and β-sheets are two prevalent forms. 
The formation of α-helices necessitates amino acids with side chains compatible with the helical 
architecture.  

In contrast, β-sheets are stabilized by hydrogen bonds between adjacent peptide segments, forming 
sheet-like structures. In β-sheets, amino acids like Tyr (tyrosine), Trp (tryptophan), Ile (isoleucine), Val 

(valine), Thr (threonine), and Cys (cysteine), while often hydrophobic, do not ideally fit within α-helices 
but preferentially reside in β-sheets. It is noteworthy that although Phe (phenylalanine) and Met 
(methionine) can also be found in β-sheets, they are not their defining characteristics. 

Ultimately, as the polypeptide chain folds into its 3D conformation, the protein attains its distinct 
functionality. This functionality is determined by the protein's 3D shape (or conformation), as it dictates 
the manner in which the protein interacts with other molecules, such as substrates, ligands, or enzymes. 
Therefore, protein folding is a crucial process within biological systems, ensuring that proteins correctly 

execute their biological functions (figure 1). 

 

Figure 1. Protein folding process (Photo credit: Original). 
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The central focus of protein folding research lies in unraveling the process of how proteins progress 
from their primary sequence to intricate tertiary and higher-order structures, essentially deciphering the 
"folding blueprint." The thermodynamic hypothesis posited by Anfinsen underscores that the native 
state of a protein, under specific environmental conditions, represents its energetically most favorable 

conformation [1]. Consequently, the study of protein folding bifurcates into two principal avenues: 
firstly, the precise prediction of the three-dimensional structure of proteins at their minimum energy 
state, which is encompassed within the realm of protein folding structure prediction; secondly, the 
meticulous examination of the transition of proteins from a generic state to their native conformation, 
constituting the core domain of protein folding kinetics. By adopting this dual-track approach, we can 
gain a more comprehensive understanding of the intricate mechanisms underlying protein folding (figure 
2). 

 

Figure 2. Flowchart of protein folding prediction (Photo credit: Original). 

2.2.  Protein models and their computational simulation 

The problem of protein folding has been proven to be an NP-complete problem [2]. For instance, a 
protein consisting of merely 100 amino acids possesses approximately 10100 conformational states, 
assuming each amino acid adopts only 10 conformations. Even with the fastest supercomputer currently 
available, capable of 10 quadrillion operations per second, exploring the conformational space of such 
a protein would require approximately 10 to 16 seconds per conformation, leading to an estimated total 
time of approximately 3 x 1076 years to exhaustively search the entire conformational space. 

Consequently, exhaustive computational searches of protein conformational spaces are impractical, 
necessitating the research and design of more efficient algorithms for predicting the native structures of 
proteins [3]. To address this challenge, previous researches have proposed simplified models, which 
have now become instrumental in studying the fundamental properties of protein folding. In this paper, 
we introduce a particularly illustrative simplified model for protein folding: the HP lattice model, 
proposed by Dill et al. (HP Lattice Model) [4]. 

Dill and his team, drawing upon the characteristic feature of globular protein structures whereby 
"hydrophobic amino acid residues cluster together within the molecular interior, while hydrophilic 

amino acid residues are exposed to the aqueous interface," devised the HP lattice model. This model 
serves as a theoretical framework for comprehending protein folding. It simplifies the complexity of 
natural proteins by categorizing their twenty amino acids into two broad classes: hydrophobic (denoted 
as H) and hydrophilic (denoted as P), acknowledging that some amino acids may exhibit ambiguity in 
this binary classification. Based on this simplification, amino acid sequences are translated into 
sequences composed solely of H and P characters, forming a linear string that represents the protein 
chain. The folded configuration of such a sequence subsequently mirrors the three-dimensional structure 

of the protein. 
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As a free energy model, HP model focuses on simulating the natural conformation free energy, 
primarily governed by the interactions among hydrophobic amino acids, which tend to form a 
hydrophobic core surrounded by hydrophilic residues. The designation "lattice model" arises from the 
requirement that, in simulating protein chain folding, the HP chain must be mapped onto a two-

dimensional orthogonal lattice network comprised of equally spaced horizontal and vertical gridlines, 
with each grid point spaced one unit apart. During the folding process, the following guidelines are 
adhered to ensure the legality of conformations: 

Each monomer must occupy precisely one lattice site. 
No lattice site can be simultaneously occupied by two or more monomers. 
Monomers that were originally adjacent in the chain must remain adjacent (i.e., their Manhattan 

distance must be 1) after being mapped onto the lattice plane. 
The HP model exhibits several salient features: firstly, it employs a uniform residue size standard; 

secondly, bond lengths are fixed and invariant; thirdly, it imposes strict lattice constraints on residue 
positions; and fourthly, it utilizes a simplified energy function to reduce computational complexity, 
thereby facilitating theoretical analysis and computational simulations. These characteristics render the 
HP model an efficacious tool for investigating protein folding mechanisms and predicting protein 
structures. 

2.2.1.  Two-dimensional HP model energy function. In the context of two-dimensional Euclidean space 

(Figure 3), we consider the problem of positioning amino acid monomers along a chain, labeled 
sequentially from 1 to N. When placed on a grid plane, each monomer i is assigned coordinates (xi, yi), 
where both xi and yi are integers. The HP lattice model adopts a simplistic energy function that solely 
accounts for the attractive interactions between hydrophobic amino acid monomers. 

In a valid configuration, two H monomers are considered adjacent on the grid plane if their distance 
is unity, and they are not sequentially adjacent along the chain. Such a pair contributes a free energy of 

-1 to the system, while H-P and P-P pairs do not contribute any free energy. The formal energy function 
of the HP model can be expressed as: 

𝐸 = ∑ σij
N
i,j=1

i<j−1

                               (1) 

𝜎𝑖𝑗 = {
−1, 𝑖, 𝑗 𝑎𝑟𝑒 𝐻 𝑎𝑛𝑑 𝑡ℎ𝑒𝑖𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1

0, 𝑒𝑙𝑠𝑒
                  (2) 

From Equations (2.1) and (2.2), it is evident that the total sum of free energies across all interactions 
within a configuration represents the energy of that configuration. According to the laws of nature, 
protein folding invariably tends towards the configuration with the lowest energy. Therefore, the protein 
folding problem amounts to finding the lowest-energy configuration corresponding to a given HP chain. 

Figure 3 presents the lowest-energy configuration for the protein chain 
HHHPPHHPPHHPHHPHPPHHP, with a corresponding minimum energy of E = -8.0. Notably, in this 
lowest-energy configuration, two parallel alpha-helical structures are formed. 

 

Figure 3. A protein conformation in the 2D HP model (Photo credit: Original). 
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2.2.2.  Three-dimensional HP model energy function. In the three-dimensional (3D) context, the energy 
definition of the HP model remains unchanged, which is still the negative number of non-adjacent but 
spatially proximal hydrophobic amino acid (H) pairs along the chain. For the same protein sequence 
represented by an HP chain, the minimum energy value in the 3D form is significantly lower than that 

in the two-dimensional (2D) form. Figure 4 illustrates the 3D minimum energy configuration diagram 
and the protein folding simulation progress for the same protein sequence HP chain 
(HHHPPHHPPHHPHHPHPPHHP). 

 

Figure 4. 3D Folding progress of the sequence.Green represents hydrophobic beads, white represents 

polar beads (Photo credit: Original). 

In the 3D HP lattice model, a protein sequence is viewed as a chain of n balls, each of which has 
been assigned either a black or white color. For the i-th ball (i = 1, 2, ..., n), its centroid coordinates are 
denoted as (xi, yi, zi). Since it is a lattice model, the centroids of the balls must be placed on lattice 
points, thus the coordinates xi, yi, zi are all integers. The set of centroid coordinates (x1, y1, z1, ..., xn, 
yn, zn) at any given time represents a conformation. The problem of protein folding in this context 
involves adjusting the positions of these n balls in the lattice space such that all centroids reside on lattice 
points, the distance between the centroids of adjacent balls along the chain is 1, and the resulting 

conformation attains the minimum energy E. In this way, the protein folding problem in the 3D HP 
model can be mathematically formulated as follows: 

𝑀𝑖𝑛(𝐸)                                 (3) 

Also requires that: 

√(𝑥𝑖 − 𝑥𝑖+1)2+(𝑦𝑖 − 𝑦𝑖+1)2 + (𝑧𝑖 − 𝑧𝑖+1)2= 1,i = 1,2,…,n-1       (4) 

𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ∈ 𝑍   i = 1,2,…,n                        (5) 

Equation (2.4) ensures that the distance between the centroids of adjacent beads along the chain is 1. 
A conformation that satisfies the constraint conditions given by equations (2.4) and (2.5) is referred to 

as a legal conformation. It can be observed that equations (2.3) to (2.5) constitute a nonlinear constrained 
optimization problem. 

3.  Analysis and Application of Advanced Algorithms 

The current exploration of protein folding primarily relies on molecular dynamics simulations and 
Monte Carlo simulations [5]. Specifically, molecular dynamics simulations excel in elucidating the 

dynamic evolution mechanisms of protein systems; in contrast, Monte Carlo methods offer a 
comprehensive examination of the overall thermodynamic processes within proteins. When dealing with 
high-resolution, all-atom protein models, the computational complexity soars, necessitating the 
meticulous consideration of the intricate interactions among a large number of atoms. Consequently, 
molecular dynamics simulations are constrained by computational limitations, typically capable of 
simulating protein folding processes only at the nanosecond scale, posing significant challenges for 
studies spanning longer time frames, such as microseconds to milliseconds. Monte Carlo simulations 

transcend these temporal constraints, effectively capturing folding behaviors across microseconds to 
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milliseconds, and their processes are independent of a specific initial conformational structure, enabling 
unbiased exploration across a broader conformational space. In the following, we will delve into several 
classic algorithms that are widely employed in protein folding research. 

3.1.  Simulated annealing 

3.1.1.  Basic implementation of simulated annealing. The core of the algorithm lies in emulating the 
annealing process observed in the cooling and crystallization of solids or metallic solutions from high 
temperatures in thermodynamics. Drawing from Boltzmann's Principle of Order, the annealing process 

adheres strictly to the laws of thermodynamics, specifically the law of free energy minimization: In a 
closed system with constant heat exchange with its surroundings, spontaneous changes in the system's 
state occur in the direction of decreasing free energy, reaching equilibrium when the free energy attains 
its minimum value. The simulated annealing algorithm ingeniously substitutes the energy of a physical 
system with the objective function and the state of the system with the solution to a combinatorial 
minimization problem. In this context, the temperature in the physical system is transformed into a 
control parameter. Initially, the algorithm "melts" the solution space by setting a high initial temperature, 

then gradually "cools" it, simulating the random perturbations and trials within the system akin to the 
exploration in combinatorial minimization problems, until the system "solidifies" into an optimal and 
stable solution. This process encapsulates the transition from broad-scale search to refined optimization, 
effectively tackling complex optimization challenges. 

Simulated annealing algorithm basically describes as follows: 
Step 1: Select an arbitrary initial solution x0; set xi: =x0 and k: =0; establish the initial temperature 

t0: =tmax. 

Step 2: If the internal loop termination condition is met at this temperature, proceed to Step 3; 
otherwise, randomly select a solution x j from the neighborhood N(xi) based on a certain transition 
distribution, and compute Δfij = f (x j) − f (xi). The replacement probability for xi is then determined as 
follows: if Δfij ≤0, then set xi: =x j. Otherwise, if exp (-Δfij / tk)> random (0,1), set xi: =x j. Repeat Step 
2. 

Step 3: Based on the progression described, the cooling schedule dictates that tk+1: =d(tk); k: =k+1. 
If the stopping condition is met, terminate the computation; otherwise, return to Step 2. 

From the above steps, it is evident that the Simulated annealing algorithm operates as a double-loop 

algorithm, searching for an optimal solution at a given temperature and exploring the solution space for 
an optimal solution within a predefined accuracy range as the temperature cools down. Therefore, the 
transition distribution function, acceptance criterion, and cooling function can be considered the core 
components of this algorithm (Figure 5). 

 

Figure 5. Flowchart of simulated annealing algorithm (Photo credit: Original). 
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3.1.2.  Metropolis Principle. Although this method is relatively straightforward, it necessitates an 
extensive amount of sampling to yield more precise results, thereby leading to significant computational 
complexity. Physical systems tend to favor states of lower energy, yet thermal motion prevents them 
from precisely settling into the lowest-energy state. Given this scenario, by emphasizing the selection 

of states with significant contributions during sampling, a better outcome can be achieved more 
efficiently. In 1953, Metropolis and his colleagues proposed a sampling method that accepts new states 
with a certain probability. Its detailed description is as follows [6]: 

After heating a metallic object to a certain temperature, the degrees of freedom of all its molecules 
in the state space D increase [7]. 

𝑃𝑟 = {�̅� = 𝐸(𝑟)} =
1

𝑍(𝑇)
𝑒𝑥𝑝 [−

𝐸(𝑟)

𝑘𝐵𝑇
]                        (6) 

Given two selected energies, E1 < E2, at the same temperature T, we have: 

𝑃𝑟{�̅� = 𝐸1} − 𝑃𝑟{�̅� = 𝐸2} =
1

𝑍(𝑇)
𝑒𝑥𝑝 (−

𝐸1

𝑘𝐵𝑇
) [1 − 𝑒𝑥𝑝 (−

𝐸2−𝐸1

𝑘𝐵𝑇
)]          (7) 

Since: 

𝑒𝑥𝑝 (−
𝐸2−𝐸1

𝑘𝐵𝑇
) < 1,    ∀𝑇 > 0                          (8) 

Therefore: 

𝑃𝑟{�̅� = 𝐸1} − 𝑃𝑟{�̅� = 𝐸2},    ∀𝑇 > 0                       (9) 

When the temperature is very high, the probability distribution given by Equation (3.1) results in 

approximately equal probabilities for each state, which are close to the average value of 1/|𝐷|, where 
|𝐷| represents the number of states in the state space D. Furthermore, let rmin denote the state in D with 
the lowest energy, and since: 

𝜕𝑃𝑟{�̅�=𝐸(𝑟)}

𝜕𝑇
=

𝑒𝑥𝑝[−
𝐸(𝑟)

𝑘𝐵𝑇
]

𝑍(𝑇)𝑘𝐵𝑇2
{𝐸(𝑟) −

∑ 𝐸(𝑠)𝑒𝑥𝑝[−
𝐸(𝑠)

𝑘𝐵𝑇
]𝑠∈𝐷

𝑍(𝑇)
}                  (10) 

Therefore: 

𝜕𝑃𝑟{�̅�=𝐸(𝑟𝑚𝑖𝑛)}

𝜕𝑇
< 0                              (11) 

𝑃𝑟{�̅� = 𝐸(𝑟𝑚𝑖𝑛)} =
1

𝑍(𝑇)
𝑒𝑥𝑝 [−

𝐸(𝑟𝑚𝑖𝑛 )

𝑘𝐵𝑇
] = −

1

|𝐷0|+𝑅
                  (12) 

Furthermore, if 𝐷0 represents the set of all states with the lowest energy, then: 

𝑅 = ∑ 𝑒𝑥𝑝 [−
𝐸(𝑠)−𝐸(𝑟𝑚𝑖𝑛 )

𝑘𝐵𝑇
]𝑠∈𝐷;𝐸(𝑠)>𝐸(𝑟𝑚𝑖𝑛) → 0,    𝑇 → 0                 (13) 

Thus, as T approaches 0, we have: 

𝑃𝑟{�̅� = 𝐸(𝑟𝑚𝑖𝑛)} →
1

|𝐷0|
,    𝑇 → 0                       (14) 

From this, it can be concluded that as the temperature approaches 0, the probability of a molecule 
residing in the lowest energy state tends to 1. In other words, at very low temperatures (T → 0), the 
probability values for states with lower energies are higher, and in the limiting case, only the probability 
of the state with the lowest energy is non-zero. 

For a combinatorial optimization problem,  

𝑚𝑖𝑛    𝑧 = 𝑓(𝑥)       𝑠. 𝑡.    𝑔(𝑥) ≥ 0,    𝑥 ∈ 𝐷                   (15) 

When mapped to the annealing process of solids, we have: 
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𝑃𝑥{�̅� = 𝑍(𝑥)} =
1

𝑞(𝑡)
𝑒𝑥𝑝 [−

𝑓(𝑥)

𝑡
]                       (16) 

In this equation, q(t) remains the normalization factor, corresponding to the exponential form 

∑ 𝑒𝑥𝑝 [−
𝑓(𝑥)

𝑡
] ,𝑥𝜖𝐷 where the parameter kB is omitted without affecting the discussion. Upon this 

correspondence, simulated annealing should exhibit properties analogous to those of the genuine 
annealing process. 

At low temperatures, the probability of x taking values that minimize z increases. 
As the temperature approaches 0, the probability of f(x) converging to Zmin tends to 1. 
The transition of the current solution towards the optimal solution is controlled by the change in the 

probability of states as the temperature decreases [8]. 

3.2.  Genetic algorithm 
Genetic Algorithm (GA) is a randomized search methodology evolved by drawing insights from the 
evolutionary principles observed in biological systems, namely, "survival of the fittest" and the genetic 

mechanisms of natural selection and reproduction. When applied to the research of protein folding, GA 
operates on a population of protein conformations. Through the processes of mutation, selection, and 
recombination among these conformations, the GA facilitates the evolution of protein structures, 
ultimately leading to the discovery of the optimal conformation [9, 10]. 

Utilizing genetic algorithms (GAs) to study protein folding in two-dimensional lattice models 
requires selecting an appropriate encoding scheme to represent the folding structures on orthogonal 
lattices, defining an appropriate energy function as the fitness function for the GA, and incorporating 
the Pull-Move operation, a form of local search, to enhance the algorithm. Specifically, the Pull-Move 

operation is introduced in sparse regions of the lattice within the standard GA framework. 

3.2.1.  Basic implementation of genetic algorithm. In addressing optimization problems with Genetic 
Algorithms (GAs), the optimal solution evolves gradually from a population of candidate solutions, each 
of which possesses a set of attributes that can mutate and alter. Traditionally, solutions are represented 
as binary strings composed of 0s and 1s, though alternative encoding schemes are also viable. The 

algorithm typically initiates with a randomly generated population and proceeds through iterative 
solutions. These altered candidate solutions are then utilized in the subsequent iteration of the algorithm. 
Typically, the algorithm halts when either the maximum number of iterations is reached or an optimal 
solution is identified. The fundamental flowchart of GA is illustrated in Figure 6. 

The genetic representation of a candidate solution can be a set of binary digits or arrays of other types 
and structures, which essentially share the same convenience as binary representations in terms of 
having uniform lengths and facilitating easy alignment, thus simplifying crossover operations. Variable-

length representations are feasible but complicate the crossover process. 
Once the genetic representation and fitness function are established, GAs initialize a population of 

solutions and iteratively optimize them through mutation, crossover, and selection operations. As show 
in the figure 6. 
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Figure 6. Basic flowchart of genetic algorithm (Photo credit: Original). 

In genetic algorithms, the crossover operator possesses global search capabilities, serving as the 
primary operator, while the mutation operator exhibits local search capabilities, functioning as an 
auxiliary operator. The interplay between the crossover and mutation operators enhances the 
effectiveness of genetic algorithms, with the former complementing the latter. 

3.2.2.  Genetic algorithm used in the HP model. Step 1: Encoding. 

Convert the input amino acid sequence into a sequence represented by "H" and "P." This encoding 
facilitates the subsequent genetic algorithm operations. 

Step 2: Parameter Setting for the Algorithm. 
Determine the population size, select the necessary genetic operators and their operational modes, 

probabilities, and the order of application. Additionally, establish the fitness function and stopping 
criteria. 

Step 3: Initial Population Generation. 

In this context, the initial population comprises solely of uncoiled conformations, where the chain 
follows a straight line path. 

Step 4: Mutation. 
For each individual in the population, a mutation operation is applied. Two types of mutations are 

employed in this context. The first mutation resembles a single Monte Carlo step mentioned in Section 
3.1.1, adopting the same criteria for accepting a new conformation as the Monte Carlo method. The 
second mutation, termed Pull-Move, focuses on inducing curls in sparse regions of the grid. The specific 
definition is described as follows: 

Consider the amino acid i at position (xi(t), yi(t)) at time t. Let L be adjacent to (xi+1(t), yi+1(t)) and 
diagonally adjacent to (xi(t), yi(t)), thus forming three corners of a square with L, (xi+1(t), yi+1(t)), and 
(xi(t), yi(t)). The fourth corner is denoted as C, as illustrated in Figure 7a. 

The mutation can proceed only if C is empty or occupied by (xi-1(t), yi-1(t)). Initially, amino acid i 
is moved to L. If C = (xi-1(t), yi-1(t)), the move is completed, as shown in Figure 7b. 

If C is empty, amino acid i-1 is then moved to C. If this results in a valid conformation, the movement 
stops, as depicted in Figure 7c. 

Otherwise, for j ranging from i-2 down to 1, the movement rule is (xj(t+1), yj(t+1)) = (xj+2(t), yj+2(t)) 
until a valid conformation is achieved, as illustrated in Figure 7d. 
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For the endpoint n, amino acids n and n-1 are first moved to two free positions, followed by the 
remaining nodes from j = n-2 down to 1, using the same movement rule (xj(t+1), yj(t+1)) = (xj+2(t), 
yj+2(t)) until a valid conformation is reached. The operation for node 1 is analogous to that of node n. 

It has been proven that the Pull-Move mutation is reversible and exhaustive. As show in the figure 

7. 

 

Figure 7. Curl operation Pull-move (Photo credit: Original). 

Calculate the energy of the new conformation obtained through mutation, and then perform 
probabilistic selection of the new conformation based on the Monte Carlo method. If the energy of the 
new conformation is lower than that of the original conformation, the new conformation is directly 

accepted. If the energy of the new conformation is higher than that of the original conformation, instead 
of simply discarding it, which may lead to falling into a local extremum, a certain probability is applied 
to make the selection. The probability of accepting the new conformation is: 

𝑝 = {
1,    𝐸(𝑐𝑛𝑒𝑤) ≤ 𝐸(𝑐)

𝑒𝑥𝑝 [−
𝐸(𝑐𝑛𝑒𝑤)−𝐸(𝑐)

𝑡𝑘
] ,    𝐸(𝑐𝑛𝑒𝑤) > 𝐸(𝑐)

                 (17) 

Wherein, 𝑡𝑘  is a decreasing sequence with an initial value of t0=2, and it changes according to 
tk+1=0.97*𝑡𝑘. The iteration step changes every five steps. 

Step 5: Crossover. 
Perform crossover operations on the population. Each individual ci has a probability of being selected 

for crossover, which is calculated as 𝑝(𝑐𝑖) =
𝐸𝑖

∑ 𝐸𝑗
𝑁
𝑗=1

. For two individuals selected for crossover, 

randomly select a point in the sequence, and then connect the part behind the selected node in the first 
sequence to the part in front of the selected node in the second sequence, as shown in Figure 8. There 

are three methods to connect the two parts together, with the angles between the two chains being 0°, 
90°, and 270°. An effective conformation is selected from these options. If no effective conformation 
can be obtained from all three methods, then select two other individuals for crossover. Once an effective 

conformation ck is obtained, calculate its energy Ek and compare it with the average energy �̅� =
𝐸𝑖+𝐸𝑗

2
 

of its parents. Select the new conformation according to the following probability: 

𝑝 = {
1,    𝐸𝑘 ≤ 𝐸𝑖𝑗

̅̅ ̅̅

𝑒𝑥𝑝 [−
 𝐸𝑘 −𝐸𝑖𝑗̅̅ ̅̅

𝑡𝑘
],     𝐸𝑘 > 𝐸𝑖𝑗

̅̅ ̅̅
                      (18) 
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If 𝐸𝑘 ≤ 𝐸𝑖𝑗
̅̅ ̅̅ , conformation ck is directly accepted. Otherwise, selection is made based on probability. 

If Rnd < 𝑒𝑥𝑝 [−
 𝐸𝑘 −𝐸𝑖𝑗̅̅ ̅̅

𝑡𝑘
], conformation ck is accepted. This crossover operation is repeated until N-1 

new conformations are generated. Additionally, the elitist strategy is adopted, where the best individual 
from each generation is directly copied to the next generation's population, thus generating a new 
population containing N individuals. As show in the figure 8. 

 

Figure 8. Crossover operation (Photo credit: Original). 

Step 6: Determine if the stopping criterion is met. 
The stopping criterion used here is to reach a certain number of iterations. If the criterion is not met, 

steps 4 and 5 are repeated continuously. If the criterion is met, the calculation stops, and the 
conformation with the lowest energy in the population is output, along with its energy and the sequence 
representing the folding path. 

3.3.  Generalized ensemble methods  

The generalized ensemble method is one of the most commonly used approaches in protein folding 
research. Its fundamental idea lies in utilizing a non-Boltzmann distribution function to simulate free 
walks in the energy space, thereby enabling a more extensive exploration of the configuration space. 
Simultaneously, it can also calculate thermodynamic quantities of canonical ensembles across a wide 
range of temperatures, thereby facilitating further investigations into the thermodynamic processes of 
protein folding. 

Relatively speaking, the Wang-Landau Monte Carlo method, which has evolved within the 

generalized ensemble approach in recent years, offers a more straightforward path to obtaining non-
Boltzmann distribution functions. By iteratively adjusting a correction factor parameter F, this method 
automatically derives both the non-Boltzmann distribution function and the state density function of the 
protein system [11]. This approach not only facilitates the acquisition of non-Boltzmann distribution 
functions but also enables deeper exploration into the thermodynamic processes of protein folding 
through the analysis of the system's state density function. 

As a widely used dynamic Monte Carlo method, the Wang-Landau algorithm possesses two major 

advantages: 
By iteratively modifying the state density update modification factor f, it can rapidly obtain the state 

density of the system, demonstrating efficiency, intuitiveness, and simplicity. Furthermore, it facilitates 
the calculation of thermodynamic quantities in protein systems, enabling the study of the entire 
thermodynamic process of the system. 

For systems with highly complex energy landscapes, such as protein systems, which possess 
numerous local energy minima, traditional Monte Carlo algorithms tend to get stuck in these local 

minima, making it difficult to effectively escape and reach the global energy minimum. In contrast, the 
Wang-Landau algorithm virtually eliminates this issue. By freely traversing the energy space, the Wang-
Landau algorithm can effectively escape from local minima and locate the global energy minimum. 

The fundamental aspect of the Wang-Landau algorithm lies in the utilization of an update 
modification factor f to determine the convergence precision of the algorithm. Specifically, at each given 
f, an appropriate spatial access movement method is employed to execute a certain number of Monte 
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Carlo steps (abbreviated as MC sampling steps). Each MC move is accepted based on the following 
Metropolis criterion: 

          𝑃(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝑚𝑖𝑛(1,
𝑔(𝐸𝑜𝑙𝑑)

𝑔(𝐸𝑛𝑒𝑤)
) = 𝑚𝑖𝑛(1, 𝑒−[𝑆(𝐸𝑛𝑒𝑤)−𝑆(𝐸𝑜𝑙𝑑 )]      (19) 

Here, g(E) represents the density of states (DOS) explored by the algorithm. S(E) = ln g(E), which 
resembles the thermodynamic entropy value of protein systems, is primarily used in practical operations 
to avoid dealing with excessively large numbers. Evidently, initializing g(E) to 1 would result in every 
MC move being accepted, thereby yielding no useful information. The true ingenuity of the Wang-
Landau algorithm lies in the fact that g(Ei) changes after every MC move, regardless of whether it is 

accepted or not: 

𝑔(𝐸𝑖) = 𝑔(𝐸𝑖) ∗ 𝑓 (𝑖𝑓 𝑎𝑐𝑐𝑒𝑝𝑡 𝑡ℎ𝑒 𝑚𝑜𝑣𝑒 𝑖 = 𝑛𝑒𝑤, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖 = 𝑜𝑙𝑑)     (20) 

Correspondingly, S(Ei) = S(Ei) + ln f, and the associated histogram count function H(Ei) is updated 
as H(Ei) = H(Ei) + 1. Once a sufficient number of MC steps have been completed (meeting a specific 

flattening criterion), the update modification factor f is decreased exponentially (typically using 𝑓 =

√𝑓), and the Wang-Landau algorithm simulation iterates again. Finally, the simulation stops when ln f 

falls below a sufficiently small number. The basic flowchart is illustrated in Figure 9 below. 

In the Wang-Landau algorithm, an initial value of f is typically chosen as e = 2.71828 [12]. If the 
initial value is too large, it will increase the error between the estimated density of states and the true 
density of states, affecting the convergence accuracy of the algorithm. Using the empirical initial value 
of 2.71828, even for systems with a large energy range, we can rapidly reach all energy values within 
an acceptable error range. At the end of the algorithm simulation, the value of f should approach 1, 
allowing the estimated density of states g(E) to closely approximate the true value. Furthermore, the 
typically set lower limit in the Wang-Landau algorithm is ln f = 10⁻⁸. As show in the figure 9. 

 

Figure 9. Basic flowchart of Wang-Landau algorithm (Photo credit: Original). 
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In the original algorithm, the flatness criterion for H(E) is generally set as: all values of H (Ei) are 

greater than 80% of their average value 𝐻(𝐸). However, this criterion appears to be overly strict, so it 
is also common to use a criterion where all H(Ei) reach a certain number (typically a small value such 
as 1). In some practical research applications, a flatness criterion based on a pre-defined maximum 
number of MC steps is also frequently employed.  

The density of states g(E) obtained from the Wang-Landau algorithm is a relative value, which needs 

to be normalized for convenient calculation and comparison. If the reference density of states is �̃�(𝐸), 
the normalization formula is as follows: 

𝑔(𝐸) =
𝑔(𝐸𝑚𝑖𝑛 )

𝑔(𝐸𝑚𝑖𝑛 )
�̃�(𝐸)                               (21) 

𝑈(𝑇) = 〈𝐸〉𝑇 =
∑ 𝐸𝑔(𝐸)𝑒

−𝐸
𝑘𝐵𝑇

𝐸

∑ 𝑔(𝐸)𝑒

−𝐸
𝑘𝐵𝑇

𝐸

                         (22) 

𝐶(𝑇) =
𝜕𝑈(𝑇)

𝜕𝑇
=

〈𝐸2〉𝑇−〈𝐸〉2
𝑇

𝑘𝐵𝑇2
                          (23) 

𝐹(𝑇) = −𝑘𝐵𝑇ln(𝑍) = −𝑘𝐵𝑇ln(∑ 𝑔(𝐸)𝑒
−𝐸

𝑘𝐵𝑇
𝐸 )                 (24) 

Due to the simplicity and efficiency of the Wang-Landau algorithm, its application scope has been 
extended to clusters, magnetic systems, liquids, liquid crystals, spin glass models, as well as the protein 
folding issues we intend to study, among others. 

4.  Challenges 

In the realms of bioinformatics and computational biology, genetic algorithms, simulated annealing 
algorithms, and generalized ensemble methods are potent tools for optimization. They are frequently 
employed in tasks like predicting protein structures, annotating functions, and modeling intricate 
biological systems. While these methods have proven their worth, they also come with notable 
limitations and challenges that students studying these fields should be aware of. 

Genetic algorithms mimic natural evolution to search for optimal solutions. They excel at exploring 
large solution spaces but can sometimes converge too early to local optima instead of the global optimum. 

Additionally, fine-tuning parameters like the initial population, crossover and mutation rates, and the 
fitness function can be tricky and often relies on trial and error. 

Simulated annealing algorithms, inspired by the physical process of annealing metals, aim to find the 
global optimum by gradually reducing the "temperature" of the system. However, they can be slow, 
especially as they approach the optimal solution, requiring careful balancing of the cooling rate to avoid 
getting stuck in local minima or wasting time. 

Generalized ensemble methods, on the other hand, provide a flexible framework for describing 

complex systems. But their effectiveness hinges on knowing or accurately estimating the non-
Boltzmann distribution function, which can be challenging or even impossible for complex biological 
systems. 

In the future, to address these limitations, researchers must continue to explore novel algorithmic 
design ideas and improvement strategies. This includes leveraging machine learning techniques to 
optimize parameter settings, developing adaptive annealing strategies to enhance the efficiency of 
simulated annealing algorithms, and utilizing high-performance computing technologies to accelerate 

the simulation of complex systems. Additionally, deepening our understanding of the intrinsic 
mechanisms of biological systems and establishing more accurate mathematical models are crucial for 
improving the application effectiveness of these algorithms in the field of bioinformatics. 

5.  Conclusion 

This paper has critically examined the principles of protein folding and the application of various 

optimization algorithms—namely, genetic algorithms, simulated annealing, and generalized ensemble 
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methods—in simulating protein folding dynamics. These methods have been demonstrated to be 
effective in navigating the complex solution spaces inherent in protein structure prediction and other 
biological simulations. Genetic algorithms, with their evolutionary search mechanisms, are adept at 
exploring vast solution spaces but often face challenges related to premature convergence to local optima 

and parameter tuning. Simulated annealing algorithms, drawing inspiration from metallurgical 
annealing processes, offer a potential path to global optimum solutions but require careful management 
of cooling rates to avoid inefficiencies and local minima traps. Generalized ensemble methods provide 
a robust framework for simulating complex systems, although their effectiveness is contingent upon 
accurate estimations of non-Boltzmann distribution functions, which can be particularly challenging. 
Looking forward, there is a pressing need for further research to refine these methodologies and 
overcome the limitations currently facing them in bioinformatics applications. Future studies should 
focus on integrating advanced machine learning techniques to automate and optimize parameter settings, 

thereby enhancing the efficacy and efficiency of these algorithms. Additionally, the development of 
adaptive annealing strategies could significantly improve the performance of simulated annealing 
algorithms. High-performance computing technologies also hold the promise of accelerating the 
simulation of complex biological systems, enabling more detailed and expansive exploration of protein 
dynamics. Moreover, a deeper theoretical understanding of biological mechanisms and the 
establishment of more accurate mathematical models are vital for advancing the application of these 
computational techniques. By addressing these areas, future research can expand the capabilities of 

protein folding simulations, ultimately contributing to significant advancements in protein engineering 
and related fields. 
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