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Abstract. Being the leading cause of death and disability in China, stroke encompasses a number 

of risk factors, one of them being genetic mutations. Cerebral autosomal dominant arteriopathy 

with subcortical infarcts and leukoencephalopathy (CADASIL) is the most prevalent genetically 

induced stroke. This study investigates the feasibility of utilizing iterative screening rounds to 

identify potential drug candidates that effectively target the Notch3 R90C mutant protein 

associated with CADASIL. Through multiple rounds of molecular docking using AutoDock 

Vina and structural predictions by AlphaFold, we systematically narrowed down a large set of 

small molecules from the DrugBank database to identify those with the highest binding affinities. 

The research highlights the effectiveness of leveraging structural data and hierarchical clustering 

in refining the selection process, ultimately enhancing the precision in identifying promising 

therapeutic agents.  
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1.  Introduction 

If the cause of death were to be categorized by disease, stroke would rank as leading cause of death and 

disability in China [1], and the third leading cause of death in the Western world [2]. Stroke refers to the 

occlusion or hemorrhage of blood vessels in the brain, leading to a compromise in cerebral blood flow, 

ultimately resulting in brain cell dysfunction or death [2]. Specifically, a blood clot or plaque can block 

a blood vessel, causing a rapid decline in blood flow and ATP levels in the ischemic region. This is 

followed by ionic imbalances and metabolic failure, potentially leading to cell death within minutes. 

Stroke entails immediate treatment to salvage the tissue damage. 

The term stroke holds personal trauma for me, as I witnessed my grandmother suffer stroke two times, 

the second of which ultimately claimed her life. Thus, when I had the opportunity to engage in scientific 

research, my immediate focus was on investigating the genetic causes, pathogenic mechanisms, and 

potential treatments for stroke. 

The major risk factors for stroke include hypertension, atherosclerosis, and genetic predisposition. 

Studies have shown that managing hypertension to achieve moderate blood pressure reductions can 

significantly reduce both the frequency and fatality of strokes [3]. Additionally, clinical trials have 

demonstrated that lipid-lowering drugs and treatments aimed at improving vascular function can 

significantly reduce coronary death rates and show promising effects in stroke prevention [4]. However, 

unlike other risk factors, the genetic basis of stroke does not follow Mendelian inheritance patterns, 

suggesting that the genetic factors contributing to stroke are complex [2]. 
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Among various genetic risks, cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy (CADASIL), a monogenic disorder, markedly increases the risk of stroke. In 

addition to stroke, typical CADASIL symptoms include headaches, cognitive disabilities, dementia, and 

death [3]. Research has shown that CADASIL is caused by mutations in the Notch3 protein, and 

individuals carrying Notch3 variants have double the risk of stroke compared to non-carriers [4]. 

Most CADASIL-associated mutations involve the loss or addition of cysteine residues in exons 3 

and 4, resulting in an abnormal number of cysteines and disrupting the formation of disulfide bonds. 

The free cysteines may interfere with the Notch3 signaling pathway, leading to the accumulation of the 

extracellular domain of Notch3 in small arteries [4], thereby triggering CADASIL. In vivo studies on 

mice have demonstrated that the accumulation of Notch3 is responsible for the loss of vascular smooth 

muscle cells (VSMCs) and irreversible vascular damage [5]. 

This study focuses on a prototypical CADASIL-associated mutation, R90C in the EGFR2 domain, 

which is one of the most prevalent mutations among CADASIL patients [6]. Currently, no effective 

therapies exist for CADASIL, and only empirical treatments are available to alleviate symptoms. Thus, 

the mutated Notch3 protein may serve as a potential therapeutic target for CADASIL [7]. 

This research employs computational approaches from cheminformatics and bioinformatics to 

identify and design small molecules that exhibit high binding affinity to the mutated Notch3 structure 

(R90C); these molecules could potentially serve as drug candidates. The workflow is as follows: First, 

drugs from the DrugBank database [8] are clustered to identify those with high binding affinity to the 

mutated Notch3 (R90C) protein, with binding affinity predicted using Autodock Vina (via the Swiss-

Dock web server) [9]. Next, for the drug classes with high binding affinity, a similarity search is 

performed in the ChemBL database [10] to find additional small molecules with similar structures and 

high binding affinity. Finally, structural alignment is conducted on these high-affinity molecules to 

identify common substructures, and the chemical properties of these substructures are analyzed. 

2.  Materials and Methods 

Considering the significance of the Notch3 R90C mutation in stroke mechanism, the primary target 

protein in this study is the mutated form of Notch3, specifically the R90C variant, where the 90th amino 

acid is mutated from arginine (R) to cysteine (C). However, since neither the native protein nor its 

mutant form has an experimentally resolved structure, we predicted the structure of the R90C mutant 

using AlphaFold [11, 12], the most advanced and accurate protein structure prediction tool available. 

Given that the ultimate goal of this study is to identify potential drug candidates, we started with the 

DrugBank database. For approximately 2,000 validated small-molecule drugs in DrugBank, we first 

performed hierarchical clustering of all the small molecules and selected a ‘representative’ molecule 

from each cluster. 

Next, we predicted the binding affinity of each representative molecule using Autodock Vina (via 

the SwissDock web server), and the molecule with the highest binding affinity was identified as the 

first-order target molecule. Based on this target molecule, iterative similarity searches were conducted 

in the ChemBL database. Binding affinity predictions were again performed using Autodock Vina, and 

the molecule with the highest affinity was identified as the nth-order target molecule, depending on the 

number of iterations of the similarity search. Ultimately, the molecule with the highest binding affinity 

will be identified as a potential drug candidate (Fig. 1).  
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Figure 1. The pipeline for identifying potential drugs targeting Notch3 (R90C) 

2.1.  Obtaining the structure of the mutant 

R90C [6], one of the most prevalent CADASIL-inducing mutations, is selected as the focus of this study. 

The sequence of the wild-type Notch3 protein is downloaded from the Uniprot database [13], and the 

sequence of the R90C mutant is obtained by manually modifying the wild-type sequence. The structure 

of the R90C mutant is then predicted using AlphaFold [11, 12] (Fig. 2).  

 

Figure 2. Predicted structure of the Notch3 mutant (R90C), with a zoom-in view of the R90C mutation 

site 

2.2.  Checking the conservation of the mutation site 

To examine and detect the conservation at position 90 in the Notch3 protein, we used BlastP [14] to 

search for similar sequences in the Swiss-Prot database [15]. A multiple sequence alignment (MSA) was 

then performed on these sequences to ensure that the sites are aligned at the same position. Based on 

this alignment, we generated a WebLogo [16] plot, which is a graphical representation of sequence 

alignments that displays the conservation of amino acids at each position. The height of each letter in 

the plot reflects the frequency or conservation level of that residue. To highlight the conservation at the 

mutation site, we displayed only the first 140 positions of the WebLogo plot.  
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2.3.  Identifying the binding pocket of the protein 

Due to the requirement of selecting a binding search box (or binding site) in AutoDock Vina and the 

size restrictions of the seaching space of the Swissdock web server, binding could only be limited to a 

specific region of the Notch3 protein mutant (R90C), rather than the entire protein.  

Therefore, two central regions were chosen for this purpose. One region is centered around the 

mutation site, as the mutation site is relatively enclosed; the other region is centered around a binding 

cavity identified using the CB-dock2 [17], which is a tool used to predict protein binding sites by 

analyzing the spatial features of binding cavities and the structural information of ligands. This binding 

cavity is located close to the mutation site in space (within 10 Å), and it may be a major binding cavity 

of the mutant (Fig. 3). 

2.4.  Impact of the mutation on protein function 

To assess whether the R90C mutation in the Notch3 protein is deleterious or beneficial, we employ the 

DDmut method [18], a computational tool designed to predict the effects of single amino acid 

substitutions on protein stability and function. DDmut evaluates how specific mutations influence the 

protein's overall stability, binding affinity, and structural integrity. 

The method begins by analyzing the wild-type Notch3 protein structure and comparing it to the 

structure of the R90C mutant. DDmut calculates the impact of the R90C mutation on the protein's 

stability by assessing changes in free energy associated with the mutation. It also considers potential 

disruptions to protein-protein interactions and the overall functional impact of the mutation. 

By quantifying these effects, DDmut provides insights into whether the R90C mutation contributes 

to protein destabilization or functional impairment, which is crucial for understanding its role in diseases 

such as CADASIL. This analysis helps determine whether the mutation is likely to be harmful, leading 

to protein dysfunction and disease, or if it might have a neutral or even beneficial effect on the protein's 

function. 

2.5.  Clustering of small molecules in DrugBank database 

To cluster the DrugBank dataset, small molecules in the Simplified Molecular Input Line Entry System 

(SMILES) format must first be converted into a more mathematically processable format—Morgan 

fingerprints [19]. Morgan fingerprints are bit vectors that capture the presence or absence of specific 

functional groups in substructures around atoms, and they are used to calculate molecular similarities. 

Using the Python toolkit RDKit [20], SMILES strings are converted into Morgan fingerprints, with each 

small molecule represented as a 2048-bit vector using RDKit's default parameters. 

Agglomerative hierarchical clustering [21] is then applied to the resulting fingerprints based on 

Tanimoto similarity, which measures the structural similarity between two molecules by comparing the 

intersection and union of their features. In the context of Morgan fingerprints, Tanimoto similarity [22] 

𝑇(𝐴, 𝐵) , between fingerprints A and B is calculated as: 

 𝑇(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴|+|𝐵|−|𝐴∩𝐵|
 (1) 

where |𝐴| is the length of fingerprint 𝐴, |𝐵| is the length of fingerprint 𝐵, and |𝐴 ∩ 𝐵| is the number 

of bits 𝐴 and 𝐵 share in common. Tanimoto index ranges from 0 to 1, where 0 indicates no overlap, 

and 1 indicates complete overlap between the two input molecules.  

Agglomerative hierarchical clustering performs iteratively by merging the two nearest clusters of 

molecules into a larger cluster. The distance between two clusters is defined as one minus the average 

Tanimoto similarity between every pair of molecules across the two clusters. At the beginning, each 

molecule is considered an individual cluster. The algorithm continues until only one cluster remains, 

resulting in a dendrogram. Distinct clusters of molecules are identified by cutting the dendrogram at an 

empirically determined threshold, which stops the merging of clusters that exceed a certain distance. 

This thresholding ensures that the resulting clusters are distinct.   
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By classifying all small molecules from DrugBank into separate categories, the centroids of each 

cluster are identified as representatives of each drug molecule category. 

2.6.  Protein and small molecule binding 

The SMILES structures of the drug representatives obtained through clustering are recorded. Binding 

affinities between these representatives and the target protein are then predicted using AutoDock Vina 

[23] via webserver SwissDock [9] web server with default parameters.  

AutoDock Vina is a widely used molecular docking software that predicts the optimal binding modes 

of small molecules to proteins by evaluating various orientations and conformations based on scoring 

functions. The process involves preparing the protein and ligand structures, defining a grid box around 

the binding site, and docking the ligand into this space to assess binding affinity. By focusing on a well-

defined search area, AutoDock Vina enhances the accuracy of these predictions. The results help identify 

which drug representatives might exhibit the highest affinity for the target protein, guiding further 

investigation and potential drug development. 

2.7.  Iteratively identify potential drugs 

The representative with the highest predicted binding affinity is selected, and a similarity search is then 

conducted in the ChemBL [10] small molecule dataset using the ChemMine Tools web server [24]. 

Molecules with a similarity score greater than a predefined threshold (> 0.7) are selected for docking 

studies by Autodock Vina. Each selected molecule is docked into the target protein, and the one with 

the highest predicted affinity is chosen for additional docking iterations. 

This iterative similarity search process aims to identify potential drug molecules by leveraging 

known high-affinity representatives to find similar compounds with potentially higher binding affinities. 

By performing multiple rounds of similarity searches, a sufficient number of high-affinity molecules are 

identified, which are considered as potential drug candidates. This approach enhances the likelihood of 

discovering effective new drugs, even if the exact nature of the optimal drug molecule is initially 

unknown. 

2.8.  Identify the maximum common Structure 

In the identification of the Maximum Common Substructure (MCS) among a set of molecules, we 

employed the RDKit [20] cheminformatics software, which utilizes graph-based algorithms to detect 

the largest contiguous subgraph present across all molecules in the study. This is achieved through the 

rdFMCS.FindMCS() function, which compares graph representations of molecules where atoms are 

nodes and bonds are edges. The MCS search can be tailored by specifying match criteria for atoms and 

bonds, including atom elements and bond types. Additionally, options are provided to handle special 

cases such as ring matching. The outcome of the MCS search is provided as a SMILes string, 

representing the chemical structure common to all input molecules. This method is particularly useful 

in identifying a shared pharmacophore or scaffold, aiding in the optimization of drug-like properties. 

3.  Results 

3.1.  Notch3 protein and R90C variant 

The Notch3 protein, specifically the R90C variant, is a key focus in this study. The original sequence of 

the Notch3 protein is sourced from the UniProt [13] database, under the entry Q61982. This sequence 

is characterized by its role in the regulation of vascular smooth muscle cells, and the R90C mutation is 

particularly notable due to its association with CADASIL, a hereditary stroke disorder. The mutation 

involves the substitution of arginine (R) at position 90 with cysteine (C), potentially altering the protein's 

function and stability. 

To further investigate the structural implications of this mutation, the protein structure of the R90C 

variant is predicted using AlphaFold [11, 12], an advanced AI-based tool for protein structure prediction. 

AlphaFold generates high-accuracy models of the protein, allowing for detailed visualization and 
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analysis of how the mutation affects the overall structure and potential binding sites. This structural 

information is crucial for understanding the functional consequences of the R90C mutation and its role 

in disease mechanisms. 

To analyze the conservation of the Notch3 protein sequence, I used BlastP to search for similar 

protein sequences across various species. This allowed me to evaluate the conservation of specific amino 

acids, particularly around the R90C mutation. After retrieving homologous sequences, a web logo (Fig. 

3) was generated to visualize sequence conservation, focusing on the first 140 amino acids of the protein. 

 

Figure 3. The WebLogo plot shows that R90C occurs in a non-conserved region. 

The resulting WebLogo revealed that cysteines (shown as C in the WebLogo plot) are among the 

most highly conserved residues in this region. Cysteines play a crucial role in protein stability by 

forming disulfide bonds, which are essential for maintaining the protein's three-dimensional structure 

and facilitating proper folding. Given that the R90C mutation substitutes an arginine with a cysteine, 

this change is likely to disrupt disulfide bond formation. This disruption could lead to alterations in the 

protein's structure, affecting its function and potentially contributing to disease mechanisms such as 

those seen in CADASIL. 

However, in the AlphaFold prediction of the R90C mutant, the cysteine at position 90 resulting from 

the mutation does not form new disulfide bonds with other cysteines, nor does it disrupt the existing 

disulfide bonds. This could be due to the existing disulfide bonds may exhibit significant thermodynamic 

stability, preventing disruption by the introduction of the new cysteine at position 90. Misfolding of the 

protein is therefore unlikely to occur under normal conditions, unless triggered by external factors such 

as changes in environmental conditions or specific molecular interactions that could destabilize the 

native disulfide architecture. 

Given that the newly predicted Notch 3 protein mutant (R90C) does not disrupt existing disulfide 

bonds or form new ones, we utilize DDmut [18] to evaluate the impact of this mutation on the overall 

protein structure. DDmut is a computational tool designed to assess the effects of amino acid 

substitutions on protein stability and function by predicting changes in free energy. It calculates how 

specific mutations influence the protein's stability, binding affinity, and overall structural integrity. By 

applying DDmut, we can determine whether the R90C mutation affects the stability of the protein locally 

and how these changes might propagate throughout the protein structure, potentially altering its function 

and contributing to disease mechanisms.  

From the results of DDmut (Fig. 4), the R90C mutation introduces a substitution at position 90, where 

the side chain of the newly added cysteine forms a new polar interaction (shown in orange in Fig. 5). 

Specifically, the nitrogen atom of the cysteine side chain at position 90 interacts with the oxygen atom 
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at position 88. This new interaction results in a decrease in the overall free energy of the protein structure 

by 0.06 kcal/mol. This reduction in free energy contributes to a slight increase in structural stability, 

suggesting that the R90C mutation may enhance the stability of the protein by introducing favorable 

electrostatic interactions. 

To prepare for the subsequent protein docking, where AutoDock Vina requires predefined binding 

centers and corresponding binding boxes, we need to identify these binding centers in advance. We 

employed two methods for this purpose: one approach uses the spatial position of the R90C mutation as 

the binding center, while the other utilizes the binding cavity predicted by the CB-dock2 [17] method. 

In fact, the binding centers identified by these two methods are not far apart, with a spatial distance of 

less than 10 Å (Fig. 5). Both binding sites will be used in the forthcoming docking studies along with 

appropriate binding boxes. 

 

Figure 4. The R90C mutation slightly stabilizes the protein structure by introducing a new polar 

interaction. 

 

Figure 5. Two search centers: the binding cavity and the mutation site (R90C) 

3.2.  Screening and Classification of Small Molecule Drugs in DrugBank 

We began our search for small molecule drugs using the DrugBank database, which provides 

comprehensive information about approved and experimental drugs. Among approximately 6,000 

entries in DrugBank, we filtered out compounds that are not small molecules or do not have valid 

SMILES (Simplified Molecular Input Line Entry System) structures, which is a format used to represent 
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chemical structures in a concise way. After this initial screening, we narrowed down the list to 2,681 

small molecules. 

Given the substantial number of candidates and our limited computational resources, we sought to 

reduce the computational load. We calculated the Tanimoto similarity between each pair of small 

molecules, which quantifies the similarity based on shared structural features. Using this similarity data 

as a distance metric, we applied hierarchical clustering to group the 2,681 small molecules into clusters. 

This method resulted in 18 distinct clusters (Fig. 6). 

Among these 18 categories, we select the central small molecule structure from each classification 

as the "representative" of that category (Table 1). Many of these representatives include well-known 

drugs, such as Salicylic acid (C2), which is widely used as an anti-inflammatory and keratolytic agent, 

particularly in the treatment of skin conditions such as acne, psoriasis, and warts. It helps alleviate 

symptoms by reducing inflammation and excessive cell proliferation. Another example 

sulfamethoxazole (C12), which is an antimicrobial agent that, when combined with trimethoprim, forms 

a drug used to treat bacterial infections. It works by inhibiting bacterial folate synthesis, thereby 

preventing the growth and reproduction of bacteria.  

 

Figure 6. The 2,681 small molecule drugs from DrugBank were hierarchically clustered into 18 

categories (from top to bottom: categories 1-18). 

While we also considered using the K-means clustering algorithm, we chose hierarchical clustering 

because it does not require specifying the number of clusters in advance, thus avoiding the introduction 

of predefined parameters and providing a more flexible clustering approach. 

Table 1. 18 representatives and their SMILES and common names 

Clusters Representative SMILES Common name 

C1 C1=CC=C(C=C1)CC(C(=O)O)N N-Phenylglycine 

C2 C1=CC=C(C=C1)C(=O)O Salicylic Acid 

C3 CCC(C)C(C(=O)NC(CC(C)C)C(=O)O)NC(=O)C(CC1=CC=C(C
=C1)O)NC(=O)C2CCCN2C(=O)C(CCCCN)NC(=O)C(CCCCN)
NC(=O)C(C(C)O)NC(=O)C(C)NC(=O)C(CC(=O)N)NC(=O)C(
CO)NC(=O)CNC(=O)CNC(=O)C(CCC(=O)O)NC(=O)C(CCC(=

O)O)NC(=O)C(CO)NC(=O)C3CCC(=O)N3 

Glycineamide Derivative 

C4 CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4(C(=O)CO)O)C)
O 

Bicyclic Lactone 
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Clusters Representative SMILES Common name 

C5 CC1=CC(=NC(=N1)NS(=O)(=O)C2=CC=C(C=C2)N)C 4-Nitrophenylhydrazone 

C6 CC(C)NCC(C1=CC(=C(C=C1)O)O)O 3,4-
Dihydroxyphenylacetic 

Acid 

C7 CC(CC1=CC=CC=C1)N N-Ethyl-2-pyrrolidinone 

C8 CC(=O)OCC1=C(N2C(C(C2=O)NC(=O)C(C3=CC=CC=C3)N)
SC1)C(=O)O 

Glycolic Acid 

C9 COC1=C(OC2CCCC2)C=C(C=C1)C1CNC(=O)C1 Caffeine Derivative 

C10 CCOC(=O)C1(CCN(CC1)C)C2=CC=CC=C2 N-Benzylacetamide 

C11 C(C1C(C(C(C(O1)OC2C(OC(C(C2O)O)O)CO)O)O)O)O Sucralose 

C12 CCC(=O)SCCNC(=O)CCNC(=O)C(C(C)(C)COP(=O)(O)OP(=
O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=

O)(O)O)O 

Sulfamethoxazole 

C13 C1=NC2=C(N1C3C(C(C(O3)CO)O)O)N=C(NC2=O)N Benzoyl peroxide 

C14 CCCCCCCCCCCCC(=O)O Stearic Acid 

C15 C(CC(=O)O)C(C(=O)O)N Lactic Acid 

C16 C1C(C2C(O1)C(CO2)O[N+](=O)[O-])O Phenylbutyrate 

C17 CC(=O)C(C(COP(=O)(O)O)O)O Glucose 6-Phosphate 

C18 CCCCO Ethylene Glycol 

3.3.  The docking between drug small molecules and the protein. 

After preparing the Notch3 R90C mutant protein and the corresponding small molecules, we next use 

AutoDock Vina [23] (via SwissDock) to assess the binding affinity between the 18 representatives of 

each small molecules clusters and the protein. Specifically, if a small molecule exhibits a lower binding 

affinity with the protein, it indicates a better interaction. This means that the small molecule has a higher 

likelihood of binding effectively and potentially protecting or affecting the cysteine residue introduced 

by the R90C mutation. Such small molecules, therefore, have the potential to be considered as promising 

drug candidates. 

Table 2. AutoDock Vina binding affinities for the 18 representative small molecules and the two 

different binding sites on the protein. 

Clusters Binding affinity at R90C (kcal / mol) Binding affinity at predicted 
cavity (kcal / mol) 

C1 -4.289 -4.937 

C2 -4.245 -4.701 

C3 -5.348 -5.402 

C4 -5.151 -6.488 

C5 -4.360 -4.701 

C6 -4.183 -5.544 

C7 -5.849 -4.932 

C8 -5.321 -4.502 

C9 -4.721 -6.440 

C10 -4.583 -5.532 

C11 -4.657 -4.739 

C12 -4.523 -5.017 

Table 1. (continued). 
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Clusters Binding affinity at R90C (kcal / mol) Binding affinity at predicted 
cavity (kcal / mol) 

C13 -5.031 -5.428 

C14 -3.259 -5.515 

C15 -3.516 -3.928 

C16 -3.564 -4.097 

C17 -3.799 -3.976 

C18 -2.738 -4.635 
 

Table 2 illustrates the binding affinities of 18 small molecule representatives at two different binding 

sites on the Notch3 R90C mutant protein: the R90C mutation site and the predicted cavity. In the 

majority of cases, the predicted cavity shows stronger binding affinity (more negative values) compared 

to the R90C site. Specifically, 16 out of 18 clusters exhibit higher binding affinity at the cavity site. For 

instance, Cluster C4 shows a significant increase, with a binding affinity of -6.488 kcal/mol at the cavity, 

compared to -5.151 kcal/mol at the R90C site. Similarly, Cluster C9 has -6.440 kcal/mol at the cavity 

versus -4.721 kcal/mol at R90C. 

On average, the predicted cavity consistently performs better as a binding site, reinforcing its 

potential as a more favorable target for drug interactions. However, in a few cases, the mutation site still 

shows comparable or even slightly better binding. For example, Cluster C7 has a higher affinity at the 

R90C site (-5.849 kcal/mol) compared to the cavity (-4.932 kcal/mol), indicating that while the predicted 

cavity is generally superior, the mutation site might still offer a viable binding option in select cases. 

With the binding affinities of the representatives in hand, we can select the class with the optimal 

binding affinity and use ChemMine [24] to search for structurally similar small molecules within 

ChemBL [10]. For these small molecules, we then dock them with the R90C protein using AutoDock 

Vina to calculate their respective binding affinities. Specifically, at the mutation site (position 90), our 

chosen molecule is COC1=C(OC2CCCC2)C=C(C=C1)C1CNC(=O)C1 (commonly known as Caffeine 

Derivative, representing class C7). For the predicted cavity, the selected small molecule is 

CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4(C(=O)CO)O)C)O, which has a binding affinity of -

6.488 kcal/mol, representing class C4. This molecule shows the best binding affinity in both columns. 

 

Figure 7. Comparsion of binding affinity across screening round. 

Fig. 7 illustrates the binding affinities of selected small molecule candidates to both the mutation 

position and the predicted cavity across three screening rounds.  

Table 2. (continued). 
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Round 0 represents the initial docking of the Notch3 protein with representatives from 18 different 

categories of small molecules. Round 1 involves selecting the category with the best binding affinity 

and identifying structurally similar small molecules from the ChemBL database. The average binding 

affinity and standard error are then calculated using these newly identified small molecules. Round 2 

continues this process by selecting the small molecule with the highest binding affinity from the first 

round and conducting further searches. The top 10 small molecules identified in this search are used to 

compute the average binding affinity and standard error for this round. This sequential screening process 

progressively refines the selection of potential drug candidates by focusing on those with increasing 

binding affinities. 

The significance of conducting multiple screening rounds is evident from the progression seen in the 

data. Each round refines the selection process, potentially yielding candidates with higher affinities and 

better therapeutic profiles. It also shows that the predicted cavity consistently outperforms the mutation 

position in terms of binding affinity across all rounds. This suggests that the predicted cavity offers a 

more favorable binding environment for these small molecules, indicating that focusing on this site may 

lead to the identification of more effective drug candidates. 

Given these promising results, extending the screening to additional rounds could be beneficial. More 

rounds would allow for an even finer filtration of candidates, potentially leading to the discovery of 

small molecules with optimal binding characteristics. This iterative screening process, especially when 

paired with a focus on areas like the predicted cavity, represents a powerful strategy in the quest for 

novel therapeutic agents. This method not only enhances the efficiency of drug discovery but also 

improves the chances of finding highly specific and effective drugs. 

3.4.  The docking between drug small molecules and the protein. 

After identifying a series of small molecules that effectively interact with the target protein, we further 

explored what factors enable these molecules to achieve good binding affinity with the Notch3 R90C 

mutant protein. Here we only used the round 2 screening as the example. We focused on identifying the 

largest common structural feature among these molecules, which was shown in Fig. 8. This structure, 

representing the maximum common substructure, was then exclusively used for docking with the target 

protein. 

 

Figure 8. The largest common structure of round 2 screening on predicted cavity. 
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Figure 9. Hydrogen bond (blue) and hydrophobic contact (grey) enhance the binding between notch 3 

mutant R90C and round 2 screened small molecules. 

Through this targeted docking approach, we discovered that this common structural motif is capable 

of forming multiple hydrogen bonds with the protein's side chains (shown in blue in Fig. 9). Additionally, 

the structure establishes numerous hydrophobic contacts with the protein (shown in grey in Fig. 9), 

further enhancing the tightness of the binding. The presence of a cyclic component with both amide and 

thioether functionalities within the common structure suggests a unique combination of flexibility and 

rigidity, allowing optimal orientation and interaction within the protein’s binding site. This structural 

synergy likely contributes significantly to the observed high binding affinities, underscoring the 

potential of focusing on such common features in drug design efforts. 

4.  Discussion 

The study presented utilized iterative screening to identify potential therapeutic agents for targeting the 

Notch3 R90C mutant, a protein variant linked to CADASIL. By applying a combination of molecular 

docking (AutoDock Vina) and hierarchical clustering within the DrugBank database, the research 

demonstrated the practical application of computational tools to enhance drug discovery processes. 

However, this approach, while innovative, also exposes several areas of potential improvement and 

challenge that warrant further exploration and discussion. 

4.1.  Limitations of DrugBank Screening 

One notable limitation encountered in this study is the reliance on the DrugBank database, which, 

despite its extensive collection, provides a finite set of small molecules. The initial screening of these 

molecules, although systematic, may have inadvertently excluded potential candidates not listed in 

DrugBank or those not categorized as small molecules suitable for binding studies. Additionally, the 

classification of molecules in DrugBank, based largely on therapeutic categories rather than chemical 

properties or specific binding capabilities, may not have been sufficiently granular to capture the 

nuances required for targeting a specific protein mutation. This generalization potentially limits the 

discovery of novel or unexpected interactions that could be therapeutically relevant. 

Another critical reflection on the utilization of the DrugBank database is that we simply applied 

hierarchical clustering to process the data from DrugBank, which does not fully leverage the advantages 

of the database. 
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4.2.  Insufficiency of Iterative Screening Round. 

The methodology employed only 2 rounds of screening. This limited number of rounds may not 

adequately represent the depth of screening necessary to conclusively identify the best candidates. Each 

round refines the pool based on the highest binding affinities, yet the variability and true potential of 

slightly lower-ranked molecules might not be fully explored. The cut-off for progression to subsequent 

rounds may thus exclude candidates with beneficial off-target effects or those that could exhibit 

improved efficacy upon slight molecular modification. 

4.3.  Reliance on Predictive Models 

Another critical point is the exclusive use of AlphaFold-predicted structures for the docking studies. 

While AlphaFold represents a groundbreaking advancement in structural biology, providing highly 

accurate protein models, these are still predictions and not experimentally determined structures. The 

reliance on computational predictions carries inherent risks, such as inaccuracies in modeling dynamic 

protein conformations or interactions under physiological conditions. This reliance might skew the 

binding affinity data and interaction analyses, potentially leading to misleading conclusions about a 

molecule's therapeutic viability. 

4.4.  Simplification of Molecular Interactions 

The study's approach to characterizing interactions primarily focused on binding affinities, which, while 

crucial, do not encompass the full spectrum of biochemical interactions relevant in a physiological 

context. Interactions such as allosteric effects, transient binding events, and the influence of cellular 

microenvironments were not accounted for. These factors can significantly affect a drug's performance 

and are often only observable in more complex biological assays or in vivo studies. 

4.5.  Potential for Overlooking Synergistic and Polypharmacological Effects 

In focusing on single-target interactions, the study may overlook the potential synergistic effects that 

could arise from molecules affecting multiple pathways or targets. Polypharmacology, the design or use 

of drugs that affect multiple targets, is increasingly recognized as a valuable approach in treating 

complex diseases like CADASIL, which may involve multiple pathological pathways. The current 

methodology, by concentrating solely on the R90C mutation's direct binding partners, potentially misses 

opportunities to explore compounds that offer broader therapeutic effects. 

4.6.  Future Directions 

To address these limitations, future research should consider expanding the chemical space explored 

through integration with additional databases and synthetic libraries to bypass the constraints posed by 

existing classifications. Increasing the number of screening rounds and incorporating feedback 

mechanisms to revisit excluded molecules could also enhance the comprehensiveness of the screening 

process. Moreover, integrating experimental validation stages early in the screening process would help 

confirm the computational predictions, thereby solidifying the basis for drug development decisions. 

Additionally, adopting a systems biology approach to account for the complex network of 

interactions within cellular systems could provide a more holistic view of a drug candidate’s potential 

impact. Such an approach could also help identify multi-target drugs that may offer better therapeutic 

profiles for complex genetic disorders like CADASIL. 

In conclusion, while the study sets a robust foundation for using computational methods in drug 

discovery, its insights must be further refined and expanded through integrated, multi-dimensional 

approaches to drug research and development. This will not only overcome the identified limitations but 

also pave the way for more effective and comprehensive therapeutic solutions. 

5.  Conclusion 

The findings from this study underscore the potential of iterative screening methodologies to 

significantly enhance drug discovery efforts. By employing multiple screening rounds, we were able to 
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progressively refine our pool of candidates, demonstrating that each subsequent round could indeed 

yield compounds with increasingly favorable binding characteristics. This process proved particularly 

effective in not only identifying high-affinity binders but also in understanding the structural basis of 

their interactions with the Notch3 R90C mutation. The use of such a targeted approach confirms the 

practicality of using advanced computational tools and clustering techniques to streamline the drug 

development pipeline, potentially leading to more effective treatments for diseases with complex genetic 

backgrounds like CADASIL.  
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