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Abstract. Cognitive neuroscientists rely on functional neuroimaging techniques and behavioral 

assays to investigate correlation between brain activation and cognitive processes. Researchers 

would also infer what cognitive process is engaged under a condition based on neuroimaging 

data. This is referred to as reverse inference or encoding paradigm and it has generated 

longstanding discussions among cognitive neuroscientists, data scientists and philosophers. The 

consensus is that it should be done with rigorous statistical methods and careful interpretations. 

Statistical methods and large collaborative databases and data processing tools have been 

developed to build classificatory or predictive models of reverse inference. However, these tools 

are not without pitfalls. The problem of cognitive process further complicates the problem since 

it is a latent variable and the wide discrepancy on the taxonomy and ontology of cognitive 

processes within the field. Online collaborative project has been set up to combat this problem, 

while others try to circumvent pre-established concepts by extracting latent variables from 

existing data or by focusing on the evolutionary prerequisite of cognition. A fundamental 

limitation of reverse inference is its dependency on correlational data, which lacks the 

explanatory power interventionist studies have. Models that seek to establish causal relation from 

time-series data can only provide weak inferences. Furthermore, the dynamic complexity of the 

brain network complicates the mechanism. This review provides an overview of reverse 

inference in cognitive neuroscience. It discusses advances in methods, limitations, and 

conceptual issues inherent within reverse inference, particularly addressing the challenges 

mentioned above. 
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1.  Introduction  

Scientific reasoning, unlike pure deductive or mathematical reasoning, relies on making risky inference 

based on empirical data. In another word, scientific statements should be falsifiable. The study of 

cognitive neuroscience also relies on making risky inferences. Robust statistical tools, tightly controlled 

task experiments and high precision imaging instruments have been developed to refine inferences in 

cognitive neuroscience research. However, even with advanced methodologies, scientific inference 

should still be made with caution with careful interpretation of empirical data. Reverse inference is a 

central issue that exposes the current limitation and pitfalls in cognitive neuroscience research where 

the fundamental problems does not only lie in the technology researchers have at their disposal, but the 

abilities of the researchers to be aware of the deeply entrenched methodological limitations. A lack of 
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understanding and awareness of methodological limitation can greatly impair researchers’ judgment and 

mislead them to make unwarranted claims.  

Reverse inference, in short, is the process from inferring mental states, cognitive processes or any 

innate and latent psychological processes from measured brain activities. Poldrack’s article on this topic 

in 2006 [1] generated lasting discussion on this topic and its trailing implications. It has inspired the 

fields to develop statistical tools to support more rigorous methods to help researchers making sound 

claims [2-11]. As cognitive neuroscience increasingly relies on complex models and deep learning 

techniques to analyze brain data, the interpretation of these results becomes more intricate, raising 

important questions about the validity and reliability of reverse inference as a tool for understanding 

human cognition [11, 12]. Statistical analysis, however, is not the sole issue underlying reverse inference. 

In the existing literature, there is much heterogeneity among the definitions and operationalization of 

concepts of different cognitive processes and their relationships [1,7,13]. Furthermore, lack of 

interventionist data in cognitive neuroscience exacerbates the limitation of current use of reverse 

inference, such as lack of explainability [14-16].  

This article delves into the logic, goals, and inherent challenges of reverse inference within cognitive 

neuroscience, exploring the nuances of statistical methodologies, the ongoing debates surrounding 

cognitive ontology, and the complex relationship between observation, perturbation, prediction, and 

causation in this rapidly evolving field. 

2.  Logic and Goal of Reverse Inference in the Context of Cognitive Neuroscience 

The archetypal cognitive neuroscience experiment goes as follows: certain behavioral tasks are 

randomized as the independent variable. Some types of behavioral response (i.e. eye-tracking, response 

time, etc.) are measured along with brain activities with hemodynamic measure (e.g. Functional 

Magnetic Resonance Imaging (fMRI) or electrophysiology (e.g. Electroencephalography (EEG) [1,17]. 

Putatively, a certain cognitive process is elicited by the behavioral task and the behavioral response is 

measured to confirm whether this cognitive process is activated or the level of activation. The measured 

data of brain activities is then analyzed along with the behavioral outcome to find correlation between 

brain activation and engagement of cognitive processes of interest [17]. The identification of correlation 

between brain activation and engagement of cognitive processes is considered as forward inference [17]. 

Note the casual chain in this study design: the only manipulation is the randomization of behavioral 

manipulation. Causal claims can be made between behavioral task and brain activities and between task 

and behavioral outcome. No causal claims can be made between the brain activation and behavioral 

outcome (by extension, the engagement of cognitive process).  

Reverse inference in cognitive neuroscience is the act of inferring cognitive process engagement by 

brain activation data [1]. This is also referred to as the “decoding model” [10]. Inference of this type 

requires prior literature to establish correlation between cognitive process and neural activities, 

particularly forward inference studies. Reverse inference is often characterized as an abductive 

reasoning in the sense that it is an “inference to the best explanation” where the most plausible 

conclusion is made based on available but incomplete evidence [1,18-24]. In probabilistic terms, it is to 

determine the conditional probability of the involvement of a particular cognitive process given that a 

specific neural activity is observed in an individual, specify it as P(COG|NEU). Bayes’ formula could 

be used to calculate this probability, the form of  

 P(COG|NEU) =
P(NEU|COG)×P(COG)

P(NEU)
=

P(NEU|COG)×P(COG)

P(NEU|COG)×P(~COG)+P(NEU|~COG)×P(~COG)
 (1) 

P(COG) would be the prior probability of whether the cognitive process of interest is elicited in 

general, as known as the base rate, similarly P(NEU) would be the base rate of the specific brain activity 

under investigation. “~” denotes negation, thus P(NEU|~COG) denotes the conditional probability of 

the presence of a specific neural activity given that the cognitive process of interest is absent. The 

posterior probability calculated or the likelihood ratio (P(COG|NEU)/P(NEU), also known as Bayes 

factor) could be used to determine the selectivity between the cognitive process and brain activity [1,19-
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24]. The level of selectivity, or the strength of correspondence between brain activity and cognitive 

process are the criterion for acceptable reverse inference [1]. Strong correlation is not enough since a 

brain activity could be observed under a variety of cognitive processes engagement. Bayes’ theorem 

provides the tool to evaluate that specificity between these two variables. Brain activities measurement 

here could be either a local activation (structural location) or a pattern-based response (global or local) 

[2,3,20]. In the case of pattern-based response, it could be the pattern of multiple voxels’ activation at a 

particular region, the functional connectivity of a brain network, or the wave pattern recorded by the 

EEG/MEG. Reverse inference can also work in the other direction, by inferring how the brain is 

activated given a cognitive process is active.  

3.  Statistics of Reverse Inference and Its Challenges 

Cognitive neuroscience relies on human participants for the study of higher-level cognition such as 

language processing and production, thus most studies use noninvasive neuroimaging techniques to 

capture neural activities. As mentioned above in section 1, this approach generates correlational data 

between brain activities and cognitive processes engagements. To draw conclusions from correlational 

data, statistical analysis is indispensable. 

Statistical and consolidated databases have been developed to facilitate formal and vigorous reverse 

inference. However, as statistical vigor increases, the data processing pipeline becomes more 

complicated as well. Multivariate pattern analysis (MVPA) is a common choice among researchers for 

pattern classification [20]. The extracted pattern can then be used to predict whether a cognitive process 

is active or not based on brain activation.  

Deep learning methods are now common for this purpose, where input data are passed through 

multiple layers of nonlinear functions in order to reach an abstract representation of the dataset [8,12]. 

However, the pipeline of data processing with deep learning is difficult to interpret how the model makes 

decisions regarding decoding. Certain techniques have been developed to address this issue such as 

sensitivity analyses, background decompositions and reference-based attribution [11,12]. All of the 

above techniques aim to identify relevant features that deep learning models used to make predictions, 

either by analyzing each layer backward or by using a reference feature as comparison.  

The predictive power of deep learning is impressive, but it is not immune to methodological issues. 

In fact, because of its complex data pipeline, it is more susceptible to having methodological issues that 

are masked by its apparent superior performance. One problem is hidden stratification [12], where 

trained deep learning models can perform well on average within a given dataset but have difficulties 

discriminating within subclasses. Additional stratification of the dataset before training, either 

automated or manually, could help combat hidden stratifications. Deep learning models are also overly 

sensitive to confounds because of its strong ability to extract patterns [12]. It could learn to make 

decisions based on features that should not be considered. For example, a deep learning model trained 

on neuroimaging data might be sensitive to specific noise due to head motions (as in fMRI). To test for 

robustness and potential confounds, the trained model should be cross-validated with datasets the model 

was not trained with. 

4.  Problems with Cognitive Ontology 

Relating established psychological constructs in the literature on neural architecture and pattern of 

activities is a common top-down approach, but the problem of cognitive process is that it is a latent 

variable [1,3,13]. Cognitive processes' presence cannot be directly observed but only indirectly inferred. 

Behavioral tasks only putatively recruit cognitive processes into action. Often, researchers would 

conflate the task with the cognitive process itself. It is difficult to isolate cognitive processes even under 

behavioral interventions. These constructs are also subjects of fraught debates among psychologists. 

Although experimental protocols have been in use for many studies that take them for granted, 

academics cannot reach a satisfactory consensus that assigns them with stable concepts. Cognitive Atlas 

is an open collaborative project founded by Poldrack [7] that aims to develop a coherent and 
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comprehensive cognitive taxonomy that can represent the consensus among researchers. It has been 

utilized in some studies but not widespread.  

One of the main motivations of cognitive neuroscience is to enrich our understanding of human’s 

cognitive architecture from a neurobiological perspective. Neuroimaging data can be used to discern 

whether a psychological construct should be considered with ontological status. Lenartowicz et al. [25] 

have used machine learning to classify different neural activation patterns under different tasks that 

purportedly operationalize different cognitive processes such as working memory, response selection, 

response inhibition, and task switching. The classifiers can accurately differentiate activation under 

different behavioral conditions but task switching, thus Lenartowicz et al. concludes that task switching 

should not be considered as a discrete cognitive process. Similarly, a data-driven approach also 

harnesses the vast amount of neuroimaging data under different behavioral conditions to identify latent 

variables that link neural activation patterns and task conditions [26]. The latent variables identified are 

assumed as basic units of cognition. By suspending judgment on cognitive ontology, this approach has 

the advantage of not relying on potentially unreliable cognitive theories that could bias the result and 

uncovering novel cognitive processes. 

Another approach called phylogenetic refinement draws upon an evolutionary perspective, viewing 

cognitive processes as adaptive strategies in face of evolutionary pressure [27]. Unlike evolutionary 

psychology, which focuses on sexual selection and social cognition, phylogenetic refinement focuses 

on brain evolution. Similarly, this approach deliberately circumvents problems of a top-down pre-

defined cognitive ontology which relies on folk-psychology to avoid biases in empirical investigation. 

As the vertebrate nervous system evolves, its repertoire of behavior bifurcates and sophisticates from its 

previous system. It is important to understand higher-level behaviors (such as cognitive processes) in 

terms of how it arises from basic behaviors. This perspective deflates cognition as behavior, but 

affirming that behavior as innately originated where behavioral output is not triggered by input, but the 

inputs modulate the system’s output and its output controls the inputs. It reframes the question of 

cognition as how it arises within the brain of which has evolved to have an interactive behavior repertoire.  

5.  Observation, Perturbation, Prediction and Causation 

It is important to remember that the decoding paradigm utilizes correlational data. The feature extracted 

by deep learning models to predict cognitive processes might only be epiphenomenal. The success of a 

trained decoding model in accurately predicting cognitive process engagement does not mean that it can 

identify the brain activities pattern necessarily for that cognitive process [28]. Brain stimulation studies 

(intracranial or noninvasive) are usually done with patient populations, which compromises their 

ecological validity as it is difficult to generalize their result as an explanatory account of neural 

mechanisms underlying cognition.   

In fields such as economics and public health, researchers would infer causation from observational 

data. In neuroscience, Granger causality analysis (GCA) and Dynamic Causal Model (DCM) [16,28] 

has been used to identify interaction among brain regions with fMRI data. However, a model using 

correlational data to infer causality will require substantial assumptions about the data and methodology 

which cannot always be satisfied. GCA necessitates time series data over neural variables at a consistent 

sampling rate. Any mismatch, especially in fMRI measurements, can lead to erroneous conclusions 

about causal relationships due to undersampling. To yield reliable causal knowledge with GCA, 

substantial background knowledge is essential. Without this, GCA may not effectively distinguish 

between correlation and causation, particularly in complex neuroimaging contexts. Also, the temporal 

structure of the data is crucial. GCA can fail if there is a mismatch between the actual timescale of neural 

activity and the measurement timescale, which is common in fMRI studies.  

The human nervous system is also depicted as a dynamic complex control system which is 

characterized by its nonlinearity, and feedback-loops [29,30]. Causation can be interpreted two-fold. 

The classical view of causation assumes a mechanism with separable units and unidirectional 

information flow. However, the brain has network architecture and functions as a nonlinear dynamical 

system where causality is topological. For example, between brain regions interactions are often 
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bidirectional and cyclical [31]. Pessoa and György [29,30] have expressed skepticism on the concept of 

causation in neuroscience. Even under strict and localized manipulation (such as a single neuron), the 

resulting changes can lead to secondary effects that are not directly related to the initial perturbation. 

This makes it difficult to ascertain whether observed outcomes are due to the direct manipulation or to 

these secondary changes in the network. Furthermore, neurons are part of intricate circuits, and 

perturbing one part of the network can unpredictably affect other areas [28]. This interconnectedness 

can obscure the true causal pathways, as the network may respond in unexpected ways. In complex 

systems, causation can be reciprocal or circular, meaning that the relationships between variables are 

not linear. This complicates the interpretation of results, as the cause may not be easily identifiable.  

6.  Conclusions  

This review delineates the basics of reasoning of reverse inference in cognitive neuroscience research, 

the concerns of this mode of inquiry, related conceptual issues such as cognitive ontology and causation, 

the relevant statistical methodology and their limitations, and proposed solutions for improvement. The 

field of cognitive neuroscience has significantly advanced thanks to the tools developed with data 

science, machine learning and neuroimaging techniques. Motivation for such advancement is partially 

due to researcher’s concerns of limitations of reverse inference. However, as discussed above, reverse 

inference problems extend beyond data analysis. Conceptual issues are as pertinent as methodological 

issues, if not more. Often, conceptual issues constrain what methodology is allowed.  

As methodology advances and sophisticates, more possibilities and opportunities for generating 

knowledge emerge. At the same time, some unsolved fundamental limitations will emerge as new 

pitfalls and challenges. This review hopes to guide current researchers of cognitive neuroscience to 

navigate these challenges.  
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