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Abstract. This paper investigates the application of Brain-Computer Interface (BCI) technology 

in the realms of emotion recognition and regulation. BCI technology facilitates direct 

communication between the brain and external devices, offering significant promise for 

improving human-environment interactions, particularly with regard to the identification and 

modulation of emotional states. By analyzing brain signals, such as electroencephalography, this 

study classifies emotions based on widely recognized models, including Ekman’s model and the 

Russell circumplex model. To enhance the precision of emotion classification, machine learning 

algorithms, such as support vector machines and neural networks, are utilized. Moreover, this 

study explores BCI’s potential in emotion regulation, focusing on neurofeedback and brain 

stimulation methods like transcranial direct current stimulation, which have shown therapeutic 

potential, particularly for disorders related to emotional dysregulation. Additionally, the paper 

delves into the integration of BCI with virtual reality to create immersive environments 

conducive to emotional therapy. Despite its considerable potential, BCI technology faces 

obstacles such as low data transmission rates and the complexities associated with user training. 

Nonetheless, the integration of BCI technology within Industry 4.0 frameworks holds promising 

opportunities for optimizing human-machine interactions and improving workplace safety. 
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1.  Introduction 

Brain-Computer Interface (BCI) technology has become a focal point of research in neuroscience and 

human-computer interaction, offering a direct communication link between the brain and external 

devices. Originally conceptualized in the late 19th century through discoveries in brain electrical activity, 

BCI technology has since evolved into a sophisticated system with wide applications, particularly in 

neurorehabilitation, communication, and human enhancement [1].  The core of BCI technology revolves 

around its ability to collect, process, and apply brain signals, making it an invaluable tool in fields 

ranging from medical applications to entertainment. With its growing capabilities, BCI has increasingly 

been used to investigate and influence complex human behaviors, including emotional states. Emotions 

play a critical role in human experience, affecting decision-making, social interactions, and overall well-

being. Emotional dysregulation can lead to various mental health disorders, including depression and 

anxiety, making the ability to recognize and regulate emotions a key area of focus for researchers. By 

leveraging neurophysiological signals such as electroencephalography (EEG), BCI technology allows 
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for real-time monitoring of emotional states, providing insights into how emotions are formed, perceived, 

and controlled. Models such as Ekman’s basic emotions theory and Russell’s circumplex model of affect 

serve as foundational frameworks for categorizing emotional states within BCI applications. These 

models enable the classification of emotions along dimensions such as valence (positive or negative) 

and arousal (high or low), which are crucial for developing accurate emotion recognition systems. The 

ability to regulate emotions is equally significant, particularly for individuals suffering from emotional 

disorders. Techniques such as neurofeedback, which allows individuals to consciously alter their brain 

activity, and brain stimulation methods like transcranial direct current stimulation (tDCS) have shown 

promise in improving emotional regulation. These methods target specific brain regions associated with 

emotional control, such as the prefrontal cortex, and have been used in both clinical and non-clinical 

settings to enhance emotional resilience and reduce symptoms of emotional dysregulation [2]. This 

paper aims to provide a comprehensive review of the existing literature on BCI applications in emotion 

recognition and regulation. The primary focus is on synthesizing current research to map out key 

developments, challenges, and future directions. By integrating insights from multiple studies, this 

review seeks to consolidate knowledge on how BCI systems are being employed to decode and modulate 

emotional states. This article serves as a valuable resource for researchers looking to build upon existing 

work in this evolving field.  

2.  Overview of BCI Technology 

BCI technology is a system which was put forward by Richard Caton, Adolf Beck and Hans Berger in 

the 1800s depending on the discoveries regarding the brain’s continuous electrical activity provided a 

foundation for measuring and manipulating nervous system signals. When broadly construed, BCIs are 

intend to develop, restore or rehabilitate function, ultimately aiming to improve user’s abilities to 

communicate, interact with their environment, and help them with achieving personal goals. BCIs for 

the restoration of lost function typically require bypassing lesions caused by disease or trauma to directly 

replace the lost function [3]. The BCIs system comprises three fundamental components, each serving 

a specific role. Signal collection or acquisition, its processing, and subsequent application. The 

components are interlinked and collaborate to facilitate the transmission of signals to the intended BCIs 

application. Under certain conditions, the BCIs application can transmit control signals back to the brain, 

stimulating basic human functions like visual and auditory perception [4]. The BCIs microcontroller 

must process the collected signals to remove any noise or artifacts resulting from external or device-

specific factors. The analysis of the obtained signals and the recognition of corresponding commands 

are performed by an artificial neural network with advanced data processing and adaptive capabilities. 

Ultimately, the obtained decoded signals are interpreted based on their specific characteristics on the 

controlled device. Neural interfaces are classified into three categories based on their level of 

invasiveness: invasive, non-invasive, and semi-invasive. Invasive neural interfaces necessitate the 

implantation of intracortical microelectrodes (IM) directly into the brain, delivering the highest 

effectiveness while presenting a higher level of risk. Non-invasive neural interfaces utilize methods such 

as electroencephalography (EEG), magnetoencephalography (MEG), or functional magnetic resonance 

imaging (fMRI) to assess brain activity from the head's surface, avoiding electrode implantation. 

Electrodes in semi-invasive BCIs are located under the skull and rest on the brain's surface, as in the 

case of electrocorticography (ECoG). EEG, fNIRS, MEG, and ECoG each offer distinct advantages and 

limitations in BCI applications, with notable differences across platforms. EEG stands out for its 

affordability, portability, and non-invasiveness, making it a versatile option for various uses. However, 

its precision is hindered by low spatial resolution and susceptibility to artifacts. fNIRS, similarly non-

invasive and portable, excels in detecting oxygenated blood changes with high accuracy, but falls short 

in temporal resolution and struggles with deeper brain structures due to skull thickness. MEG shines in 

both temporal resolution and localization, outperforming EEG and fNIRS in these areas, yet its high 

cost, complexity, and sensitivity to environmental interference reduce its practicality. On the other hand, 

ECoG, though invasive due to requiring surgical implantation, delivers the highest spatial accuracy and 

excellent signal quality, rivaling MEG in temporal resolution, but with significant risks like infection 
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and tissue damage. When compared, fNIRS and EEG offer more user-friendly, non-invasive solutions, 

while MEG and ECoG push the boundaries of accuracy and detail but at the cost of increased expense, 

complexity, and invasiveness [5]. 

3.  Application of BCIs in Emotion Recognition 

Typically, emotions are triggered by concepts, recollections, or occurrences that take place around living 

environment. It plays a crucial role in decision-making and human interaction. Unpleasant emotions can 

lead to both psychological and physical problems. Thus, unfavorable emotions may lead to health issues, 

whereas positive emotions promote better living conditions. Historically, people identified six core 

emotions—sadness, surprise, happiness, disgust, fear, and anger -- that are universally expressed 

through facial cues. More complex emotions, such as shyness, guilt, and contempt, originate from these 

foundational emotions (Ekman model). Up until now, researchers have developed numerous 

multidimensional techniques to emotion modeling, Russell’s circumplex model, one of the most widely 

adopted emotional models, is a two-dimensional framework that categorizes emotions using arousal and 

valence dimensions and can encompass up to 150 affective labels. In this model, emotions can be 

categorized along the axes of arousal and valence in a nuanced manner. High arousal positive valence 

(HAPV) emotions encompass a spectrum ranging from feelings of pleasure to excitement, while high 

arousal negative valence (HANV) emotions span from nervousness to irritation. In contrast, low arousal 

negative valence (LANV) emotions include states such as sadness, boredom, and sleepiness. Meanwhile, 

low arousal positive valence (LAPV) emotions are characterized by a sense of relaxation and calmness. 

The brain regions directly associated with emotions include the prefrontal lobe -- includes frontal motion 

area, primary motion area, etc. The parietal lobe, the temporal lobe [6]. The original DEAP dataset 

undergoes two main stages: processing and feature extraction. In the processing stage, data is handled 

using Empirical Mode Decomposition (EMD), Intrinsic Mode Function (IMF), and Variational Mode 

Decomposition (VMD) to extract valuable signal information. In the feature extraction stage, key 

features like Entropy and Higher-Order Fourier Dimension (HFD) are derived for emotion classification. 

These features are then vectorized and split into training and testing datasets. Machine learning 

algorithms such as Naive Bayes, KNN, CNN, and Decision Tree (DT) are applied for training. Finally, 

a performance measurement module evaluates the classification accuracy on the testing dataset. DEPA 

as a dataset, freely accessible online, is commonly used for studying human emotions through EEG 

signals [7]. The content derived from the DEAP dataset mainly revolves around the selection of 

classifiers for emotion recognition using EEG signals. The emotion recognition method for EEG signals 

based on machine learning typically involves two steps: manual feature extraction and classifier 

selection. Feature extraction methods primarily include time-domain analysis, frequency-domain 

analysis, time-frequency domain analysis, multivariate statistical analysis, and nonlinear dynamic 

analysis. Commonly used unsupervised time-domain methods for summarizing EEG data include 

principal component analysis (PCA), linear discriminant analysis (LDA), and independent component 

analysis (ICA) [8]. The conventional fMRI designs are typically divided into two primary categories: 

resting-state and task-based. Task-based fMRI employs a combination of simple, controlled, and 

frequently abstract stimuli, organized to examine specific processes in isolation. Thus, a standard 

experimental task design alternates between task and control periods, consisting of sequentially 

presented stimuli. Additionally, participants are typically instructed to respond to the stimuli. 

Conversely, resting-state fMRI monitors spontaneous brain activity over extended periods without 

experimental constraints or active responses, uncovering unique patterns of both static and dynamic 

functional connectivity (FC) that can predict behavior and differ among individuals, clinical conditions, 

or affective states. Both approaches have their respective strengths and limitations. Current research 

suggests that film stimuli serve as an effective tool for examining functional brain networks in 

neuroscience studies. Evidence shows that distinct storylines within narratives evoke progressively 

differentiated neural signatures over time. BCIs detect signals related to emotion recognition as subjects 

engage with film stimuli [9]. 
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4.  Application of BCIs in Emotion Regulation 

The capacity to regulate emotions is fundamental to healthy development and functioning across various 

domains. Conversely, dysregulated emotional control has been identified as a transdiagnostic risk factor 

for numerous mental health disorders. Consequently, emotion regulation is considered a crucial 

developmental task. Many definitions have been offered to outline the contours of "emotion regulation", 

these definitions tend to converge on the processes or competencies related to the awareness, evaluation, 

maintenance, and/or modulation of emotional states in order to achieve one's goals. Emotion regulation 

can be either conscious and deliberate or unconscious and automatic; it can be self-managed or 

externally supported, and it may occur within both positive and negative emotional contexts. Given the 

intricate array of processes that emotion regulation encompasses (including physiological, cognitive, 

and social aspects), it is widely regarded as a continuous developmental task, evolving significantly 

from birth through childhood, adolescence, and even into adulthood [10]. Emotion is reflected in two 

ways: externally and internally. External reactions include human facial expressions, gestures, and 

speech. Skin electrical responses, heart rate, blood pressure, respiratory rate, electroencephalogram 

(EEG), electroencephalography (EOG) and magnetoencephalogram (MEG) are all encompassed in 

internal reactions. A game assistant system for emotional feedback regulation, which was constructed 

based on EEG and physiological signals, providing players with a fully immersive and highly interactive 

experience. The implementation of EEG-based games for concentration training and emotion-based 

applications, such as web-based music therapy, represents a significant application of EEG in emotional 

regulation [11]. The regulation of emotions through BCI technology is inseparable from neurofeedback. 

Neurofeedback is a technique that enables individuals to regulate their brain activity in real-time, 

attracting significant attention for its potential applications extend to clinical therapy, cognitive 

enhancement, and performance optimization [12]. Transcranial electrical stimulation (tES) employs 

various current waveforms, including transcranial direct current stimulation (tDCS), transcranial 

alternating current stimulation (tACS), and transcranial random noise stimulation (tRNS), to modulate 

neuronal states by applying them to the scalp. Among these, tDCS and TMS are two commonly used 

brain stimulation methods, with research demonstrating their efficacy in targeting the prefrontal cortex 

(PFC) to modulate emotion and emotion perception. Furthermore, emerging evidence suggests that 

repetitive TMS (rTMS) and anodal tDCS can enhance PFC activity during emotion regulation, 

potentially improving emotional regulation abilities, which may benefit the treatment of emotion 

regulation deficits in psychiatric disorders such as anxiety and depression [13]. 

5.  Multimodal Emotion Recognition Based on BCI 

The emotion recognition process can be performed using multimodal physiological records [14]. Single 

modality information is easily affected by various types of noise, making it difficult to capture emotional 

states, which highlights the need for multimodal affective BCIs [15,16]. The signal flow of the 

multimodal emotional regulation and interaction system begins with the collection of human brain 

signals. In sequence, it progresses from multimodal blending, followed by fusion strategy, and then 

moves into decision making. The decision results are conveyed to the emotion response controller, 

which engages in real-world interaction. During this interaction, diagnosis is conducted, and social effect 

feedback is generated. This feedback forms heterogeneous sensory stimuli, such as audio-visual and 

visual-olfactory stimuli, which in turn influence the user. In the multimodal blending process, the input 

signals include not only traditional single modality BCI signals like EEG or other similar neuroimaging 

technology signals, but also physiological signals such as eye movements and facial expressions. This 

integration of various neurophysiology modalities enables a comprehensive analysis of brain behavior 

and states. The fusion strategy consists of three components: data fusion, feature fusion, and decision 

fusion. Data fusion integrates multimodal data from various sources to ensure cooperative operation of 

the signals. Feature fusion extracts and selects useful features after data fusion to optimize the 

subsequent decision-making process. Decision fusion further combines the results of the previous fusion 

steps to form a higher level of signal integration, providing the foundation for system decisions and 

responses. During the decision-making process, complex mathematical models are employed, including 

Proceedings of  the 4th International  Conference on Biological  Engineering and Medical  Science 
DOI:  10.54254/2753-8818/64/2024.17996 

196 



 

 

matrix tensors, machine learning, and deep learning techniques. These models analyze the fused signals 

to determine the actions or decisions the system should take. Once the decision results enter the emotion 

response controller, the system's internal decisions are translated into actual emotional and behavioral 

responses, including emotional state regulation and other reactions. Overall, a feedback loop is formed. 

The system continuously monitors and adjusts its interaction with the user through this feedback 

mechanism, and the feedback results further influence the emotion response controller, allowing the 

system to make real-time adjustments and optimizations. Emotionally relevant features are categorized 

into three primary components: Face Detection, Feature Extraction, and Expression Classification. For 

Face Detection, two key methodologies are employed: Feature-based Techniques and Image-based 

Techniques. The former utilizes approaches such as Low-level Analysis, Feature Analysis, and Active 

Shape Models to identify facial features, whereas the latter employs methods like Example-based 

Learning and Support Vector Machines (SVM) for detection. Upon detecting a face, the system engages 

in Feature Extraction, focusing on Geometric and Texture Features (GTF) and Facial Action Units 

(FAU). GTF involves techniques such as Gabor Wavelets and Local Binary Patterns to extract geometric 

shapes and textures, while FAU examines specific facial action units -- such as the brow, eyelid, cheek, 

nose, nasolabial fold, lip, chin, and mouth -- along with their corresponding movements like raising, 

lowering, pulling, pressing, and stretching. Once sufficient facial features have been extracted, the 

system proceeds to Expression Classification, which sorts these features into Basic Expressions 

(including fear, disgust, happiness, anger, sadness, surprise, and contempt) as well as Compound 

Expressions, encompassing more complex, abnormal, and micro expressions. Beyond facial expressions, 

the system also evaluates fundamental features such as pupil diameter, which helps capture visual 

attention or emotional responses. Fixation, which analyzes the areas and duration of gaze. Saccades, 

which are rapid eye movements between focal points, tracking the trajectories of these movements. The 

analysis of these fundamental features generates statistical metrics, divided into Frequency Events and 

Dispersion measures (average, maximum, and minimum). The Frequency Events include blink 

frequency, fixation frequency, and saccade frequency, all of which reveal patterns of eye movement 

behavior. The Dispersion metrics encompass total and maximum fixation dispersion, saccade duration 

averages, as well as saccade amplitude and latency averages, providing deeper insights into the variation 

in both fixation and saccade behaviors. These analyses enable the system to more accurately detect and 

classify the user's facial expressions, recognize their emotional state or psychological response, and 

provide more comprehensive behavioral analysis through the observation of basic and statistical features. 

D'mello applied statistical methods to evaluate the performance of emotion recognition systems, 

comparing single-modality approaches with multimodal ones across various algorithms and datasets. 

The most effective multimodal emotion-recognition system achieved an 85% accuracy rate, 

outperforming the best single-modality system by an average of 9.83%, with a median improvement of 

6.60% [11]. A thorough analysis of multiple signals and their interdependencies can be utilized to build 

a model that more accurately captures the underlying nature of human emotional expression. 

6.  Applications and Case Studies 

The mechanism of DBS involves applying electrical stimulation to specific regions of the brain, thereby 

influencing neural network activity and regulating emotional responses. This method can sustain long-

term antidepressant effects and reduce the recurrence of symptoms. Literature indicates that the majority 

of patients involved in studies maintained significant antidepressant responses during follow-up periods 

of up to 8 years, suggesting that DBS may have a positive effect on the long-term alleviation of 

emotional disorders, such as depression, by modulating emotional networks [15]. Combining BCI 

technology with VR enables emotion recognition to provide patients with more intuitive and interactive 

regulation methods. In a VR environment, patients can experience the regulatory effects of virtual 

scenarios through visual, auditory, and even tactile feedback. This approach not only encourages active 

patient participation but also promotes emotional stability and improvement through feedback 

mechanisms. BCI paradigms such as MI (motor imagery) and P300, widely used in neurorehabilitation, 

can also be extended to emotional regulation. By engaging patients in tasks or training within virtual 
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scenes, neuroplasticity can be stimulated, thereby affecting emotional response mechanisms. For 

patients with depression, BCI-VR systems can achieve personalized emotional regulation by adjusting 

task difficulty and feedback mechanisms within the virtual environment. These systems, by increasing 

the fun and engagement of training, are expected to shorten treatment cycles and enhance therapeutic 

outcomes. Such systems can be applied not only to rehabilitation training but also to significantly 

improve patients' mental health [16]. Emotion regulation holds great potential in neuromarketing, 

particularly when BCI technology is capable of recognizing and regulating emotions. This technology 

can help businesses gain deep insights into consumers' emotional responses, thereby optimizing 

strategies for advertising, product design, and brand experiences. Emotions play a crucial role in 

consumer decision-making, especially in shaping purchasing behavior and brand loyalty. Through BCI 

technologies like EEG, companies can track consumers' emotional reactions to products and marketing 

messages in real-time. Using this data, businesses can better adjust the content, duration, and 

presentation of advertisements to evoke positive emotions and increase consumers' purchase intentions. 

Moreover, BCI can aid in the personalized customization of marketing strategies. For instance, 

businesses could adjust advertisement content in real-time based on individual consumers' emotional 

responses, or present more motivational ads when emotions are low to boost their emotional state. This 

real-time emotion recognition-based marketing approach will help companies more accurately 

understand consumer psychology and thereby influence their purchasing decisions more effectively. 

Emotion regulation also plays a significant role in brand experience design. BCI's emotion recognition 

and regulation technologies present new opportunities in neuromarketing, providing businesses with 

more precise and personalized marketing strategies [17]. 

7.  Challenges and Future 

Although BCIs holds the potential to provide novel interaction methods in various fields such as 

healthcare, industry, and entertainment, its limitations in terms of information transmission rate remain 

evident. The low transmission rate means that BCI systems cannot rapidly and accurately transmit 

sufficient information during the process of extracting and relaying data from the brain, which hinders 

tasks requiring efficient decision-making and real-time control. The inefficiency in signal transmission 

is also linked to the complexity and instability of brain signals. Due to the nonlinearity and 

unpredictability of human brain signals, extracting useful information and precisely classifying it 

becomes more challenging, further reducing overall transmission efficiency [18]. Applications related 

to BCIs require training and learning before use, which can be time-consuming and particularly 

inconvenient for individuals with mental disabilities [19]. These applications often involve complex 

interface operations, specialized brain signal recognition training, and continuous adjustments based on 

user behavior feedback. For individuals with mental disabilities, this can lead to mental fatigue, anxiety, 

and even feelings of frustration. In the future, within the context of Industry 4.0, emotional BCI can 

enhance industrial performance by optimizing operator cognitive load, promoting human-machine 

interaction, and improving workplace safety. Although current BCI technology is still in its early stages 

of industrial application, it is expected to see large-scale deployment in the future era of Industry 4.0 

[20]. 

8.  Conclusion 

This review highlights the significant advancements in the application of BCI technology for emotion 

recognition and regulation. Through an in-depth exploration of pivotal methodologies, including 

emotion classification frameworks like the Ekman’s model and the Russell circumplex model, as well 

as intervention techniques such as neurofeedback and tDCS, the potential of BCI systems to profoundly 

impact emotional health and well-being is evident. These technologies offer promising tools for 

emotion-based interventions, showing efficacy in both clinical and therapeutic settings. Despite these 

considerable advancements, BCI technology still faces substantial challenges. Key issues include low 

information transmission rates, less-than-optimal user experiences, and the inherent complexity of 

multimodal emotion recognition systems. The difficulties in effectively transmitting and processing 
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complex brain signals hamper real-time applications, while the intricacies of system interaction present 

significant barriers to widespread user adoption, particularly in practical, everyday contexts. 

Additionally, the complexity of user interactions with BCI systems further hinders their broad 

acceptance, especially among those unfamiliar with such technologies. Future research must focus on 

improving BCI system performance by advancing signal processing techniques, simplifying user 

interactions, and enhancing the accuracy of multimodal emotion recognition methods. The incorporation 

of advanced machine learning algorithms holds considerable promise in making BCI technology more 

efficient and user-friendly. Moreover, investigating BCI’s potential within the framework of Industry 

4.0 offers intriguing possibilities. As industries increasingly shift towards more intelligent and 

automated systems, BCI technology could play a pivotal role in optimizing human-machine interactions, 

managing cognitive workloads, and enhancing overall workplace productivity. The review also 

underscores the potential of BCI to revolutionize emotional regulation, particularly through its 

integration with immersive technologies like VR, which can provide novel avenues for engaging users 

in emotional therapy. Although significant challenges remain, BCI technology stands as a promising 

frontier in the domain of emotion recognition and regulation, with far-reaching implications across 

various fields. This progress paves the way for more intuitive, adaptive human-computer interfaces in 

the future. 
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