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Abstract. The integration of brain-computer interfaces (BCIs) with exoskeleton systems offers a 

unique potential to enhance and restore human sensory and motor capabilities. This review 

delves into both invasive and non-invasive BCI technologies, with a special emphasis on the 

practical application of electroencephalography (EEG). It critically assess the effectiveness and 

limitations of EEG in controlling exoskeletons, while providing a detailed comparison of various 

control methods, including direct neuromuscular stimulation, neurofeedback, and machine 

learning-based intelligent strategies. Additionally, this review addresses the technical challenges 

faced by integrated systems, particularly in performing complex tasks and delivering real-time 

feedback, such as the intricacies of signal decoding, system stability, and user adaptability. The 

conclusion underscores the importance of future research in enhancing system reliability and 
accuracy, refining user interfaces, and developing novel algorithms to improve performance and 

user experience. This review aims to equip researchers in the field with a robust theoretical 

framework and practical insights, facilitating further advancements in the synergy between BCI 

and exoskeleton technologies. 
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1.  Introduction 

Brain-Computer Interfaces (BCIs) are at the forefront of technology, enabling direct communication 
between the brain and external devices through neural signal decoding. Their primary goal is to aid 

individuals with disabilities by restoring or enhancing functional abilities. Concurrently, exoskeletons 

are mechanical devices that integrate with the human body to assist or replace motor functions. In recent 
years, the convergence of BCIs and exoskeleton technology has revealed significant potential in the 

fields of medical rehabilitation and human augmentation [1]. This interdisciplinary integration holds 

promise not only for the restoration of motor functions but also for advancements in sensory recovery, 

indicating broad applications in enhancing human capabilities. 
Despite the extensive research that has been conducted on BCIs and exoskeletons, the majority of 

studies have tended to focus on these technologies in isolation. For instance, BCIs continue to encounter 

challenges related to the accuracy and stability of signal decoding, particularly when processing 
complex neural signals. Exoskeletons, on the other hand, still require improvements in control precision 

and user comfort, especially during extended periods of use [2]. Additionally, the body of research 

exploring the combined application of BCIs and exoskeletons remains relatively limited. Most of the 

existing studies have been centered on the recovery of motor functions, with comparatively little 
attention given to the potential for sensory recovery, which represents a significant yet underexplored 

area of research. 
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2.  Brain-Computer Interfaces 

2.1.  Invasive 

Invasive Brain-Computer Interfaces (BCIs) involves the surgical implantation of electrodes directly into 
the cerebral cortex, enabling the recording of neuronal activity with exceptional signal quality and 

resolution. This high precision allows for the accurate decoding of motor intentions. However, the 

invasive nature of this technique presents significant risks, including the complexity and cost of the 
surgical procedures, as well as potential long-term biocompatibility issues. Current research is primarily 

directed towards enhancing the biocompatibility and stability of electrode materials to mitigate 

inflammation and rejection responses. For instance, the study by Hochberg et al. demonstrated the 

potential for controlling prosthetic limbs using invasive electrodes, while also underscoring the 
challenges associated with long-term implantation [3]. Furthermore, there is ongoing exploration of less 

invasive techniques, such as the development of flexible electrodes and microelectrode arrays, aimed at 

reducing the trauma to brain tissue during implantation. 
The high-resolution signal acquisition afforded by invasive BCIs offers a distinct advantage in 

decoding intricate motor commands. For example, in certain experimental settings, monkeys have 

successfully achieved fine control of robotic arms using invasive BCI systems [4]. Despite these 
advancements, the clinical application of invasive BCIs remains fraught with challenges, including 

surgical risks, long-term device stability, and ethical considerations. Although significant strides have 

been made in both laboratory and animal studies, substantial technical and ethical obstacles must be 

addressed before these technologies can be safely and effectively applied to human patients. 

2.2.  Non-invasive 

Non-invasive Brain-Computer Interfaces (BCIs) use scalp electrodes to record electroencephalogram 

(EEG) signals, valued for their safety, cost-effectiveness, and ease of application. While these methods 
typically offer lower signal quality compared to invasive techniques, advances in signal processing 

algorithms have significantly enhanced decoding accuracy. EEG technology is versatile, with 

applications spanning motor intention decoding and emotional state monitoring. 

EEG is particularly valued for its high temporal resolution, which enables real-time monitoring of 
brain activity. However, the spatial resolution of EEG signals is limited by the attenuation caused by the 

scalp and skull. In recent years, the integration of high-density electrode arrays and advanced signal 

processing techniques has markedly enhanced the spatial resolution of EEG. For instance, research by 
Müller-Putz et al.5demonstrated the efficacy of steady-state visual evoked potentials (SSVEPs), which 

are noted for their high signal-to-noise ratio and stability, making them a reliable signal source for BCI 

applications  [5]. 

2.3.  Regulatory transmission of signals 

The regulatory transmission of signals is fundamental to enhancing the performance and accuracy of 

non-invasive Brain-Computer Interfaces (BCIs). These systems improve decoding precision by 

strategically modulating signal parameters to optimize the interpretation of brain activity. Established 
methodologies include impulse signals, which, due to their brief and transient nature, evoke rapid neural 

responses crucial for precise motor control; step signals, which induce sustained neural responses 

through abrupt changes in signal parameters, thereby supporting prolonged attention and task 
engagement; and steady-state signals, such as steady-state visual evoked potentials (SSVEPs), which 

generate continuous and stable neural responses via repetitive visual stimuli at specific frequencies. 

Each approach leverages distinct stimulation paradigms to enhance the decodability of 
electroencephalography (EEG) signals. 

Research by Müller-Putz et al. has highlighted the efficacy of SSVEPs in BCI applications. SSVEPs 

are recognized for their high signal-to-noise ratio and stability, making them one of the most reliable 

signal sources in BCI systems. The robustness of SSVEPs facilitates more accurate and consistent 
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decoding of user intentions, particularly in environments where signal clarity and stability are critical 

[6]. 

In recent years, there has been increasing interest in enhancing BCI systems through the development 
of multimodal approaches. These systems integrate EEG with other physiological signals, such as 

electromyography (EMG) and electrooculography (EOG), to improve overall decoding performance. 

Multimodal BCIs are designed to leverage the complementary information provided by different signal 
modalities, thereby enhancing the system's robustness and accuracy in interpreting user intentions. 

For example, studies have shown that incorporating EMG signals, which reflect muscle activity, can 

significantly improve the accuracy of BCIs in motor control tasks. By combining EEG data with EMG 

signals, BCI systems can more effectively distinguish between subtle motor intentions, leading to more 
precise control of external devices such as robotic arms or exoskeletons [7]. This multimodal approach 

not only enhances decoding performance but also broadens the applicability of BCIs in real-world 

settings, where integrating multiple physiological signals can provide a more comprehensive 
understanding of user intent. 

3.  Exoskeleton control 

Brain-computer Interfaces (BCIs) can be utilized as a control source for exoskeletons, enabling precise 
regulation by decoding brain signals. The control strategies for exoskeletons are primarily classified into 

time-domain methods, spectral-domain methods, time-frequency methods, spatial-domain methods, 

spatiotemporal and time-frequency methods, and approaches based on Riemannian geometry [8]. Each 

of these strategies has its own advantages and limitations, making them applicable to different clinical 
and functional scenarios as shown in table. 

3.1.  Time-Domain methods 

Time-domain methods involve decoding user intentions by analyzing temporal variations in EEG 
signals. Although this approach is straightforward and intuitive, it is also prone to noise interference. 

Enhancing the robustness of signal processing algorithms can help mitigate this issue. For example, 

McFarland et al. demonstrated the feasibility of using time-domain methods for achieving 

three-dimensional motion control  [9]. 

3.2.  Spectral-Domain methods 

Spectral-domain methods decode user intentions by analyzing the frequency components of EEG 

signals. While this approach effectively captures the frequency characteristics of the signals, it lacks 
temporal resolution. This limitation can be addressed by time-frequency methods that combine both 

temporal and frequency information. For instance, Müller-Gerking et al. proposed a spectral-domain 

approach that significantly improved the classification accuracy of motor imagery tasks through the 
optimization of spatial filters [10]. 

3.3.  Time-Frequency methods 

Time-frequency methods enhance decoding accuracy by integrating temporal and frequency data. 

Although these methods are computationally intensive, they are particularly effective in processing 
non-stationary signals. Blankertz et al. demonstrated the utility of time-frequency methods in single-trial 

EEG analysis, resulting in higher decoding accuracy for motor tasks [11]. 

3.4.  Spatial-Domain methods 
Spatial-domain methods focus on decoding brain signals by analyzing the spatial relationships between 

electrodes. This approach effectively reveals the spatial characteristics of the signals, although it 

typically requires a large number of electrodes. Optimizing electrode placement can enhance the 
efficiency of signal decoding. For example, Ramos-Murguialday and Birbaumer illustrated the 

application of spatial analysis in brain oscillation signals during motor tasks [12]. 
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3.5.  Spatiotemporal and Time-Frequency methods 

Spatiotemporal and time-frequency methods combine temporal, spatial, and frequency information to 

improve signal decoding accuracy. Despite their computational complexity, these methods offer 
substantial advantages in multidimensional signal processing. The Filter Bank Common Spatial Patterns 

(FBCSP) algorithm proposed by Ang et al. demonstrated its effectiveness in managing complex tasks 

within BCI competition datasets [13]. 

3.6.  Riemannian Geometry-Based methods 

Riemannian geometry-based methods offer a novel approach to signal decoding by analyzing signal 

characteristics through geometric principles. Although this method is innovative and highly accurate, it 

involves complex theoretical foundations and significant computational demands. Barachant and 
Congedo demonstrated the feasibility of using an information geometry-based P300 BCI system, 

highlighting its robustness and precision [14]. 

Table 1. Summary Table of Analysis Methods 

Method Principle Advantages Disadvantages 

Time-Domain Method 
Analyzes temporal 

variations in signals 

Simple, low 

computational cost 

Susceptible to noise 

interference 

Spectral-Domain 

Method 

Analyzes frequency 

components of signals 

Reveals frequency 

characteristics of 
signals 

Cannot provide temporal 

information 

Time-Frequency 

Method 

Combines temporal and 

frequency information 

Improves decoding 

accuracy 

High computational 

complexity 

Spatial-Domain 

Method 

Analyzes spatial 
relationships between 

electrodes 

Reveals spatial 

characteristics 

Requires a large number 

of electrodes 

Spatiotemporal and 

Time-Frequency 
Method 

Combines temporal, 

spatial, and frequency 
information 

Enhances decoding 

accuracy 

High computational 

complexity 

Riemannian 

Geometry-Based 
Method 

Analyzes signal 

characteristics using 
geometric principles 

Innovative, high 

-accuracy 

Complex theory, high 

computational cost 

4.  Potential and Challenges of Integrating BCI with Exoskeletons 

Integrating Brain-Computer Interfaces (BCIs) with exoskeletons offers significant potential for 

enhancing tactile feedback, a critical element of human interaction with the environment. This 
integration enables a more natural and intuitive tactile experience by combining mechanical feedback 

from exoskeletons with brain signals decoded through BCIs. Advances in electrical stimulation 

techniques are being explored to better replicate realistic tactile sensations, thereby improving sensory 
perception for users. Furthermore, ensuring user comfort during extended use remains vital; while there 

have been strides in mechanical design, further advancements in ergonomics are needed. BCI 

technology can also refine exoskeleton control strategies, making them more intelligent and 

user-centered. Efficient signal processing is crucial, and emerging machine learning and deep learning 
algorithms, such as deep neural networks (DNNs), are showing promise in enhancing the accuracy and 

reliability of BCI systems. 

5.  Future Research Directions 

.Future research must focus on the integration of multimodal signals—including EEG, EMG, and other 

physiological metrics—to elevate the performance of Brain-Computer Interface (BCI) systems. This 

integration holds promise for substantially enhancing both the accuracy and stability of signal decoding. 

Addressing the critical challenges of real-time processing and robustness necessitates the development 
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of advanced algorithms and hardware solutions. Additionally, despite the promising results observed in 

laboratory environments, extensive clinical trials are essential to validate and optimize the effectiveness 

and reliability of BCI and exoskeleton technologies for practical, real-world applications. 

6.  Conclusion 

This review examines the integration of Brain-Computer Interface (BCI) and exoskeleton technologies, 

highlighting advancements in enhancing tactile sensation and motor abilities. Key findings underscore 
the potential of these technologies in medical rehabilitation and assistive mobility, particularly for 

patients with neurological impairments. 

Despite promising progress, challenges remain in BCI signal decoding, exoskeleton design, and 

control systems. Addressing these requires improved algorithms, user intent recognition, and ergonomic 
designs.  

Future research must emphasize interdisciplinary collaboration to translate these technologies from 

lab to clinical practice. Ethical and legal considerations, such as patient privacy and autonomy, must 
also be prioritized as these innovations evolve.  

This review acknowledges limitations in data analysis and calls for more comprehensive evaluations 

in future studies to better understand the potential and limitations of BCI and exoskeleton technologies. 
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