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Abstract. Tumor microenvironment (TME) plays a crucial role in the oncogenesis, early distant 

metastasis, and limited immunotherapeutic responses of pancreatic ductal adenocarcinoma 

(PDAC). Myeloid cell populations, particularly tumor-associated macrophages (TAMs), located 

within this immunosuppressive niche, are pivotal in these processes. With aid of single cell RNA 

sequencing (scRNA-seq), multiple studies have successfully validated distinct macrophage 

subtypes pathological functions in different cancer types, yet the correlation of TAMs in hepatic 

metastatic and primary PDAC lesions remains insufficiently understood. In this study, we 

reanalyzed samples from both primary and hepatic metastatic PDACs to elucidate the functional 

conservation and variability of TAMs. Pseudotime trajectory inference, together with 

pseudobulk analysis based on subtype level, manifests TAMs undergo similar metabolism 

reprogramming and pro-inflammatory style transitions with specific signaling pathway 

activations. Compared to primary tumors, hypoxic conditions are alleviated, which largely 

depends on the physiological context and the preliminary ligand-receptor interactive network 

within the metastatic niche. 

Keywords: single-cell RNA sequencing analysis, tumor-associated macrophage, pancreatic 
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1.  Introduction 

Pancreatic ductal adenocancinoma is a lethal gastrointestinal cancer known for its early distant 

metastasis, extensive extracellular matrix deposition, disrupted vasculature, and immunosuppressive 

tumor microenvironment[1–10]. The immunosuppressive nature of the TME is marked by a high 

proportion of exhausted cytotoxic effector cells[11–13] and a population of myeloid cells, 

predominantly tumor-associated macrophages[14,15]. TAMs in primary and hepatic metastatic lesions 

arise from circulating peripheral monocytes and tissue-resident macrophages (TRM)[14–16]. 

Circulating monocytes are recruited by chemokines and differentiate into macrophages upon 

infiltration[14,17],while TRMs, derived from embryonic hematopoiesis, expand by in situ 

proliferation[16]. Macrophages exhibit both pro-tumor and anti-tumor functions[3,14–21]. In contrast 
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to apoptotic cell debris phagocytosis, tumoricidal substances production, and cross-presentation that 

ignites adaptive immune response, TAMs generally contribute to tumor progression by facilitating 

tumor cell dissemination, early metastasis, immune evasion, and TME reprogramming, and by resisting 

chemotherapies[19,22–24] and immunotherapies[20,25–27]. However, macrophages can be externally 

stimulated to re-activate their tumoricidal abilities[21]. Due to the continuous gene profiles within TAM 

subtypes, strategies focus on modulating the pro-tumor to anti-tumor phenotype rather than direct 

depletion. β-glucans can reactivate Kupffer cells, liver-resident TRMs, to recognize and associate with 

seeding tumor cells, recruiting cytotoxic T cells, and shifting a subset of TAMs from pro- to anti-tumor 

properties[21].  

The TME is highly dynamic and evolves with disease progression due to stage-dependent 

triggers[28–32]. Previous studies have described specific subtype TAM functions in isolation, either in 

primary[9,14,17,22,33] or hepatic metastatic[4,21,34] PDAC, but a comprehensive understanding of 

TAM correlations in these conditions still remains limited. Here, we reanalyzed monocytes/ 

macrophages (Mo/MΦ) from both primary and hepatic metastatic PDAC lesions. Identical subtypes 

show similar functions, and pseudotime trajectory and pseudobulk RNA analysis reveal shared 

metabolism reprogramming and inflammatory response between primary and hepatic metastatic TAMs. 

Single cell RNA sequencing and spatial transcriptomes (ST) show no exclusive distribution patterns of 

specific TAM subtypes in primary lesions, suggesting that phenotypic variations are primarily driven 

by cell-cell interactions (CCI) and intrinsic signaling rather than distribution variances. This highlights 

the importance of dissecting complex TME networks and factors that drive monocyte differentiation for 

therapeutic targeting and modulation of TAMs in PDAC. 

2.  Result 

2.1.  Subtypes of macrophages are relatively diverse across different conditions 

To create a comprehensive transcriptional atlas of PDAC infiltrating TAMs, we reanalyzed scRNA-seq 

data 125422 cells of from primary PDAC and adjacent normal tissue, as well as 61916 cells of hepatic 

metastatic PDAC and normal tissue from patients and non-patients. We performed the analysis using 

single-cell variational inference (scVI)[55] after rigorous quality control. This process resulted in the 

identification of 20 cell types within primary (Figure 1a) and hepatic metastatic (Figure 1b) PDAC. 

Additionally, we further segregated 22877 cells of monocyte/macrophage (Mo/MΦ) population into 

eight subsets (Figure 1c, 1d, Supplementary Figure2): The CD14+/CD16+ monocytes and THBS1+ 

monocyte-like cell displayed characteristic monocyte marker patterns including CD14, FCER3A 

(CD16), Ficolin 1 (FCN1), S100 Calcium Binding Protein A8 and A9 (S100A8/S100A9). The 

phenotypes of the other four TAM subsets aligned with previous studies[17,56,57], SPP1+ TAM, IL1B+ 

TAM, and two tissue resident subsets, LYVE1+ FOLR2+ TAM, LYVE1- FOLR2+ TAM (Figure 1d).  

We observed significant variation in the Mo/MΦ composition across different conditions (Figure 1e). 

Notably, the SPP1+ TAM and IL1B+ TAM populations were enriched in neoplastic lesions (P-

value=0.00049 and 0.00915, respectively), while the tissue resident macrophage subset LYVE1+ 

FOLR2+ was enriched in non-neoplastic tissue (P-value=0.00359), suggesting a normal tissue resident 

macrophage phenotype in the liver and pancreas. Additionally, the landscape of tumor adjacent normal 

tissue Mo/MΦ differs quite from that in normal tissue from non-patients. The tumor-adjacent normal 

tissue Mo/MΦ landscape differed significantly from that in normal tissue from non-patients. The 

THBS1+ monocyte-like cell, a novel unreported metastatic PDAC TAM subtype, emerged as a unique 

subtype in hepatic metastases, prevailing over the other three conditions. Studies on this specific cell 

type in colorectal cancer[58–61] have suggested that THBS1+ monocyte-like cells are recruited from 

the bone marrow and contribute to the immunosuppressive microenvironment by inducing cytotoxic T 

cell exhaustion, thereby participating in metastasis. Therefore, the enrichment of THBS1+ monocyte-

like cells in hepatic metastatic PDAC may also affect immune regulation, leading to inefficient adaptive 

immune cell infiltration—a critical aspect that merits further investigation into its pathological roles in 

the PDAC metastatic context. 
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Figure 1. Subtypes of macrophage are conservative across different conditions(a-b), clustering of (a) 

primary PDAC and adjacent normal tissues and (b) hepatic metastatic PDAC and normal tissues. (c), 

UMAP projection of Mo/MΦ from primary/adjacent normal tissues and hepatic metastatic/normal tissue 

PDACs, colored according to graph-based clustering (up panel) or sample origin (down panel). (d), Dot 

plot depicting expression information of representative Mo/MΦ marker genes. (e), percentage of each 

Mo/MΦ subtype across four conditions. ANOVA method is used to measure specific subtype variance. 

Samples reanalyzed in this study are generalized in supplementary table1. 

These findings underscore the considerable diversity in Mo/MΦ composition across various 

conditions, reflecting their distinct physiological roles. Specifically, the SPP1+ TAM and IL1B+ TAM 

populations were predominantly localized within neoplastic lesions and adjacent normal tissues, 

highlighting their significant involvement in tumor dynamics. 
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2.2.  Two developmental trajectories of peripheral blood monocyte derived IL1B+ and SPP1+ TAMs 

To elucidate the developmental dynamics of peripheral blood monocytes that are recruited and infiltrate 

neoplastic tissues, we conducted pseudotime trajectory analysis using Monocle2[62] aiming to infer the 

monocyte cell fates under these conditions (Figure 2a). The Mo/MΦ were organized along the trajectory, 

with each cell identity properly projected onto the trajectory plot. The CD14+/CD16+ monocytes 

predominantly occupied State 9 and served as the progenitor cells for tumor-infiltrating macrophages 

(Figure 2b, 2c), an observation that was also corroborated by the high density of monocytes in hepatic 

normal tissue. 

From the branch point 4, differentiating cells underwent bifurcating cell fate inductions (Figure 2d). 

One branch terminated at State 3, while the other clusters continued in the opposite direction through 

State 4 and 5, ultimately stopping at State 7 and 8. This bifurcation pattern prompted further 

investigation into the cell types distributed along these two distinct paths from branch point 4. State 3 

was primarily composed of IL1B+ TAMs, whereas SPP1+ TAMs spanned from State 4 to 8 (Figure 2e). 

Notably, State 7 was shared nearly equally by two cell types, suggesting an ‘intermediate’ phenotype 

between IL1B+ and SPP1+ TAMs in high resolution. This intermediate state potentially represents a 

phenotypic transition between TAMs. 

Moving forward from branch point 4, we profiled the dynamic regulations of gene expression (Figure 

2f, 2g). State 3 cells revealed upregulated genes involved in the cell cycle checkpoint and a simultaneous 

upsurge in pro-inflammatory genes through several pathways, resembling the traditional ‘M1-like’ 

macrophage phenotype. Early Growth Response 1 (EGR1), a crucial transcriptional factor for 

monopoiesis, was activated through the EGFR/RAS/MEK/ERK pathway and bound to a large set of 

inflammatory enhancers, thereby upregulating the expression of inflammatory-related genes[63–65]. 

Kruppel-like transcription factor-6 (KLF6) promoted pro-inflammatory gene expression through the 

enhancement of nuclear factor κB (NFκB) signaling pathway[66–68]. Cytokines and chemokines are 

families of secreted proteins that function in inflammatory and immunoregulatory processes. Cytokines 

and chemokines, families of secreted proteins involved in inflammatory and immunoregulatory 

processes, were expressed in State 3 cells, including IL1B, CCL3, CCL4, CCL4L2, and CXCL2, which 

recruit regulatory T cells and neutrophils, exacerbating local inflammation and 

immunosuppression[17,69–71]. Interestingly, cells in State 3 retained antigen-peptide presenting ability 

by highly expressing major histocompatibility complex (MHC) subunits and associated proteins, CD74, 

CD83. HLA-DRB5, HLA-DPA1, HLA-DPB1, HLA-DRA, HLA-DRB1, HLA-DQA1, which can 

partially compensate for the absence of dendritic cells in PDAC[1,2]. 
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Figure 2. Different development trajectory of IL1B+ and SPP1+ peripheral macrophage(a), peripheral 

blood original Mo/MΦ populations are selected to reconstruct pseudotime trajectory. (b), pseudotime 

trajectory is reconstructed on the selected populations containing one branch point. Branch occupied by 

monocytes is chosen as root referring to figure2c and figure2d. (c), cells of different states are denoted 

with different colors (left panel) across conditions (right panels). (d), each Mo/MΦ subtype (left panel) 

is projected onto the trajectory plots with different colors. Cell states are denoted with two specific 

subtypes, IL1B+ and SPP1+ TAMs, with the most dominant branch circled. (e), IL1B and SPP1 

expression along trajectory plots. (f), heatmap presents a differentially expressed gene profile from 

branch point 4, each row represents expression level of each gene along the two branch trajectories. (g), 

pseudotime kinetics of representative genes from the branch point 4 of the trajectory to cell fate 1 (solid 

line) or cell fate 2 (dashed line), with each dot representing a single cell and color-coded by cell state. 

Conversely, the SPP1+ TAM following the opposite route exhibited activation of extracellular matrix 

(ECM) remodeling(TIMP1[72], SPP1[73], CSTB, CSTD and CSTL[74,75]), scavenger receptor 

mediated phagocytosis (MARCO[76]) and involved in metabolism and recycling like lipoprotein 

metabolism (APOE and APOC1[77]). Compared to cells in State 3, these cells exhibited less interaction 

with other immune components. 

These findings confirm the existence of dual directional developmental trajectories for peripheral 

blood monocytes, each characterized by specific stimuli that lead to unique cellular fates: one 

specialized in ECM remodeling and the other in contributing to the inflammatory response. 

2.3.  Similar pathological transition of TRMs from normal tissue to neoplastic lesion 

Based on previous reports that LYVE1- FOLR2+ TRMs exhibit fetal-liver macrophage characteristics 

and contribute to onco-fetal reprogramming in hepatocellular carcinoma (HCC)[78], we hypothesized 

that LYVE1+ FOLR2+ TRMs might serve as a ‘reserve’ for the in-situ proliferation and functional 

transition of LYVE1- FOLR2+ TRMs. To test this hypothesis, we expanded our analysis to include both 

TAM subsets across four conditions (Figure 3a). We employed the same trajectory inference strategy 

and chose the LYVE1+ FOLR2+ macrophage state (State 2) as the root of our analysis due to its 

predominant presence in hepatic normal tissue (Figure 3b).  

Through pseudotime trajectory analysis, TRMs were ordered along the trajectory, consisting of one 

root (State 2) and two termini corresponding to two distinct cell fates (State 1 and 3) (Figure 3c). TRMs 

positioned along State 2, particularly those at the termini, underwent continuous reprogramming (Figure 
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3d). We proposed that cells differentiating out of State 2 (diverging from branch point 1) resembled the 

populations of peripheral blood monocytes at branch point 4 and represented a critical transitional phase. 

Cells in State 1 showed strong correlations with SPP1+ TAM (ALDOA, LPL, APOE, APOC1, CSTB, 

CTSD, TSPO, CHIT1, and CHI3L1), while those in State 2 exhibited phenotypic similarities to IL1B+ 

TAM (IL1B, KLF6, RGS1, and RGS2) (Figure 3e-g). 

 

 

Figure 3. Different development trajectory of TRMs across conditions(a), TRMs are selected to 

reconstruct pseudotime trajectory. (b), pseudotime trajectory is reconstructed on the selected populations 

containing one branch point. Branch occupied by LYVE1+ FOLR2+ TRM is chosen as root. (c), cells 

of different states are denoted with different colors (left panel) across conditions (right panels). (d), two 

TRM subtypes (left panel) are projected onto the trajectory plots with different colors. (e), representative 

marker genes projected onto trajectory plots. (f), heatmap presents a differentially expressed gene profile 

from branch point, each row represents expression level of each gene along the two branch trajectories. 

(g), pseudotime kinetics of representative genes from the branch point of the trajectory to cell fate 1 

(solid line) or cell fate 2 (dashed line), with each dot representing a single cell and color-coded by cell 

state. 

These findings suggest that SPP1+ TAMs and IL1B+ TAMs, despite their different origins, may 

represent two functional paradigms of TAMs, fulfilling distinct roles in either pro-inflammation or 

extracellular matrix remodeling and metabolism. The default clustering and trajectory projection 

indicate that these cells converge toward identical fates, emphasizing the importance of further studies 
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to investigate the determinants that trigger divergence in TAM cell fates. Such investigations could 

significantly advance our understanding of TAM functional heterogeneity. 

2.4.  MΦ polarization across conditions reveal distinctive signaling network prospective 

MΦ polarization refers to the differentiation of macrophages towards specific phenotypes[79]. The 

traditional concept of MΦ polarization is overly simplified, categorizing macrophages into either pro-

inflammatory M1 or anti-inflammatory M2 types, which correspond to anti-tumor and pro-tumor effects 

in the TME, respectively. However, high-resolution technologies such as scRNA-seq and ST have begun 

to challenge this binary classification by providing detailed profiles of individual cell transcriptomes 

and their spatial organization within immunosuppressive niches, casting doubt on the reliability of a 

strict M1/M2 dichotomy. To characterize the functional skewing of specific subtypes across conditions, 

we conducted pseudobulk RNA analysis to identify DEGs and perform functional enrichment analysis. 

Functional enrichment based on The Molecular Signatures Database (MSigDB) hallmark revealed 

significant functional variance across conditions and subtypes (Figure 4a). IL1B+ and SPP1+ TAMs 

exhibited polarized gene profiles (Figure 4b). The IL1B+ TAM revealed the most significant DEGs 

profiles in primary PDAC and hepatic metastatic PDAC (Figure 5b) as well as in primary adjacent 

normal tissue and primary PDAC (Figure 5c), indicating a co-evolution with the progressive TME. 

Consistent with pseudotime trajectory analysis results, the IL1B+ TAM is posited to be the source of 

local inflammation response, with elevated MTORC1 signaling and IL2/STAT5 signaling, along with 

TGFβ signaling and canonical TNFɑ signaling via the NFKB pathway hyperactivation (Figure 4c-4e). 

This trend is observed in both primary PDAC and hepatic metastatic PDAC progression. 

 

Figure 4. Differentially regulated pathway and functional enrichment in TAMs(a), heatmap showing 

normalized functional enrichment scores of four cell subtypes across four different conditions. (b), 

differentially expressing genes between IL1B+ and SPP1+ macrophage by scVI. (c), UMAP projection 

of normalized functional enrichment scores for representative cancer-related hallmarks. (d), heatmap 

showing normalized pathway activity scores of four cell subtypes across four different conditions. (e), 

violin plots visualize relative activation degrees. This analysis utilizes hallmark gene sets from The 

Molecular Signatures Database (MSigDB). Over-representation analysis (ORA) is conducted with 

default parameters to obtain functional enrichment scores for each cell subtype. 
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For the SPP1+ subtype, there were no significant DEGs in primary adjacent normal tissue/primary 

PDAC (KLK1, AMY2B) and primary PDAC/hepatic metastatic PDAC (PSME1, TIMP1, GPNMB, 

APOC2, EEF1G, RPL17) (Figure 5a). GPNMB, a transmembrane glycoprotein overexpressed in 

various cancers, has been shown to be an essential mediator in epithelial-to-mesenchymal transition in 

glioblastoma[80]. PSME1, which is involved in immunoproteasome assembly and efficient antigen 

processing, positively correlates with anti-tumor properties in gastric cancer by enhancing the 

infiltration of cytotoxic immune cells[81]. The upregulation of PSME1 in hepatic metastatic PDAC 

aligns with an initial effective immune response. TIMP1, a natural inhibitor of matrix metalloproteinases, 

has been demonstrated to directly trigger the formation of neutrophil extracellular traps in primary 

human neutrophils, which is dependent on the interaction of TIMP1 with its receptor CD63 and 

subsequent ERK signaling in PDAC[72,82]. In contrast to PSME1, TIMP1 contributes to the early 

metastatic TME construction. 

ECM remodeling and metabolic reprogramming are considered dominant altered characteristics of 

the SPP1+ TAM (Figure 4a, 4c-e). In response to deficient oxygen and nutrient supply in the TME, the 

SPP1+ TAM adapts by relying on oxidative phosphorylation, glycolysis, fatty acid metabolism, and 

heme metabolism to varying degrees across conditions, promoting the production of reactive oxygen 

species. Compared to primary PDAC, hypoxia and nutrient deficiency are alleviated in hepatic 

metastatic neoplasms, supporting adipogenesis and initiating metastatic development. The SPP1+ TAM 

also engages in the phagocytosis and recycling of ECM deposited components to maintain self-survival. 

In this way, by shaping the ECM stromal composition, it enhances tumor cell mobility and facilitates 

metastasis. 

The LYVE1- FOLR2+ TRMs also undergo a similar educational process as the IL1B+ or SPP1+ 

TAMs. Therefore, it is rational for this subtype to exhibit no predominant DEGs change and pathways 

activation across primary PDAC and hepatic metastatic PDAC during carcinogenesis (Figure 5d). 

These comprehensive findings underscore the complexity of MΦ polarization and its evolution 

alongside tumor progression, emphasizing how chronic inflammation, worsened hypoxia, and nutrient 

deprivation drive phenotypic shifts in MΦ populations. 
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Figure 5. Distinctive expression profiling of SPP1+, IL1B+, and LYVE1- FOLR2+ TAMs(a-d), 

volcano plots of 3 major TAMs depict adaptive differentially expressing gene profiles across conditions 

(left panel), and corresponding activated gene pathways (right panel). (a), SPP1+ TAM in primary vs 

hepatic metastatic; (b), IL1B+ TAMs in primary vs hepatic metastatic and (c) primary cancer vs primary 

adjacent normal tissue; (d), LYVE1- FOLR2+ TAMs in primary cancer vs primary adjacent normal 

tissue. 

2.5.  Intertwined networks cause MΦ polarization but not distribution variance 

The spatial organization of cell populations is crucial for the formation of cell-cell interaction (CCI) 

networks that shape cell relationships and phenotypes[83]. Cells that are co-localized have the 

opportunity for direct ligand-receptor interactions, while cells that are dispersed must communicate 

remotely through secreted cytokines and the ECM. A study highlighting the synergistic promotion of 

tumor progression by SPP1+ TAMs and FAP+ fibroblasts suggests that the spatial proximity of these 

cell populations is key to their coordinated signaling and the limitation of immune cell infiltration into 

the tumor core[84].  

Inspired by this concept, we sought to investigate whether macrophage polarization is related to their 

distribution within the tumor microenvironment. We integrated primary PDAC ST and scRNA-seq data 

using GraphST[85] (Figure 6a,b). to analyze the spatial organization of cell populations. We found that 

TAMs are largely co-localized without distinctive distributive patterns, suggesting uniform distribution 

of nutrients and oxygen among them. The presumed progenitor cell, CD14+ monocytes, partially 

overlaps with other TAMs. We hypothesized that regulatory functions are most persistent. Regarding 

TAMs, our findings indicate that these macrophages are almost entirely co-localized at the same 

locations without discernible distinct distribution patterns, which excludes the possibility that 

metabolites specifically contribute single subtype development. However, the metabolic capacities 

measured by METAFlux[86] are disparately different. Notably (Figure 6c), SPP1+ TAMs, in particular, 

exhibit a high uptake of glucose and release of lactate, indicating a preference for anaerobic glycolysis. 

The observed dual directional polarization of macrophages, with IL1B+like pro-inflammatory and 

SPP1+like metabolism reprogramming, is attributed to both extrinsic signaling triggers and intrinsic 

signaling orchestration, which together form a feedback loop. CCI networks visualized through ligand-

receptor pairs interactive strength suggest that these interactions play a pivotal role in regulating physical 
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interactions with other cell members and are key to immune response, adhesion, and migration processes 

in macrophage populations. These results suggest that physiological distribution plays a minimal role in 

macrophage polarization, with the intertwined regulatory networks of CCI synergistically educating 

differentiating macrophages. However, the question remains whether differentiating macrophage 

populations are driven to interact with specific cell populations compulsorily or if these interactions 

follow a more stochastic process. To better understand the dynamic regulatory mechanisms governing 

macrophage differentiation and function in the TME, real-time monitoring of cell behavior and 

interactions is essential. Such an approach could provide deeper insights into the complex interplay 

between cell types and offer potential strategies for therapeutic intervention. 

 

Figure 6. Spatial organization and metabolic ability measure of TAMs populations in PDAC(a-b), 

integrating scRNA-seq and ST showing spatial organizational patterns of major stromal, adaptive 

immune and Mo/MΦ populations in primary PDAC sample slice, (a) in sample SS1905133_processed 

and (b) in sample SS1923404_processed. (c), METAFlux measuring metabolic ability of glucose and 

lactate among cell subtypes. The normalized MRAS was calculated using the GPR approach and 

corresponding fraction parameters are assigned as followed: IL1B+ TAM (0.3), LYVE1- FOLR2+ TAM 

(0.2), LYVE1+ FOLR2+ TAM (0.1), and SPP1+ TAM (0.4). These parameters were used to calculate 

the metabolic flux for each cell type. 
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Figure 7. LR inference of TAMs with interactive cell populations(a-b), LR inference of TAMs with 

selected adjacent cell populations based on spatial inference in (a) primary PDAC and (b) hepatic 

metastatic PDAC. CellPhoneDB method LIANA offered by default parameters. Top 50 genes were used 

to visualize the interactive networks of TAMs and other cells in both primary and hepatic metastatic 

lesions. 
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3.  Discussion 

Current comprehension of PDAC TME progresses a lot due to upgraded sequencing technologies. As 

mentioned, a number of studies have uncovered the heterogeneous landscape of myeloid cell populations 

in isolated conditions[4,14,17,21,22,33,34,47]. Our study extends this kind of research by reanalyzing 

monocytes/macrophages collected from both primary and metastatic lesions. Through both horizontal 

and vertical comparisons, we have delineated the main developmental trajectories of monocytes—from 

recruitment to infiltration and differentiation—into two predominant paradigms: the IL1B+ like TAMs, 

which drive pro-inflammatory responses, and the SPP1+like TAMs, which contribute to extracellular 

matrix remodeling and metabolic reprogramming. Irrespective of their final cell fates, both can promote 

EMT and immunosuppressive niche construction. In our analysis, we noticed that overlap between 

SPP1+ TAM and IL1B+ TAM exists. This kind of “double positive” cell populations suggests a 

transition between subtypes continues even in terminal states, which implies a strong plasticity among 

macrophages during cancer development[87,88]. Interestingly, our findings highlight that the overall 

progression and impact of TAMs within the TME are profoundly influenced by extrinsic CCI networks. 

Underdeveloped CCI networks have been observed to partially alleviate conditions such as hypoxia, 

release of immunosuppressive cytokines, suggesting potential combined therapeutic targets. 

Looking ahead, the attractive field for future exploiting, we supposed, is to figure out the cell fate 

decision factors to the full extent of hindering TAMs participating in cancer progression and drug 

resistance acquirement. While directly targeting the KRAS mutation in tumor cells represents a 

straightforward therapeutic approach with the potential to eliminate neoplastic cells, this strategy does 

not address the issue of disseminated tumor cells that can relocate and form new neoplasms. TAMs play 

a critical role in these metastatic scenarios, facilitating initial tumor seeding and the development of an 

early immunosuppressive niche that supports tumor growth and immune evasion. Identifying and 

targeting the factors that dictate TAM polarization and function can disrupt the supportive role TAMs 

play in tumor survival and metastasis[26,89–91]. This could involve inhibiting the signaling pathways 

that lead to the recruitment and pro-tumor activation of TAMs or promoting pathways that drive their 

anti-tumor activities. 

One therapeutic strategy could be to hinder the immunosuppressive functions of TAMs while 

simultaneously restoring their antigen-presenting capabilities[92–94]. This dual approach has the 

potential to reactivate the adaptive immune response, which is often suppressed in PDAC. By re-

engaging cytotoxic T cells and other components of the adaptive immune system, it may be possible to 

enhance the efficacy of immunotherapies, including immune checkpoint inhibitor like PD1/PD-L1 pair, 

which has shown limited success in PDAC due to the dense immunosuppressive TME.  

Additionally, combining TAM modulation with other treatments, such as dissecting dense 

extracellular matrix that allows tumoricidal agents penetration and strategies towards vasculature 

recovering that continuously supplies nutrient and oxygen for infiltrating adaptive immune cell normal 

functions could further improve therapeutic outcomes[1]. The use of agents that can reprogram TAMs 

to support anti-tumor immunity, such as toll-like receptor agonists may also provide a synergistic effect 

with these treatments. 

By fully understanding and manipulating the factors that govern TAM cell fate, we assume this can 

open a new therapeutic window in the clinical treatment of PDAC, transforming the management of this 

aggressive disease and improving patient survival rates. 
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Appendices A: Methods and materials 

A.1.  Single cell data Preprocessing, integration and clustering 

The PDAC single-cell datasets reanalyzed in this study were deposited in the Genome Sequence Archive 

with accession numbers GSE111672[35], GSE136103[36–38], GSE154778[39], GSE155698[40,41], 

GSE156405[42], GSE158356[43], GSE197177[4], GSE212966[44,45], GSE214295, GSE217845[46], 

GSE235449[47], and GSE242230[48] (Supplementary table1). After removing cells with poor quality 

and doublets, the raw matrices were processed for integration, dimensional reduction, unsupervised 

clustering, marker Gene Identification and monocyte/macrophage subtype characterization using 

Scanpy[49] and scVI-tools[50] workflows. 

To remove doublets, doublets predictions were made using the scVI-tool 

“scvi.external.SOLO.from_scvi_model(vae)” and doublets were defined by the “solo.predict(soft = 

False)” function followed by “‘difference = df.doublet - df.singlet’ >1” to remove predicted doublets 

from each sample. For individual sample quality control, cells with fewer than 200 genes were filtered 

by “sc.pp.filter_cells(adata, min_genes=200)”. Subsequently, only cells with mitochondrial gene count 

< 10% and ribosomal gene count < 30% were retained. Individual samples were concatenated, and cells 

were filtered again using “sc.pp.filter_genes(adata, min_cells = 100)”. Normalization and 

logarithmization of the concatenated data were performed by “sc.pp.normalize_total(adata, 

target_sum=1e4)” and “sc.pp.log1p(adata)”. 

The scVI-tool inherent function “scvi.model.SCVI.setup_anndata(adata, layer=‘counts’, 

categorical_covariate_keys = [“Sample”], continuous_covariate_keys = 

[‘pct_counts_mt’,‘total_counts’,‘pct_counts_ribo’])” was used to set up the training model “model = 

scvi.model.SCVI(adata)” and batch-corrected integrated data was acquired (Supplementary Figure1). 

Upon completion of training, the latent representation of each cell in the dataset was evaluated, and the 

dataset was clustered in the scVI latent space using Uniform Manifold Approximation and Projection 

(UMAP) by “adata.obsm[‘X_scVI’] = model.get_latent_representation(), sc.pp.neighbors(adata, 

use_rep = ‘X_scVI’), sc.tl.umap(adata), sc.tl.leiden(adata, resolution = 0.8), sc.pl.umap(adata, color = 

[‘leiden’, ‘Sample’], frameon = False)”. 

A.2.  Marker genes identification and cell subtype annotation 

Cluster-specific marker genes were identified using the “sc.tl.rank_genes_groups” function, and 

selected markers for each cluster were chosen by “markers = sc.get.rank_genes_groups_df(adata, None), 

markers = markers[(markers.pvals_adj < 0.05) & (markers.logfoldchanges > 0.5)]”. Additionally, the 

scVI ‘differential expression’ function was used to identify differentially expressed genes within specific 

clusters by “markers_scvi = model.differential_expression(groupby = ‘leiden’), markers_scvi = 

markers_scvi[(markers_scvi[‘is_de_fdr_0.05’]) & (markers_scvi.lfc_mean > 0.5)]”. Clusters were 

merged and assigned to cell states based on known expression markers from cellmarker2.0 and previous 

published articles: Macrophage/Monocyte (CD68+, FCER1A+, CD14+, MRC1+), Plasmocytoid 

dendritic cell (LILRA4+), Mast cell (KIT+, TPSAB1+), Granuolocyte (CSF3R+, FCGR3B+), B/Plasma 

cell (MS4A1+, CD79A+, MZB1+), MK/T cell populations (CD3E+, CD4+, CD8A+, TIGIT+, CTLA4+, 

NKG7+, PTPRCAP+, CCL4+, MKI67), Cancer cell (KRT18+, KRT19+. MUC1+), Ductal cell 

(KRT19+, MUC1-), endocrine cell (INS+, GCG+), endothelial cell (CDH5+), Acinar cell (PRSS1+, 

PRSS3+, REG1A+), Fibroblast (DCN+, COL1A1+), Pancreas/Liver stellate cell (ACTA2+, ADIRF+), 

Schwann cell (S100B+). 
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For monocyte/macrophage specific subtype annotation, initially annotated monocyte/macrophage 

clusters (including dendritic cell clusters for hepatic metastatic samples) were selected for subsequent 

second-round and third-round clustering. Before final integration, second and third round clustering was 

conducted to filter existing dendritic cells and other tissue cells in primary PDAC and hepatic metastasis 

in an isolated condition. Cells were filtered in each round to retain highly expressing genes in 

monocyte/macrophage groups using “sc.pp.filter_genes(adata, min_cells = 100)”. The same steps were 

executed as in the initial processing, although ‘resolution = 0.8’ was used for clustering in the second 

round, while ‘resolution = 0.5’ was used for the third round. For second-round clustering, additional 

dendritic cell populations were annotated with known markers (CD1C+, CLEC10A+, CLEC9A+, 

LAMP3+). Monocyte/macrophage populations were then chosen to continue the third-round clustering 

and were partially characterized by established monocyte/macrophage specific subtype markers. Due to 

the high similarity between each subtype, the “scvi_de = model.differential_expression( idx1 = 

adata.obs.leiden == ‘group1’, idx2 = adata.obs.leiden == ‘group2’)” command was used to objectively 

select representative subtype markers in our analysis. Finally, monocyte/macrophage from primary and 

hepatic metastatic PDAC were integrated into one program and reclustered into 8 groups. Each subtype 

frequency across conditions was calculated. 

A.3.  Pseudotime trajectory inference analysis 

The monocle2 package was employed to construct the developmental trajectory of 

monocyte/macrophages. Two distinct origin groups were differentiated based on the expression of 

FOLR2 and LYVE1, which are markers specific to residential macrophages. The 

“sc.pp.highly_variable_genes(cell_subset,flavor=“seurat_v3”)” command was utilized to identify the 

top 2000 highly variable genes as the set of ordering genes, which were then sorted by their q-values. 

The root cell, representing the initial cell type in our analysis, was designated based on the specific cell 

type composition: (1) For peripheral blood-derived macrophages, the root cell was selected based on the 

monocytes composition observed in the trajectory plots. Since macrophages are derived from monocytes, 

the branch with the highest concentration of monocytes was chosen as the root; (2) Due to the use of 

hepatic normal tissue from liver cirrhosis datasets, the root cell was selected to be macrophages that are 

primarily distributed in the normal tissue. To investigate the root-to-branch specific gene expression 

patterns and trajectory modeling, the monocle2 BEAM function was applied to compare two models 

using a likelihood ratio test for branch-dependent expression, with branch_point 4 being significant for 

the peripheral blood group. To visualize the fate-dependent gene expression patterns and expression 

dynamics for each gene, the “plot genes branched heatmap” and “plot genes branched pseudotime” 

functions were utilized. 

A.4.  Functional enrichment and pathway activity inference in decoupleR 

To identify and differentiate cell subtypes based on their functional characteristics, functional 

enrichment analysis was performed using the decoupleR package[51]. This analysis utilizes hallmark 

gene sets from The Molecular Signatures Database (MSigDB). By following the decoupleR protocol, 

over-representation analysis (ORA) was conducted with default parameters to obtain functional 

enrichment scores for each cell subtype. These scores were then visualized using the “sc.pl.matrixplot” 

function from scanpy, which allows for the visualization of matrix plots that can reveal the enrichment 

of specific biological processes or pathways within each subtype. Additionally, pathway activity 

inference was carried out following the protocol provided by decoupleR. The PROGENy model was 

employed, and the multivariate linear model (mlm) method was run to infer pathway enrichment scores. 

Finally, the results of the selected individual pathways were visualized and plotted using both the 

“sc.pl.matrixplot” function for matrix plots and the “sc.pl.violin” function for violin plots. 
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A.5.   Subtype DEG analysis  

To elucidate the genotypic variability of cell subtypes under various conditions, a dual approach of 

pseudobulk analysis within the decoupleR framework and differential expression analysis using single-

cell Variational Inference (scVI) was employed. 

Pseudobulk analysis wasinitiated by generating filtered pseudobulk profiles using the following 

command, “pdata = dc.get_pseudobulk(adata, sample_col='Sample', groups_col='cell_type', 

layer='counts', mode='sum', min_cells=10, min_counts=1000)”. This process involved aggregating the 

count data for each cell type based on the provided sample and grouping columns. Subsequently, the 

pseudobulk profiles were normalized, scaled, and principal component analysis (PCA) was conducted 

to reduce dimensionality and highlight key variations among the cell types. Genes that satisfied 

manually established thresholds were then selected and used to filter out potentially noisy genes. 

Thereafter, DESeq2 framework was utilized to compare gene expression profiles between different cell 

types. An object of DESeq2 was constructed using the DefaultInference and DeseqDataSet classes, and 

log fold changes (LFCs) were computed. P-values were calculated from a DESeqStats object using the 

summary() method. To focus on specific comparisons, the three conditions were divided into two groups. 

The results were visualized in volcano plots and pathway activity inference was conducted using the 

same strategy as previously described. 

For scVI-tool differential expression analysis, the “model.differential_expression” function was 

executed to compare the gene expression profiles between SPP1+ Tumor-Associated Macrophages and 

IL1B+ ones. A heatmap was used to reveal the top 20 highly expressing genes in each of the two groups 

A.6.  Integrated single-cell data and ST deconvolution to reconstruct spatial landscape 

To obtain the spatial distribution information of each subtype within the primary lesion, we employed 

GraphST[52] to integrate spatial transcriptional profiles with single-cell data deconvolution. The spatial 

transcriptomic (ST) data were retrieved from the Genome Sequence Archive with accession number 

GSE235315. For our analysis, we utilized the processed samples SS1905133_processed and 

SS1923404_processed. We used the integrated scRNA-seq data from the primary tissue as a reference 

for reconstruction. 

The ST data and scRNA-seq data were both pre-processed using the “GraphST.preprocess” function. 

Subsequently, we identified overlapping genes between the ST and scRNA-seq datasets and extracted 

features specific to the ST data. After training the GraphST model with default parameters, 

representative cell types were projected into the spatial space. The visualization of the spatial 

distribution of these representative cell types was achieved using the “sc.pl.spatial” function from 

scanpy. 

A.7.  Metabolism characterization of Mo/MΦ populations 

The METAFlux package[53] in R is utilized to assess metabolic levels within the tumor 

microenvironment across different cell types. We employed METAFlux to compare the metabolic 

capabilities of macrophage (Mo) and myeloid-derived suppressor cell (MΦ) populations. To conduct 

this analysis, we first converted an h5ad file into a format compatible with the Seurat package. We then 

followed a standard single-cell RNA-seq pipeline to assess metabolic activity. To generate an average 

expression profile, we employed bootstrapping with 1000 replicates. From the processed data, we 

calculated the normalized Metabolic Reaction Activity Score (MRAS) using the Gene-protein-reaction 

(GPR) approach. Our analysis encompassed four distinct cell types, for which we assigned 

corresponding fraction parameters: IL1B+ TAM (0.3), LYVE1- FOLR2+ TAM (0.2), LYVE1+ 

FOLR2+ TAM (0.1), and SPP1+ TAM (0.4). These parameters were used to calculate the metabolic 

flux for each cell type. To measure the relative uptake levels of metabolites for each subtype, we 

referenced the metabolite exchange reactions identified in a “nutrient lookup file.” This allowed us to 

assess the differential metabolic activity between the various cell subtypes within the tumor 

microenvironment. 
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A.8.  Cell-cell interaction inference 

Cell-cell interaction inference was fulfilled by LIANA[54]. We used CellPhoneDB method LIANA 

offered by default parameters. We selected top 50 genes to visualize the interactive networks of TAMs 

and other cells in both primary and hepatic metastatic lesions. 

A.9.  Statistical analysis of Mo/MΦ population composition across conditions 

One way ANOVA test was used to appraise populations composition variance and consistency across 

conditions by “stats.f_oneway” function. 

Appendices B: Supplementary Figure 

 

Supplementary Figure 1. Batch effect correction of PDAC in scVI. (A) Primary PDAC. (B) Liver 

Metastatic PDAC (C) Integrated Mo/MΦ. 
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Supplementary Figure 2. Marker gene expression of specific macrophage subtype in UMAP. 

Appendices C: Supplementary Table 

Supplementary table 1. Samples reanalyzed in this study 

GSE accession Sample-ID Sample Source State 

GSE154778 GSM4679532 PriPR33 Pancreas Tumor 

GSE154778 GSM4679533 PriPR34 Pancreas Tumor 

GSE154778 GSM4679534 PriPR35 Pancreas Tumor 

GSE154778 GSM4679535 PriPR36 Pancreas Tumor 

GSE154778 GSM4679536 PriPR37 Pancreas Tumor 

GSE154778 GSM4679537 PriPR38 Pancreas Tumor 

GSE154778 GSM4679538 PriPR39 Pancreas Tumor 

GSE154778 GSM4679539 PriPR40 Pancreas Tumor 

GSE154778 GSM4679540 PriPR41 Pancreas Tumor 

GSE154778 GSM4679541 PriPR42 Pancreas Tumor 

GSE155698 GSM4710689 PriPR21 Pancreas Tumor 

GSE155698 GSM4710690 PriPR22 Pancreas Tumor 

GSE155698 GSM4710691 PriPR23 Pancreas Tumor 

GSE155698 GSM4710692 PriPR24 Pancreas Tumor 

GSE155698 GSM4710693 PriPR25 Pancreas Tumor 

GSE155698 GSM4710694 PriPR26 Pancreas Tumor 

GSE155698 GSM4710695 PriPR27 Pancreas Tumor 

GSE155698 GSM4710697 PriPR28 Pancreas Tumor 
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Supplementary table 1. (continued). 

GSE155698 GSM4710698 PriPR29 Pancreas Tumor 

GSE155698 GSM4710699 PriPR30 Pancreas Tumor 

GSE155698 GSM4710700 PriPR30 Pancreas Tumor 

GSE155698 GSM4710696 PriPR31 Pancreas Tumor 

GSE155698 GSM4710701 PriPR32 Pancreas Tumor 

GSE155698 GSM4710702 PriPR01 Pancreas Tumor 

GSE155698 GSM4710704 PriPR02 Pancreas Tumor 

GSE155698 GSM4710706 PriPntc01 Pancreas Adjacent Normal Tissue 

GSE155698 GSM4710707 PriPntc02 Pancreas Adjacent Normal Tissue 

GSE155698 GSM4710708 PriPntc03 Pancreas Adjacent Normal Tissue 

GSE156405 GSM4730260 PriPR43 Pancreas Tumor 

GSE156405 GSM4730261 PriPR44 Pancreas Tumor 

GSE156405 GSM4730263 PriPR45 Pancreas Tumor 

GSE156405 GSM4730264 PriPR46 Pancreas Tumor 

GSE197177 GSM5910784 PriPR03 Pancreas Tumor 

GSE197177 GSM5910786 PriPntc04 Pancreas Adjacent Normal Tissue 

GSE197177 GSM5910787 PriPR04 Pancreas Tumor 

GSE197177 GSM5910789 PriPR05 Pancreas Tumor 

GSE212966 GSM6567157 PriPR06 Pancreas Tumor 

GSE212966 GSM6567159 PriPR07 Pancreas Tumor 

GSE212966 GSM6567160 PriPR08 Pancreas Tumor 

GSE212966 GSM6567161 PriPR09 Pancreas Tumor 

GSE212966 GSM6567163 PriPR10 Pancreas Tumor 

GSE212966 GSM6567165 PriPntc05 Pancreas Adjacent Normal Tissue 

GSE212966 GSM6567166 PriPntc06 Pancreas Adjacent Normal Tissue 

GSE212966 GSM6567171 PriPntc07 Pancreas Adjacent Normal Tissue 

GSE214295 GSM6603324 PriPR11 Pancreas Tumor 

GSE214295 GSM6603325 PriPR12 Pancreas Tumor 

GSE214295 GSM6603326 PriPR13 Pancreas Tumor 

GSE217845 GSM6727546 PriPR14 Pancreas Tumor 

GSE217845 GSM6727547 PriPR15 Pancreas Tumor 

GSE217845 GSM6727548 PriPR16 Pancreas Tumor 

GSE217845 GSM6727549 PriPR17 Pancreas Tumor 

GSE217845 GSM6727550 PriPR18 Pancreas Tumor 

GSE217845 GSM6727551 PriPR19 Pancreas Tumor 

GSE231535 GSM7289739 PriPR47 Pancreas Tumor 

GSE231535 GSM7289740 PriPR20 Pancreas Tumor 

GSE136103 GSM4041150 Lntc1cd45+ liver non patient normal tissue 

GSE136103 GSM4041151 Lntc1cd45-A liver non patient normal tissue 

GSE136103 GSM4041152 Lntc1cd45-B liver non patient normal tissue 

GSE136103 GSM4041153 Lntc2cd45+ liver non patient normal tissue 

GSE136103 GSM4041154 Lntc2cd45- liver non patient normal tissue 

GSE136103 GSM4041155 Lntc3cd45+ liver non patient normal tissue 
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GSE136103 GSM4041156 Lntc3cd45-A liver non patient normal tissue 

GSE136103 GSM4041157 Lntc3cd45-B liver non patient normal tissue 

GSE136103 GSM4041158 Lntc4cd45+ liver non patient normal tissue 

GSE136103 GSM4041159 Lntc4cd45- liver non patient normal tissue 

GSE136103 GSM4041160 Lntc5cd45+ liver non patient normal tissue 

GSE154778 GSM4679542 MetPR15 liver Tumor 

GSE154778 GSM4679543 MetPR16 liver Tumor 

GSE154778 GSM4679545 MetPR17 liver Tumor 

GSE154778 GSM4679546 MetPR18 liver Tumor 

GSE154778 GSM4679547 MetPR19 liver Tumor 

GSE156405 GSM4730266 MetPR01 liver Tumor 

GSE158356 GSM4798244 MetPR10 liver Tumor 

GSE158357 GSM4798245 MetPR11 liver Tumor 

GSE158358 GSM4798246 MetPR12 liver Tumor 

GSE158359 GSM4798247 MetPR13 liver Tumor 

GSE158356 GSM4798248 MetPR14 liver Tumor 

GSE197177 GSM5910785 MetPR02 liver Tumor 

GSE197177 GSM5910788 MetPR03 liver Tumor 

GSE197177 GSM5910790 MetPR04 liver Tumor 

GSE197177 GSM5910791 MetPR05 liver Tumor 

GSE217845 GSM6727542 MetPR06 liver Tumor 

GSE217845 GSM6727543 MetPR07 liver Tumor 

GSE217845 GSM6727544 MetPR08 liver Tumor 

GSE217845 GSM6727545 MetPR09 liver Tumor 

 

Supplementary table 1. (continued). 
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