
 

 

ProteinBERT Algorithms: Applications in Antimicrobial 

Peptides Classification, Intrinsically Disordered Protein 

Prediction, and Toxicity Analysis 

Xiaofeng Li 

School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, China 

xiaofeng.li21@student.xjtlu.edu.cn 

Abstract. The burgeoning field of computational biology has been markedly enhanced by the 

integration of advanced machine learning models capable of tackling intricate protein-related 

challenges. ProteinBERT, a transformer-based deep learning algorithm, has emerged as a 

formidable tool in deciphering complex patterns within protein sequences. This study delves into 

ProteinBERT's robust application across three pivotal domains: antimicrobial peptide (AMP) 

classification, intrinsically disordered protein (IDP) prediction, and protein toxicity prediction. 

Leveraging domain-specific datasets alongside sophisticated evaluation metrics, ProteinBERT 

has shown superior performance, surpassing both traditional models and other contemporary 

deep learning approaches in these areas. The analysis reveals that ProteinBERT not only 

accurately classifies AMPs, effectively predicts IDP configurations, and reliably forecasts 

protein toxicity but also sets new benchmarks in the precision of computational predictions. This 

research underscores the significant capabilities of ProteinBERT and discusses prospective 

enhancements that could refine its utility in computational protein analysis, aiming to push the 

boundaries of current methodologies and foster innovations in protein research. 
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1.  Introduction 

The evolution of computational biology has been significantly influenced by the rapid progression in 

machine learning technologies, particularly with the advent of sophisticated models designed to tackle 

the complex nature of protein research. ProteinBERT, a transformer-based deep learning algorithm, 

stands out among these innovations. It has been specifically developed to recognize intricate patterns 

within protein sequences that traditional computational methods might overlook. This capability 

positions ProteinBERT as a pivotal tool in addressing fundamental questions in protein science, 

especially given its versatility across various protein-related challenges.ProteinBERT's application 

spans several critical areas of protein research. Antimicrobial peptides (AMPs), which are key 

components of the immune system, offer a broad spectrum of actions against microbes, making their 

classification vital for therapeutic advancements. Similarly, intrinsically disordered proteins (IDPs) 

challenge conventional structure-based protein prediction models due to their lack of stable three-

dimensional structures, necessitating more advanced approaches like those offered by ProteinBERT for 

accurate analysis. Moreover, protein toxicity prediction remains essential for ensuring the safety and 
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efficacy of therapeutic proteins, where understanding adverse effects is crucial. ProteinBERT's ability 

to navigate these complex areas reflects its integral role in advancing protein science. 

This paper aims to provide a thorough analysis of ProteinBERT’s application across three domains: 

antimicrobial peptide classification, prediction of intrinsically disordered proteins, and protein toxicity 

assessment. By integrating domain-specific datasets and utilizing refined evaluation metrics, the 

effectiveness of ProteinBERT in these areas is rigorously investigated. This study not only assesses the 

current capabilities of ProteinBERT in enhancing the accuracy of predictions and classifications in 

protein research but also discusses potential improvements that could further optimize its performance. 

Moreover, the paper explores the broader implications of ProteinBERT's technology in computational 

biology, offering insights into its benefits and limitations while proposing future directions for research 

to expand its application and enhance its utility in the field. 

2.  Theoretical Foundations 

2.1.  The base model 

The ProteinBERT model is a deep learning framework that has been specifically designed for protein 

sequences. It builds on the BERT (Bidirectional Encoder Representations from Transformers) 

architecture, initially developed for natural language understanding. The BERT architecture utilizes 

bidirectional attention, enabling the model to capture intricate dependencies between tokens in a 

sequence by assigning different attention weights to each token [1]. In natural language processing 

(NLP), this allows for the modeling of complex semantic relationships within a sentence. Similarly, in 

the context of protein sequences, ProteinBERT treats amino acids as tokens, thereby enabling the model 

to learn the complex relationships between residues across the entire sequence. 

ProteinBERT has been trained on an extensive corpus comprising approximately 106 million protein 

sequences from the UniProtKB/ UniRef90 dataset, which encompasses a comprehensive range of known 

protein sequences. The pretraining process employs a dual-task approach, comprising bidirectional 

masked language modelling and Gene Ontology (GO) annotation prediction. Random tokens within the 

sequence are masked in the masked language modeling tasks, and the model is trained to predict these 

masked tokens based on the surrounding context. The GO annotation prediction task entails the 

prediction of protein functions, the capturing of diverse biological processes and molecular functions 

[2]. The combined pretraining strategy enables ProteinBERT to develop a comprehensive understanding 

of both the sequence structure and function, significantly enhancing its efficacy for downstream tasks 

such as antimicrobial peptide classification, intrinsically disordered protein prediction, and protein 

toxicity prediction. 

Furthermore, ProteinBERT's architectural design incorporates several innovative features that 

differentiate it from the original BERT model and other protein language models. Notably, ProteinBERT 

distinguishes between local (character-level) and global (whole-sequence-level) representations, 

enabling more efficient and effective processing of long sequences. The model's architectural design, 

which incorporates convolutional and global attention layers, ensures that it is capable of handling 

sequences of varying lengths without the quadratic memory and computation growth that is associated 

with traditional self-attention mechanisms. This flexibility enables ProteinBERT to generalise 

effectively across a range of sequence lengths, making it particularly well-suited to tasks involving 

extremely long protein sequences [3]. 

ProteinBERT offers an efficient and scalable framework for protein sequence analysis, delivering 

near top-tier performance on multiple benchmarks while being smaller and faster than many competing 

models. The model's capacity to rapidly adapt to a range of protein-related tasks with minimal labelled 

data makes it a valuable tool in the field of bioinformatics. 

2.2.  Transformer layers 

Transformer layers are the core components of ProteinBERT, consisting of multi-head self-attention 

mechanisms and feedforward neural networks. The attention mechanism operates by calculating an 
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attention score for each pair of tokens in the sequence. The score thus serves to determine the extent to 

which one token should be the focus of attention when processing the sequence. Following the 

embedding process, the three vectors Q, K and V are generated by multiplying the word vectors with 

the three matrices 𝑊𝑄 , 𝑊𝐾  and 𝑊𝑉 . The dot product of Q and K represents the attention score 

between the two tokens in question. This is determined by calculating the dot product between the query 

vector of one token and the key vector of another. This assesses the degree of alignment between the 

current token's query and the other token's key, thus determining the extent to which the two are aligned. 

Subsequently, the scaling process is as follows: The dot product is often scaled by dividing it by the 

square root of the dimensionality of the key vectors. This step serves to stabilize the gradients during 

the training process, particularly when working with high-dimensional vectors. Subsequently, the 

resulting scores are subjected to a softmax function, which converts them into a probability distribution. 

This step ensures that all attention scores for a given token are equal, thereby determining the extent to 

which each token should focus on the others. 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)V (1) 

In the traditional Natural Language Processing (NLP) tasks, self-attention performs by contracting 

the dependency relationship of each word in the sentence and assigning different relationship weights 

to each word, the different words in the context can be linked together to form the overall semantics. 

While in the protein region, the self-attention mechanism, enhanced by GO annotation, allows the model 

to evaluate the importance of individual amino acids within the sequence when making predictions, 

effectively capturing both short-range and long-range dependencies. The processing of the input 

sequence is conducted in parallel by each transformer layer, thereby enabling efficient computation and 

scalability to long sequences. 

In practice, transformers like ProteinBERT use multi-head attention, where multiple sets of 𝑊𝑄, 

𝑊𝐾, and 𝑊𝑉 matrices are learned. Each "head" in multi-head attention computes attention using a 

different set of learned 𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉  matrices. The outputs from all attention heads are 

concatenated and then processed through a linear layer to produce the final output. 

The multi-head aspect of the self-attention mechanism enables ProteinBERT to learn different types 

of relationships between residues in parallel. Each head focuses on a distinct aspect of the sequence, 

such as specific motifs or structural patterns, thereby facilitating a more nuanced comprehension of the 

sequence [4]. Subsequently, the output is conveyed through a feedforward neural network, followed by 

layer normalization and residual connections. This facilitates the stabilization of the training process and 

enhances the model's capacity for generalization. 

2.3.  Local and global representations 

A principal characteristic of ProteinBERT is its capacity to learn both local and global representations 

of protein sequences. Two nearly parallel paths make up the model architecture: one is for local 

representations and the other is for global representations. The global representations are 2D tensors 

with a shape of 𝐵 × 𝐿 × 𝑑𝑙𝑜𝑐𝑎𝑙 , while the local representations are 3D tensors with a shape of 

𝐵 × 𝐿 × 𝑑𝑙𝑜𝑐𝑎𝑙 , where 𝐿  is the minibatch sequence length, 𝐵  is the batch size, and 𝑑𝑙𝑜𝑐𝑎𝑙  is the 

number of channels [5]. Local representations capture the immediate context around each residue, which 

is essential for understanding short-range interactions and motifs that are critical for the function of 

antimicrobial peptides and the structural disorder in proteins. Such representations are of particular 

significance in tasks where specific subsequences or motifs are responsible for determining the overall 

function or property of the protein. 

Conversely, global representations consider the entire sequence, capturing long-range dependencies 

and overall sequence characteristics that may influence protein toxicity or overall structure. This 

comprehensive approach is vital for tasks where the interaction between distant residues or the overall 

sequence composition is crucial for accurate predictions. 
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The architecture of ProteinBERT is designed to achieve a balance between local and global 

perspectives, thereby providing a robust framework for analysing protein sequences across a range of 

tasks. By employing both types of representations, ProteinBERT can achieve a high level of accuracy 

in complex prediction tasks, thereby establishing itself as a versatile tool in the field of computational 

biology. As show in the figure 1.  

 
Figure 1. Neural network structure diagram [6]. 

3.  Algorithm Analysis and Application Research 

3.1.  Classification of antimicrobial peptides 

Antimicrobial peptides (AMPs) are small molecules, typically comprising 6 to 100 amino acids, which 

exhibit potent antibacterial properties. In contrast to conventional antibiotics, AMPs do not facilitate the 

development of bacterial resistance, thereby representing a promising avenue for the advancement of 

novel antibacterial therapeutics. The classification of AMPs is of great importance for the identification 

of potential therapeutic peptides [6]. To improve this task's accuracy and efficiency, a lot of research 

has been done recently on machine learning and deep learning techniques. 

Conventional machine learning techniques, such as random forests and support vector machines, 

have been utilized for AMP classification. However, these approaches are subject to several limitations, 

including the necessity for extensive feature engineering, high computational costs and relatively low 

prediction accuracy. Feature engineering is a time-consuming process that requires significant domain 

expertise to transform raw data into informative features. The quality of the features that are engineered 

into these devices is a major factor in their effectiveness. 

Recent studies have addressed similar tasks by using deep learning algorithms, which can 

automatically create representations of features from raw sequence data without requiring manual 

feature engineering. Among these, ProteinBERT model has demonstrated considerable potential in the 
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classification of AMPs. ProteinBERT applies a pretraining-fine-tuning strategy, where the model is 

trained on a huge corpus of protein sequences to produce universal protein sequence representations, 

and then it is fine-tuned specific tasks like AMP classification. 

The architecture of ProteinBERT for AMP classification comprises two parallel pathways: one for 

local sequence information and another for global sequence information. Both pathways are learned 

through self-supervised pretraining. The local pathway is responsible for capturing the detailed 

sequential information of amino acids, whereas the global pathway is tasked with capturing broader, 

contextual information across the entire protein sequence. During the process of fine-tuning, the model 

is optimised for the specific task of AMP classification, utilising the knowledge acquired during the 

pretraining phase to enhance the accuracy of the predictions [7]. 

ProteinBERT outperformed other deep learning models and conventional machine learning 

techniques in experimental tests. For example, in an evaluation of test sets, the ProteinBERT-based 

model achieved an accuracy of 92.35%, a sensitivity (SENS) of 92.70%, and a receiver operating 

characteristic (ROC) curve area of 97.3% [8]. These results not only exceed those of traditional methods 

but also surpass those of other state-of-the-art AMP classification models, including DNN and 

iAMPpred. The elevated accuracy and auROC value demonstrate that ProteinBERT is highly efficacious 

in differentiating between AMPs and non-AMPs, thereby establishing it as a reliable instrument for the 

identification of novel antimicrobial peptides. 

Applying ProteinBERT to AMP classification marks a significant advancement in the field of 

bioinformatics. By leveraging deep transfer learning and attention mechanisms, ProteinBERT offers a 

more efficient and accurate approach to AMP classification, with the potential to accelerate the 

discovery of new antimicrobial agents. 

3.2.  Prediction of intrinsically disordered proteins 

Intrinsically disordered proteins (IDPs) represent a distinctive and complex category within the field of 

proteomics, characterised by the absence of a fixed three-dimensional structure. This contrasts with the 

well-defined folds observed in globular proteins. The intrinsic disorder of IDPs allows them to adopt a 

multitude of conformations, which are essential for several biological processes, including cellular 

signalling, molecular transport and assembly. Because of these proteins' ability to dynamically interact 

with other cellular components, they have been connected to a number of neurodegenerative illnesses, 

such as Parkinson's and Alzheimer's [9]. 

The inherent flexibility and the limited availability of structured data have presented significant 

challenges for traditional machine learning and deep learning models in predicting the behaviour and 

structure of IDPs. However, ProteinBERT has been adapted to address this challenge. The architecture 

of ProteinBERT has been enhanced to improve its predictive capabilities for IDPs by incorporating a 

comprehensive dataset of IDP sequences. This enhancement enables ProteinBERT to predict a range of 

characteristics associated with IDP behaviour, including folding classes, secondary structures and 

remote homology. 

The enhanced version of ProteinBERT was fine-tuned using a dataset comprising approximately 

5,000 proteins, which were selected based on their intrinsic disorder characteristics. The dataset was 

meticulously cleaned and labelled for secondary structure, folding class, and remote homology, which 

are critical for understanding the diverse conformations that IDPs can assume [10]. Subsequently, the 

model was trained to predict these features across the IDP dataset, resulting in notable enhancements in 

accuracy and prediction capabilities. 

In terms of performance, the fine-tuned ProteinBERT model demonstrated significant enhancements. 

Prior to the incorporation of data specific to IDPs, the model exhibited an accuracy of approximately 

88% in folding class predictions and 74% in secondary structure predictions for standard proteins. 

However, the initial predictions for IDP data exhibited a notable decline in accuracy, particularly in the 

case of remote homology, where the accuracy rate approached zero. Following fine-tuning with the IDP 

dataset, the accuracy for folding class prediction among IDPs increased by 20%, reaching 93.97%. 
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Similarly, an improvement of 6.768% was observed in the accuracy of secondary structure prediction, 

which demonstrates the enhanced capability of the model to handle the dynamic nature of IDPs [11]. 

Moreover, the predictions made by ProteinBERT for IDPs were analysed in terms of their 

distribution across different folding classes and secondary structures. The model predicted that a 

substantial proportion of IDPs (approximately 38.9%) belonged to the alpha and beta protein class, with 

an additional 26.99% belonging to the alpha protein class. This distribution is indicative of the model's 

capacity to discern and categorise the flexible structures of IDPs. Furthermore, the model accurately 

predicted amino acid sequences for approximately 98% of the IDP dataset, thereby further underscoring 

its robustness. 

The incorporation of data specific to intrinsically disordered proteins into ProteinBERT signifies a 

substantial advancement in the prediction of such proteins. Researchers have improved the model's 

capacity to predict the intricate behaviors and structures of these proteins by fine-tuning it with an 

extensive dataset specifically designed for IDPs. This has made the model an invaluable tool for 

proteomics research. This development highlights the potential of machine learning in advancing our 

comprehension of IDPs, which have traditionally been challenging to study using conventional 

methodologies. 

3.3.  Prediction of protein toxicity 

The prediction of protein toxicity represents a pivotal stage in the advancement of biologics, as it 

facilitates the identification of potentially deleterious proteins prior to their progression to clinical trials. 

While small molecules have established rules and predictive algorithms to assess toxicity, the prediction 

of toxicity in peptides and proteins has traditionally been less developed, resulting in higher failure rates 

during the later stages of drug development. A distinctive in silico protein toxicity classifier called CSM-

Toxin was created to solve this problem. It predicts protein toxicity based exclusively on amino acid 

sequences by utilizing the ProteinBERT model. 

Protein sequences are treated as sentences and amino acids like words in proteinBERT's BERT-based 

architecture, upon which CSM-Toxin is based. Since the model had been pre-trained using the Masked 

Language Model approach on more than 100,000 protein sequences from the database of UniProt, it was 

able to understand intricate connections between amino acids and their surrounding environment. 

Attribute to the pre-training, the model can make robust predictions even with minimal input features, 

relying entirely on the raw amino acid sequence to determine toxicity. As show in the figure 2. 

 
Figure 2. Structure diagram [12]. 

Proceedings of  ICBioMed 2024 Workshop:  Computational  Proteomics in Drug Discovery and Development from Medicinal  Plants  
DOI:  10.54254/2753-8818/71/2024.LA18780 

104 



 

 

To develop CSM-Toxin, the researchers created the largest and most comprehensive dataset of 

experimentally measured toxic and non-toxic protein sequences. There were 214,740 non-toxic 

sequences and 2475 hazardous sequences in all. Carefully analyzing the dataset ensured that there were 

no duplicates and that the model could be used to a variety of protein types. Subsequently, the model 

was fine-tuned on this dataset, with a particular focus on optimising hyperparameters to enhance 

predictive performance. The application of cross-validation during the training phase revealed that 

CSM-Toxin attained 0.66 for Matthews Correlation Coefficient of and 0.86 for Area Under the Curve, 

thereby exhibiting superior performance in terms of both accuracy and robustness when compared to 

alternative methods. 

CSM-Toxin consistently scored admirably in blind test assessments, obtaining an MCC of 0.64 and 

an AUC of 0.86 on a non-redundant test set. These results are noteworthy in that they indicate that the 

model is not only accurate but also consistent across different datasets, which is essential for practical 

applications in drug development. In comparison to alternative toxicity prediction models, such as 

ToxinPred2, CSM-Toxin exhibited enhanced precision, resulting in a reduction in the number of false 

positives while preserving a high recall level. In the case of toxicity prediction, where false positives 

and false negatives can both have serious consequences, striking an equilibrium between recall and 

precision is crucial. 

The efficacy of ultilizing deep learning models like ProteinBERT for protein toxicity prediction is 

demonstrated by the accomplishments of CSM-Toxin. By focusing on the sequence alone, without the 

need for additional structural or evolutionary information, CSM-Toxin offers a streamlined and efficient 

approach to toxicity prediction. The model is accessible via a web server, thus enhancing its accessibility 

to researchers, who can rapidly assess the toxicity of protein sequences, thereby reducing the time and 

cost associated with biologic development. 

4.  Challenges and Limitations 

Despite the significant progress achieved by ProteinBERT in various areas of protein research, several 

challenges and limitations remain that need to be addressed to further improve its applicability and 

accuracy. 

One of the main challenges encountered in the application of ProteinBERT is the issue of data 

imbalance, particularly in tasks such as protein toxicity prediction. The curated datasets often contain a 

disproportionate number of non-toxic proteins compared to toxic proteins, which can lead to biased 

models that may underperform in identifying rare toxic proteins. In addition, the limited availability of 

experimentally validated datasets is a significant limitation. Prediction accuracy could be further 

improved with access to more comprehensive and balanced datasets covering a wider range of protein 

sequences and properties. 

While ProteinBERT has shown strong performance on specific tasks after fine-tuning, its ability to 

generalise to entirely new protein sequences or unseen tasks remains a challenge. The model's 

performance, particularly in IDP and toxicity prediction, may deteriorate when applied to novel protein 

sequences that differ significantly from those in the training dataset. This limitation highlights the need 

for further improvements in model architecture and training strategies to improve ProteinBERT's ability 

to generalise to diverse and previously unseen protein sequences. 

ProteinBERT requires significant computational resources to train and fine-tune, especially on large 

datasets. The model's complex architecture, which includes multiple layers of transformations and 

attention mechanisms, requires high memory and processing power, which may limit its accessibility to 

research groups with limited computational infrastructure. Although the model is efficient compared to 

other deep learning frameworks, the computational cost associated with training and deploying 

ProteinBERT at scale remains a notable limitation. 

Another significant limitation is the interpretability of ProteinBERT's predictions. Although 

powerful, the model often operates as a 'black box', providing little insight into how specific predictions 

are made. This lack of interpretability can be particularly problematic in critical areas such as drug 

development and toxicity assessment, where understanding the rationale behind a prediction is critical. 
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Improving the interpretability of ProteinBERT predictions through model explanatory techniques is an 

area that requires further exploration. 

In addition, the quality of ProteinBERT’s pre-training on large protein sequence datasets has a 

significant impact on the performance in various tasks. Any biases or limitations in these pre-trained 

models may propagate into the fine-tuned models, potentially affecting their performance on specific 

tasks. This reliance on pre-trained models limits the flexibility to fully tailor the model architecture to 

specific tasks without risking losing the benefits gained from pre-training. 

In summary, while ProteinBERT has made significant strides in advancing protein sequence analysis, 

addressing these challenges and limitations will be critical to its continued success and wider adoption 

in the field of bioinformatics. Future research should prioritize improving data availability and balance, 

improving generalization and interpretability of the model, and lowering the model's computational cost 

to fully realize its potential. 

5.  Conclusion 

The implementation of ProteinBERT across various aspects of protein research marks a significant 

advancement in the field of bioinformatics. This study has validated the robustness and adaptability of 

ProteinBERT, showcasing its ability to accurately perform tasks such as the classification of 

antimicrobial peptides, prediction of intrinsically disordered proteins, and assessment of protein toxicity. 

Leveraging advanced mechanisms like deep transfer learning and attention-based models, ProteinBERT 

has outperformed traditional computational methods, offering enhanced accuracy and scalability. The 

fine-tuning of the model using domain-specific datasets has notably improved its efficacy in tackling 

complex predictions, underscoring its potential as a pivotal resource in proteomics and therapeutic 

development. 

Further refinement of ProteinBERT is essential to fully harness its capabilities. Future research 

should aim to enhance the model's accuracy and efficiency, broadening its application scope to include 

a wider array of protein-related tasks. Additionally, there is a compelling opportunity to integrate 

ProteinBERT with other computational tools and platforms, which could amplify its utility across the 

broader spectrum of computational biology. Such integration could facilitate more comprehensive 

analyses and foster the development of innovative approaches in protein research, potentially 

accelerating discoveries in disease mechanisms and drug development. 
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