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Abstract. Protein structure prediction serves as a foundational aspect of molecular biology, 

where computational advancements have recently propelled significant increases in prediction 

accuracy. This paper evaluates traditional protein structure prediction methods, including 

homology modeling, threading, and Ab Initio techniques, emphasizing the inherent challenges 

these methods face in accurately modeling novel and highly flexible proteins. With the advent 

of AI-based models, particularly AlphaFold, the landscape of protein structure prediction has 

undergone a transformative shift. AlphaFold integrates evolutionary data with sophisticated 

deep learning algorithms to achieve accuracies close to experimental results. Despite such 

progress, AlphaFold grapples with challenges in dynamic regions of proteins, such as 

intrinsically disordered proteins (IDPs), and struggles to accurately predict the structural 

impacts of genetic mutations. The paper also explores novel emerging methods, such as protein 

language models, designed to address these specific limitations. These cutting-edge approaches 

not only enhance the accuracy of protein structure predictions but also broaden the scope of 

potential applications. Areas such as drug discovery and vaccine development stand to benefit 

immensely from these advancements, potentially expediting critical breakthroughs. This 

examination of both established and novel methodologies illuminates the ongoing evolution of 

protein structure prediction, pointing towards future innovations that may further revolutionize 

the field. 
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1.  Introduction 

Research Background: Protein structure prediction is pivotal in molecular biology, underscored by its 

critical role in understanding protein function and the implications for health when proteins misfold, 

potentially leading to diseases like Alzheimer's and cystic fibrosis [1-3]. The foundational hypothesis set 

by Christian Anfinsen posits that a protein's amino acid sequence dictates its three-dimensional structure, 

which in turn determines its function [3]. Traditional methods for studying these structures, such as 

X-ray crystallography and NMR spectroscopy [4, 5], have significantly contributed to our knowledge, 

albeit with limitations in cost, time, and the resolution of dynamic folding processes. The challenge of 

keeping pace with the exponential growth of sequence data, juxtaposed with a relatively slower growth 

in the experimental resolution of structures, emphasizes the necessity for advanced computational 

approaches [6, 7, 8]. 
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Current Research Status: Despite the vast number of protein sequences available in databases 

like UniProtKB, a significant gap remains between the sequences known and those with resolved 

tertiary structures [7, 8]. This disparity is largely due to the complex, costly, and time-intensive nature 

of traditional experimental methods that often fail to represent natural protein conformations and 

dynamics effectively [9]. The Levinthal paradox highlights these challenges by questioning how 

proteins fold so quickly given their conformational freedom [10]. Addressing these gaps, 

computational methods, including AI-driven algorithms, have emerged as essential tools. These 

include both template-based approaches, leveraging existing structural data, and template-free 

methods that predict structures from primary amino acid sequences [9]. The development of deep 

learning models like AlphaFold represents a significant leap forward, offering predictions with 

near-experimental accuracy and the potential to transform how proteins are studied and applied in 

biomedical research. 

Research Content of This Paper: This paper delves into the core challenges of protein folding 

and structure prediction, with a focus on the integration of deep learning technologies in this field. It 

reviews current methodologies, from homology modeling and threading to advanced AI algorithms 

like AlphaFold, evaluating their efficacy, limitations, and potential applications in drug discovery and 

vaccine development. Despite the advances, challenges persist, particularly in accurately predicting 

structures of complex proteins and multi-protein assemblies [9, 10]. This study aims to assess how 

combining big data technology with structural biology can not only enhance the predictive accuracy 

but also streamline drug development processes. Furthermore, it explores the potential of future 

predictive models to revolutionize personalized medicine and precision therapies, leveraging vast 

datasets to tailor biomedical solutions to individual genetic profiles. This paper seeks to provide a 

comprehensive analysis of the current landscape and future directions in protein structure prediction, 

emphasizing the transformative impact of deep learning and big data in the field. 

2.  Traditional Protein Structure Prediction Methods 

Protein folding is an inherently complex process. Even though most current computer modeling 

techniques have achieved high experimental accuracy and vast data storage capabilities, no algorithm 

has yet been able to perfectly predict the natural folding of proteins [11]. Traditional protein folding 

structure prediction techniques are primarily based on three modeling approaches: homology modeling, 

threading/fold recognition, and the Ab Initio method. Both homology modeling and threading/fold 

recognition rely on known protein structure templates, while the Ab Initio method does not depend on 

pre-existing templates. Instead, it predicts possible folding structures directly from the protein 

sequence by combining energy functions with conformational sampling. The underlying principle of 

these methods is based on the relationship between protein evolution and folding. Homology modeling 

and threading methods predict the target protein structure by assuming conservation in the amino acid 

sequence or fold during the protein's evolutionary process. In contrast, the Ab Initio method simulates 

the physical process of protein folding to predict the target protein structure [12]. 

2.1.  Homology modeling 

Homology modeling uses known protein structures as templates to predict the structure of target 

proteins with high sequence similarity. This modeling approach assumes that similar sequences in 

homologous proteins will fold into similar structures and that structural evolution tends to be more 

conserved than sequence evolution, especially in functionally critical core regions [13]. This means 

that during the evolutionary process of homologous proteins, structurally conserved regions (SCRs) 

are more likely to be preserved, while variable loop regions or residues with greater flexibility tend to 

evolve independently. If certain residues are similar in terms of size and hydrophobicity, they are 

likely to replace one another during evolution. Even if parts of the sequence change throughout 

evolution, the resulting three-dimensional structure remains largely similar [14]. 

When the target protein and template protein share more than 25% sequence similarity, they are 

likely to be evolutionarily homologous. Homology modeling fragments and combines the SCRs of the 
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template protein with the variable loop regions or active side chains of the target protein. The core 

structure of the target protein is built using conserved regions from the known template, while the 

variable regions are adjusted and optimized flexibly. The final fitted three-dimensional model can be 

superimposed on the native model using specific structural comparison programs, and its accuracy is 

evaluated by calculating the root-mean-square deviation (RMSD) of the Cα atoms. The workflow for 

homology modeling includes the following steps: 1) searching for homologous template sequences in 

databases; 2) aligning the target sequence with the template sequence; 3) generating the conserved 

core regions (i.e., the backbone structure); 4) modeling the loops and side-chain regions; 5) optimizing 

the model following energy minimization; and 6) evaluating the model. 

When a homologous template is available, homology modeling is the preferred method for 

predicting protein structure. In biomedical research, homology modeling assists scientists in predicting 

how mutations at different sites affect protein structures, thereby shedding light on potential disease 

mechanisms. For example, human tyrosinase plays a crucial role in melanin synthesis, and mutations 

at its active site can lead to albinism. However, the crystal structure of human tyrosinase is not 

available in the Protein Data Bank. To address this, Mubashir Hassan and his team used homology 

modeling in 2017 to predict and analyze eight mutations in the active binding region of tyrosinase and 

assess their impact on the structural stability of the enzyme [15]. The six histidine residues that form 

the active site of human tyrosinase bind to copper atoms to generate catalytic activity, and this active 

region is largely conserved across species. The crystal structure of tyrosinase from *Bacillus 

megaterium*, a bacterium with high sequence similarity to the target protein, was selected as a 

template. The study involved replacing residues at the active site (H180N, H202Q, H202R, H211R, 

H363Y, H367R, H367Y, and H390D), and molecular dynamics (MD) simulations were used to 

predict the effects of these mutations on the structure in a force field. The results showed that 

mutations at residues such as Q/R202 and Y/R363 were more likely to affect the stability and folding 

of the protein, thereby interfering with melanin biosynthesis pathways and leading to melanin-related 

disorders. The quality and accuracy of the model were evaluated using several online servers, such as 

MolProbity, ERRAT, and ProSA. Since neuromelanin in the brain is linked to neurodegeneration and 

Parkinson's disease, the mutated structures of human tyrosinase have also been explored as therapeutic 

targets for identifying potential inhibitors. 

2.2.  Threading/Fold recognition 

Similar to homology modeling, threading (or fold recognition) primarily focuses on predicting the 

static folded state of a protein based on existing structural libraries, rather than simulating the dynamic 

folding process. While homology modeling assumes that similar amino acid sequences fold into 

similar three-dimensional structures, amino acid sequence alone is not the only determinant of protein 

folding. In nature, the number of unique folding structures is limited, and even in cases where there is 

low sequence identity, proteins can still fold into highly similar three-dimensional structures [16].  

When sequence identity drops below 25%, threading offers higher accuracy than homology 

modeling. Threading assumes that the folding patterns of proteins are more conserved than their 

sequences, meaning that folding structures remain more stable throughout evolution. Unlike homology 

modeling, which relies on high sequence similarity, threading is applied to protein sequences with 

little similarity to known structures. By "threading" the target sequence into different folding structure 

templates, the method evaluates whether each possible fold matches the target sequence. 

Residue environment classification is the core scoring criterion in threading methods. The 3D 

profile method defines different environment classes based on the secondary structure of amino acid 

residues and their interactions with the surrounding environment, such as solvent accessibility and 

whether the residue is located in a core or surface region. This approach translates the 

three-dimensional spatial position of a residue into a one-dimensional string. The residue environment 

classification is then used to evaluate whether the sequence fits appropriately into the template 

structure. If the same amino acid residue is located in different environments, the matching score may 

decrease [17]. By considering the environmental class of each residue, threading avoids producing 
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unreasonable alignment results. For example, hydrophobic residues should be buried within the 

protein core and not exposed to solvents. The basic workflow of the threading method includes the 

following steps: 1) selecting a template protein from the database; 2) designing a scoring function 

based on the template and template sequence; 3) "threading" the one-dimensional sequence through 

the known template structure library; and 4) evaluating and validating the fit. 

When used together, threading and homology modeling can cover a wider range of sequence 

similarities. This combined approach has been applied to predict the structure and function of 

hypothetical proteins in Mycoplasma hyopneumoniae (M. hyopneumoniae). In databases, some 

proteins encoded by this bacterium's genes lack inferred functions, including those critical for its 

biological activities, such as ATP and NAD synthetase activities. The study suggests that seven 

specific proteins (YP_287866, YP_287786, YP_287675, YP_287559, YP_288024, YP_287971, and 

YP_288034) are involved in metabolism and transcription processes in M. hyopneumoniae. When 

predicting the structure of the N-terminal region of YP_287866, the crystal structure of 

Staphylococcus aureus nicotinamide mononucleotide adenylyltransferase was used as a template. Even 

though the sequence identity between the two proteins was not high, the high score obtained in the 

threading method was due to the similarity in their folded topological structures [18]. 

2.3.  Ab initio method 

Although template-based modeling provides high accuracy, in many cases, the target protein lacks a 

suitable template for reference, especially for novel and unknown proteins. The Ab Initio method 

offers a reference model for proteins that are difficult to analyze using X-ray crystallography or NMR. 

Given the high cost and time-consuming nature of experimental structure determination, the rough 

models predicted by the Ab Initio method serve as a guide for subsequent, more precise measurements. 

The Ab Initio method is based on Anfinsen's thermodynamic hypothesis, which posits that the native 

folding state of a protein has the lowest free energy. This method simulates the physical interactions at 

the molecular level—such as van der Waals forces, hydrogen bonds, and hydrophobic 

effects—allowing for an extensive search of the conformational space until the three-dimensional fold 

with the global minimum free energy is found [19]. However, the vast computational demands of the 

Ab Initio method limit its applicability to long protein sequences.  

One optimization approach is to search for similar sequence fragments and model them separately. 

These fragments are then assembled into a complete model based on simulated force fields and 

interactions, thereby reducing the computational burden. The length and number of fragments used 

influence the model's accuracy, and the fragments themselves can be based on known structures from 

databases [20]. It is important to note that while the Ab Initio method involves physical simulation of 

the protein folding process, its goal is to predict the native state of the protein, rather than to trace the 

path it takes to achieve correct folding.  

To efficiently sample the correct conformation among numerous folding patterns, the Ab Initio 

method requires a function capable of high-efficiency conformational sampling. This sampling 

function is typically based on algorithms like simulated annealing or Monte Carlo, which are designed 

to search for global optimal solutions. Since the stability of a protein's native structure is only 5-10 

kcal/mol higher than its denatured state, there are many possible conformations between the denatured 

and native states. Therefore, folding model predictions must account for a variety of energy 

considerations, especially those between residues. For example, hydrophobic interactions drive 

non-polar residues to aggregate in polar solvent environments, while polar residues are influenced by 

van der Waals forces and hydrogen bonding, leading to either attraction or repulsion. The typical 

workflow of the Ab Initio method includes the following steps: 1) determining the amino acid 

sequence of the target protein; 2) searching the conformational space; 3) evaluating the energy 

function; 4) finding the conformation with the lowest free energy and optimizing the search results; 

and 5) outputting the final folded structure. 

The boundary between template-based and template-free modeling is often blurred, as the 

inter-residue interactions referenced in Ab Initio methods can also be inferred from the evolutionary 
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correlations within protein sequences. Thomas A. Hopf and his team successfully applied a hybrid Ab 

Initio method to blindly predict the three-dimensional structures of 11 known transmembrane proteins. 

Since more than a quarter of human proteins contain membrane structures, accurate prediction of 

membrane protein structures has significant medical implications. A detailed understanding of 

conformational changes and active sites in membrane proteins can aid the field of molecular chemistry 

in identifying better drug targets. Compared to purely homology modeling or Ab Initio methods, the 

prediction approach developed in this experiment, known as EVfold-membrane, does not rely on 

known protein structure templates or purely physical-chemical laws. Instead, it uses statistical amino 

acid co-evolution relationships to predict protein structures. By incorporating evolutionary constraints, 

this method significantly reduces the enormous computational burden typically associated with 

conformational searches in traditional Ab Initio methods. The final predicted models showed high 

consistency with actual crystal structures, and the prediction accuracy was even higher for regions 

critical to protein function than for the overall protein structure [21]. 

3.  AI-Based Protein Structure Prediction Methods 

3.1.  AlphaFold 

Traditional methods such as homology modeling, threading, and Ab Initio have laid the groundwork 

for computer-based drug design through protein structure prediction. To encourage the development of 

protein structure prediction algorithms, the Critical Assessment of Structure Prediction (CASP) 

initiative was established in 1994. This event provides participants with proteins whose 

three-dimensional structures are known but not publicly disclosed, allowing research teams worldwide 

to test and evaluate their prediction algorithms. In 2020, AlphaFold, developed by DeepMind, 

demonstrated remarkable accuracy in the CASP14 assessment, far surpassing other methods. 

AlphaFold's precision in both backbone and all-atom predictions was significantly superior to previous 

structure prediction algorithms. The model has since been widely validated using recently published 

PDB structures, offering excellent references for experimental structure determination, protein 

function analysis, and proteome-wide predictions [22]. 

AlphaFold integrates the strengths of traditional prediction methods by combining evolutionary 

information and deep learning to predict the tertiary structure of proteins. This method uses neural 

networks to predict inter-residue distances, thereby inferring structural information, and employs 

co-evolutionary constraints and gradient descent algorithms to optimize the predicted protein structure 

[23]. The input to the AlphaFold network includes the primary amino acid sequence of the target 

protein as well as a multiple sequence alignment (MSA) of homologous proteins. The network's core 

utilizes an innovative Evoformer module, which effectively integrates MSA information and 

residue-pair data to infer both spatial and evolutionary relationships in proteins. The Evoformer 

module overcomes the limitations of traditional methods, such as dependence on templates or complex 

physical calculations, allowing AlphaFold to handle more complex protein structure problems and 

achieve accuracy that approaches experimentally determined structures. The main workflow for 

AlphaFold's protein structure prediction includes: 1) inputting the amino acid sequence of the target 

protein; 2) constructing MSA information, including alignment sequences from homologous proteins; 

3) using neural network modules to generate high-precision three-dimensional structures based on the 

input information; 4) iteratively refining the predicted structure; and 5) outputting the predicted 

three-dimensional coordinates of the target protein. 

Even though AlphaFold's prediction accuracy is close to that of experimental models, it is not 

meant to operate independently of laboratory-based protein measurement techniques. The models 

predicted by AlphaFold still require experimental validation, and they can complement traditional 

methods to improve the efficiency and accuracy of predictions. In 2022, Dylan P. Noone and 

colleagues combined cryo-electron microscopy (Cryo-EM), mass spectrometry, and AlphaFold's 

structural prediction methods to determine the complete structural model of the long pentraxin PTX3. 

PTX3 has demonstrated antiviral properties in mouse models of COVID-19 infection. As an important 
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part of innate immune recognition, PTX3 lacked high-resolution structural data from laboratory 

measurements. The C-terminal domain of PTX3 had been observed through Cryo-EM, but the 

flexibility of the N-terminal region reduced the resolution of the structure. In this experiment, 

AlphaFold was used to model the N-terminal region, which was then combined with the known 

C-terminal structure to create a complete model of PTX3. This model revealed the octameric structure 

of PTX3, consisting of a core domain made up of eight PTX domains and a flexible N-terminal region 

composed of two coiled-coil tetramers. These structural details help to understand the 

multifunctionality of PTX3 in complement activation, antiviral activity, and its role in the extracellular 

matrix [24]. 

During the subsequent COVID-19 pandemic, AlphaFold models were used to study the pathogenic 

proteins of SARS-CoV-2 in search of potential vaccine targets. SARS-CoV-2, the causative agent of 

COVID-19, is a coronavirus, and vaccine development against it has primarily focused on the spike 

protein, which mediates viral infection. Variations in the spike protein's structure may influence the 

virus's infectivity and transmissibility, and vaccines need to account for stable mutations in the spike 

protein [25]. Similar structure-based reverse vaccinology approaches have been applied in the 

development of vaccines for viruses such as influenza, human immunodeficiency virus (HIV), and 

respiratory syncytial virus (RSV). In vaccine design, AlphaFold's core algorithm involves a global 

analysis of sequence covariance. In protein sequences, covariance analysis is often used to evaluate 

alignment results across multiple sequences, inferring whether two amino acid residues co-evolve. At 

the heart of the host-pathogen struggle is covariance. The structures predicted by AlphaFold must keep 

pace with the evolutionary changes in the pathogen to prevent immune evasion. Since viral surface 

molecules are constantly changing, understanding how these changes occur in response to 

environmental factors through AlphaFold models is even more crucial than simply predicting static 

structures. 

3.2.  Limitations of AlphaFold 

Despite its achievements, AlphaFold still has some limitations, such as its insensitivity to mutations 

within the input amino acid sequence [26]. Missense mutations, caused by base pair substitutions, are 

common in nature and can alter a protein's conformation, stability, and resistance, such as in the 

formation of antibody-antigen complexes. These structural disruptions are often associated with 

diseases. Predicting the structural impact of point mutations using AlphaFold requires inputting the 

mutated sequence into the database. However, there is no specific database for mutations that cause 

structural disruptions, and AlphaFold's initial input is primarily based on evolutionarily constrained 

homologous models. As a result, the accuracy of AlphaFold's predictions for protein structures after 

missense mutations is limited. 

AlphaFold utilizes multiple sequence alignment (MSA) to analyze the conservation and variation 

across homologous protein sequences during the prediction process. Typically, orthologous gene 

sequences exhibit a degree of conservation, but certain regions may display high variability and 

conformational flexibility, such as intrinsically disordered proteins (IDPs) and loops. AlphaFold 

sometimes predicts disordered regions as more structured helices or underestimates their confidence 

scores. Many proteins in living organisms exhibit such unstable structures when isolated, and IDPs 

play crucial biological roles, particularly in signal transduction, regulation, and protein-protein 

interactions. Due to their flexibility, IDPs can bind to various molecules and play important roles in 

cellular regulation. AlphaFold treats IDPs as unstructured regions, leading to an overlap between 

disordered regions and domains with low confidence scores. This can result in missing important 

structural elements [27]. Additionally, loop regions often correspond to missing sections in protein 

structures from databases. These loops tend to be located on the protein surface, making them prone to 

involvement in protein-protein interactions. AlphaFold frequently overpredicts loop regions, especially 

when the loops exceed 20 residues in length [28]. Consequently, AlphaFold has limited accuracy in 

predicting structurally flexible regions that evolve over time. 

Proceedings of  ICBioMed 2024 Workshop:  Computational  Proteomics in Drug Discovery and Development from Medicinal  Plants  
DOI:  10.54254/2753-8818/74/2024.LA18791 

124 



 

 

New modeling approaches have been developed to address some of AlphaFold's limitations. 

Protein language models, built upon the foundation of AlphaFold, have shown promising potential in 

biotechnological applications. The core concept of protein language models is to draw an analogy 

between common amino acid sequences and words in a natural language, with the entire protein 

sequence resembling a sentence. By applying this analogy, researchers utilize techniques from natural 

language processing (NLP), such as autoregressive models, bidirectional models, and masked models, 

to analyze, model, and predict protein structure and function. The innovation of these language models 

lies in the neural network architecture they employ, specifically the Transformer model. This model 

uses an attention mechanism to infer dependencies between "contextual" sequences. Unlike AlphaFold, 

which relies heavily on MSA and co-evolutionary information from homologous proteins, protein 

language models explore tertiary structure using only the primary sequence as the starting point. This 

avoids some of the biases that arise in AlphaFold's predictions due to its dependence on MSA and 

co-evolution data. Additionally, these language models offer greater efficiency in structure retrieval 

[29]. 

4.  Conclusion 

This paper has explored the pivotal advancements AlphaFold has brought to protein structure 

prediction, acknowledging its profound impact on the accuracy of predicting complex protein 

structures. Despite its achievements, AlphaFold's limitations, particularly its dependence on multiple 

sequence alignments and challenges with intrinsically disordered proteins and point mutations, 

indicate areas requiring further enhancement. The exploration into novel computational models such 

as protein language models has demonstrated potential to address some of these shortcomings by 

prioritizing primary sequence data and reducing biases associated with co-evolutionary analysis. 

The field of structural biology stands at a promising juncture where the fusion of experimental 

methods with AI-driven technologies, including and extending beyond AlphaFold, will be 

instrumental. Future research should focus on integrating these advanced computational models with 

traditional experimental techniques, creating a synergistic approach that enhances our understanding 

of protein dynamics, interactions, and the effects of mutations at a granular level. Such integration will 

not only refine the accuracy of structural predictions but also expand the potential applications in drug 

design and the broader understanding of biological mechanisms. Continuing to develop and refine 

AI-driven approaches, while addressing their current limitations, will significantly propel the 

capabilities of predictive models, fostering innovations in precision medicine and therapeutic 

interventions. 
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