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Abstract. Brain function studies often rely on magnetic resonance imaging (MRI) and 

electroencephalography (EEG) due to their non-invasive and complementary capabilities. MRI 

offers high spatial resolution but is limited by low temporal resolution, while EEG captures real-

time neural dynamics but lacks spatial detail. While both modalities are widely used, integrating 

fMRI and EEG to leverage their strengths remains an ongoing challenge, particularly in 

understanding the complex interactions of spatial and temporal brain dynamics. Current methods, 

such as Canonical Correlation Analysis (CCA) and Independent Component Analysis (ICA), 

have shown promise but face limitations in capturing intricate multimodal relationships, 

especially in clinical diagnostics. Here, we present a novel attention-based deep learning model 

that integrates spatial features from fMRI with temporal sequences from EEG, employing 

Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. Our 

approach addresses previous limitations by enhancing feature fusion through dynamic attention 
mechanisms, which prioritize relevant data from both modalities. The model was rigorously 

evaluated using key metrics such as Accuracy, Precision, Recall, and F1 Score. Precision and 

Recall exceeded 80%, while the F1 Score surpassed 0.75, ensuring reliability in both research 

and clinical settings. The integration of fMRI and EEG with attention mechanisms significantly 

improves the accuracy and interpretability of brain function analysis. This model demonstrates 

potential for broader clinical applications, offering a robust tool for diagnosing neurological 

disorders. Future work will focus on improving computational efficiency and integrating 

additional data modalities, such as genetic or behavioral information, to provide a more 

comprehensive view of brain dynamics. 
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1.  Introduction 

Brain function studies typically use magnetic resonance imaging (MRI) and electroencephalography 

(EEG) because of their non-invasive and complementary nature. MRI shows brain structures in detail 

thus providing high-resolution structural images and is therefore valuable in identifying anatomical 
abnormalities, but with low temporal resolution. However, the lower temporal resolution limits the 

ability to track rapid neural processes. On the other hand, EEG captures the electrical activity of the 

brain in real time at a high temporal resolution provides excellent temporal resolution, but lacks spatial 
detail and has lower resolution. In recent years, artificial intelligence and machine learning have 

revolutionized neural data analysis. Deep learning algorithms, in particular, have shown great potential 
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for processing massive amounts of data, extracting meaningful features, and performing prediction and 

classification tasks [1]. By applying these techniques to multimodal data from MRIs and EEGs, 

researchers can gain insights previously unavailable through traditional methods alone. 
This project aims to overcome these limitations by utilizing artificial intelligence and machine 

learning to gain a more comprehensive understanding of brain dynamics, leading to better diagnosis and 

treatment of neurological disorders. 

2.  Methodology 

2.1.  Related work 

Multimodal neuroimaging data fusion, especially the integration of fMRI and EEG, has gained 

significant attention for its ability to leverage the strengths of both modalities. fMRI provides high 
spatial resolution for capturing detailed structures, while EEG offers excellent temporal resolution for 

real-time neural dynamics. Recent advances in fusion techniques show promise for improving brain 

function analysis. For instance, Wang et al. highlighted the benefits of combining fMRI and EEG for 
brain network analysis through feature concatenation and complex integration strategies [1]. Mantini et 

al. also demonstrated that fusing EEG and fMRI offers deeper insights into resting-state brain networks, 

capturing patterns that single modalities often miss [2]. 
In neuroimaging, Convolutional Neural Networks (CNNs) are effective at extracting spatial features 

from fMRI, while Long Short-Term Memory (LSTM) networks are widely used to model the temporal 

sequences in EEG data. Liu et al. showed that combining CNN and LSTM improves classification 

accuracy in multimodal brain imaging, and Zhang et al. further enhanced this approach by using 
attention mechanisms to improve feature fusion and interpretability [3-4]. 

Multivariate methods such as Canonical Correlation Analysis (CCA), Independent Component 

Analysis (ICA), and Joint Independent Component Analysis (jICA) are frequently used to fuse fMRI 
and EEG data. CCA identifies shared patterns between the two modalities by maximizing correlations, 

helping detect brain networks often overlooked by traditional methods [5]. ICA, by decomposing 

multimodal data into independent components, enables the detection of brain regions related to specific 

cognitive functions. jICA, which combines independent components from both modalities, has proven 
particularly useful for studying conditions like schizophrenia, revealing deeper insights into neural 

dysfunction [5]. 

2.2.  Experimental procedure 
Figure 1 shows the flowchart of the solution. After inputting the fMRI and EEG data, the data is 

preprocessed using different methods and then the preprocessed information is subjected to feature 

extraction using two algorithms, CNN and LSTM. The extracted features are fused using a fusion model 
and the results are visualized in three different ways for processing and analysis. The model is evaluated 

by the final results to determine its effectiveness. 

2.3.  Data collection and Preprocessing 

The fMRI and EEG data used in this project were primarily obtained from publicly accessible databases 
(e.g., Human Connectome Project and PhysioNet), and relevant clinical trial data. The combination of 

data sources ensures a comprehensive dataset, which is essential for accurate analysis and meaningful 

results. 
To ensure data accuracy and consistency, both fMRI and EEG data undergo several preprocessing 

steps. For fMRI data, preprocessing steps include aligning all brain images to a standardized template, 

correcting for any temporal discrepancies in the data, applying smoothing techniques to improve signal-
to-noise ratios, and removing artifacts caused by head movements [6]. Similarly, processing of EEG 

data involves filtering out interference and noise, applying independent component analysis (ICA) to 

remove artifacts such as eye movements, re-referencing signals to standardize electrode positioning, and 

segmenting the data into relevant time periods for focused analysis [7]. 
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2.4.  Algorithms and Model Options 

To analyze the data effectively, deep learning algorithms are selected based on their ability to handle 

the distinct characteristics of fMRI and EEG data, ensure transparency, interpretability, and maintain 
operational efficiency. In this project, Convolutional Neural Networks (CNN) extract spatial features 

from fMRI data, while Long Short-Term Memory (LSTM) networks capture temporal sequences in 

EEG data. The extracted features are fused using a model that integrates CNN and LSTM outputs, 
producing a unified representation that enhances overall analysis. 

In multimodal data fusion, three common methods are typically used: the tandem method, pyramid 

pooling, and attention mechanisms. The tandem method concatenates features from fMRI and EEG data 

into a single high-dimensional feature vector [8]. This approach is advantageous due to its simplicity 
and ease of implementation. However, treating the features independently fails to capture the complex 

interactions between fMRI’s spatial characteristics and EEG’s temporal dynamics. The pyramid pooling 

method tackles this by combining global and local features via multi-scale pooling [9]. It pools data at 
multiple scales, capturing both broad global features and fine local details from fMRI and EEG data. 

Although it provides comprehensive feature representations, it has high computational complexity and 

resource demands due to its intricate structure. 
In contrast, the attention mechanism mitigates these issues by dynamically assigning appropriate 

weights to the most informative features from both modalities, enhancing spatial and temporal data 

interaction [10-11]. Furthermore, attention mechanisms are more computationally efficient than 

pyramid pooling and provide stronger interpretability. Visualizing attention weights gives researchers 
insight into which features most influence the model’s decisions, thereby improving transparency and 

explainability. Thus, in this project, the attention mechanism was selected as the optimal fusion method, 

balancing performance, computational efficiency, and interpretability. 

2.4.1.  Visualization Methods 

To enhance interpretability and usability, various visualization techniques are used to represent different 

aspects of brain activity and neural connectivity. Heat maps and 3D brain maps visualize brain activation 

patterns from fMRI data [12]. In heat maps, color gradients indicate the intensity of neural activation, 
with warmer colors (e.g., red or yellow) showing higher activity and cooler colors (e.g., blue or green) 

showing lower activity. This method offers a clear spatial view of neural dynamics, allowing researchers 

to assess which brain areas are more active during tasks. Similarly, 3D brain maps extend this into three-
dimensional space, providing a more detailed view of brain structure and activation patterns. 

The second technique visualizes neural connectivity between brain regions, typically represented as 

a network of nodes and edges [13]. Here, nodes represent distinct brain regions, and edges represent 
functional or structural connections. The thickness and color of the edges indicate the strength and 

significance of these connections. Thicker, darker lines denote stronger connections, while thinner, 

lighter lines suggest weaker ones. This visualization is useful for understanding large-scale brain 

networks, such as the default mode network or task-positive network, and how different brain regions 
interact during cognitive or sensory processes. 

Lastly, Local Interpretable Model-agnostic Explanations (LIME) enhance model interpretability by 

providing explanations for AI decisions in multimodal brain data analysis [14]. LIME perturbs input 
data and observes changes in model predictions. It highlights the key features influencing the model’s 

decisions. This tool is valuable for enhancing transparency in deep learning models by identifying key 

fMRI or EEG features involved in diagnosis or brain function analysis. By visualizing these features, 
LIME deepens understanding of how the AI model processes complex neural data, making it essential 

to the overall visualization framework. 

2.4.2.  Model Evaluation 

The model's effectiveness is assessed using key metrics like Accuracy, Precision, Recall, and F1 Score 
[15]. These metrics offer a comprehensive evaluation of the model’s performance, ensuring its reliability. 

Accuracy measures the proportion of correctly classified instances but can be misleading in imbalanced 
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datasets, as it may overestimate performance by favoring the majority class. Precision measures the 

proportion of true positives among predicted positives, crucial for avoiding false positives, especially in 

clinical diagnoses. Recall (or sensitivity) reflects the model’s ability to correctly identify positive cases, 
minimizing false negatives. F1 Score balances precision and recall, making it particularly useful in 

imbalanced datasets where these metrics may conflict, offering a more comprehensive performance 

evaluation. 
In brain function analysis using fMRI and EEG data, it is generally recommended that Precision and 

Recall exceed 80% to ensure the model’s reliability in clinical applications [16]. An F1 Score of at least 

0.75 is also essential to balance precision and recall, ensuring robust performance in real-world settings 

[17]. To further validate the model, cross-validation, independent validation sets, and clinical trial 
validation are employed, providing strong evidence of the model’s utility and accuracy across diverse 

datasets and conditions [18]. 

3.  Discussion 

This study introduced a multimodal deep learning model that integrates fMRI and EEG data to analyze 

brain function, utilizing CNNs for spatial features and LSTM networks for temporal sequences. The 

attention mechanism enabled dynamic feature fusion, resulting in improved accuracy and 
interpretability. 

A primary advantage of this model is the attention mechanism. By dynamically adjusting feature 

weights from both fMRI and EEG data, the model focuses on the most relevant information from each 

modality. This improves both classification accuracy and transparency, making it easier to interpret 
decisions—critical in clinical applications where prediction rationale must be clear. 

Additionally, combining fMRI and EEG data is a key strength. fMRI offers detailed spatial resolution, 

while EEG provides high temporal resolution. Fusing these two modalities allows the model to capture 
both spatial structure and temporal dynamics, offering a more comprehensive understanding of brain 

function than either modality alone. This integration makes the model a powerful tool for diagnosing 

and studying complex neurological disorders. 

The model has significant potential for broader clinical and research applications. As neuroimaging 
datasets grow and computational tools advance, the model can be refined to handle larger, more diverse 

datasets, expanding its diagnostic capabilities. Its attention-based architecture could also integrate other 

data types, such as genetic or behavioral data, allowing for more holistic analyses in neuroinformatics. 

4.  Conclusion 

This paper introduced a multimodal deep learning model designed to integrate fMRI and EEG data for 

enhanced brain function analysis. By leveraging the complementary strengths of fMRI's spatial 
resolution and EEG's temporal precision, the model effectively captures both the structural and dynamic 

aspects of neural activity. The introduction of attention mechanisms proved crucial, allowing the model 

to dynamically focus on the most relevant features from each modality, thereby improving both accuracy 

and interpretability. 
The findings confirm that the model meets the desired performance thresholds, with precision and 

recall both exceeding 80% and an F1 score above 0.75, ensuring reliability in real-world clinical settings. 

These metrics underscore the model’s robustness in correctly identifying brain patterns and reducing 
both false positives and negatives, making it suitable for practical applications. 

Future research will aim to refine the model for greater computational efficiency and adaptability. 

Integrating additional data modalities, such as genetic or behavioral information, could offer a more 
comprehensive view of brain function, enhancing diagnostic accuracy. Efforts will also focus on 

streamlining the model’s architecture to facilitate real-time clinical applications, potentially broadening 

its impact on neurological research and treatment. 
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