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Abstract. The theory of groups exists in many fields of mathematics and has made a great impact 

on many fields of mathematics. In this article, this paper first introduces the history of group 

theory and elementary number theory, and then lists the definitions of group, ring, field and the 

most basic prime and integer and divisor in number theory that need to be used in this article. 

Then from the definitions, step by step, Euler's theorem, Bézout's lemma, Wilson's theorem and 

Fermat's Little theorem in elementary number theory are proved by means of definitions of group 

theory, cyclic groups, and even polynomials over domains. Finally, some concluding remarks 

are made. Many number theory theorems can be proved directly by the method of group theory 

without the action of tricks in number theory. Number theory is the thinking of certain special 

groups (e.g., (𝑍, +), (𝑍,×)), so the methods of group theory work well inside number theory. 
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1.  Introduction 

Number theory was introduced before algebra, but the groups and semigroups (e.g. (𝑍, +), (𝑍,×)) in 

algebra are the basis of number theory. In the 18th century, the French mathematician Lagrange used 

the concept of substitution groups in his paper to deal with many equations of order 3 and 4 [1]. Van 

also refined this theory and gave some insights of his own [2]. Many developments in permutation 

groups was further made by Augustin-Louis Cauchy and Camille Jordan [3-4], who defined the concept 

of isomorphism, although only in the permutation groups. Moreover, it was the man who made the term 

"group" widely available. Galois first proposed the definition of a cluster, making much work [5]. Gauss 

published a book-Disquisitiones Arithmeticae [6], in which he proved that some number theory results 

apply the theory of some finite Abelian groups. Many years have passed since then, until today. This is 

the combination of group theory and elementary number theory. Elementary number theory has many 

theorems whose proofs do not depend on group theory but using a more systematic language like group 

theory can also add a new flavour to the proofs of number theory.  

In this paper, section 2 is devoted to give some definition of group theory and number theory. The 

theorems and their proof will be presented in section 3. The conclusion belonging to this paper is going 

to be shown in section 4.  

2.  Definition 

Next we will give some definition of group theory and number theory. 
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2.1.   Definition in group theory [7] 

Definition 2.1.1. A semigroup is a double (S, p) where S denotes a non-empty set, and p denotes an 

associative binary composition belonging to M. 

Definition 2.1.2. A triple (S, p, 1) is denoted by a monoid in which (S, p) is the semigroup, and ∃1 ∈
M such that p(1, x) = x = p(x, 1) for all x ∈ M. 

Definition 2.1.3. In a monoid M, if u ∈ M is said to be invertible if ∃v ∈ M satisfies uv = 1 = vu. 

Definition 2.1.4. If all elements in a manoid are invertible, it is called a group. 

Definition 2.1.5. If O ⊂ G for a group (G, p, 1), and (O, p, 1) is also a group, then we name H is a 

subgroup of G. 

Definition 2.1.6. For a subgroup O of a group G, x ∈ G, we name Ox = {ox|o ∈ O} is the right coset 

of x related to O. We name xO = {xo|o ∈ O} is the left coset of x related to O. 

Definition 2.1.7. For a subgroup H of G. If G = Hx1 ∪ Hx2 ∪ Hx3 ∪ ⋯ ∪ Hxr, where we have displayed 

the distinct cosets, and Hxi ∪ Hxj = ∅ if i ≠ j, then we donate r=[G:H] called the index belonging to 

H in G. 

Definition 2.1.8. If a group can be written by C =< a >= {am|m ∈ Z}, then we say C is a cyclic group, 

and we call that a is the generator of group C. 

Definition 2.1.9. If every two elements a, b ∈ G in a group G adapt ab = ba, then G is a abelian 

group. 

Definition 2.1.10. We say the order of an element c in group G, ord(x), that is the least positive 

integers i which makes ci = 1. And the order of a group is how many elements are in this group. 

Definition 2.1.11. A ring is a triple (R, +,∙)  where R  is a a non-vacuous set, and the binary 

compositions +,∙ and particular elements 0,1 in it satisfying 

(𝑅, +,0) must be an abelian group. 

(𝑅,∙ ,1) must be a monoid. 

𝛼(𝛽 + 𝛾) = 𝛼𝛽 + 𝛼𝛾、(𝛽 + 𝛾)𝛼 = 𝛽𝛼 + 𝛾𝛼 hold for all 𝛼, 𝛽, 𝛾 ∈ 𝑅. 

Definition 2.1.12. For a ring (R, +,∙), it is a field if (R\{0},∙ ,1) has the nature of a abelian group. 

2.2.   Definition in number theory [8] 

In this chapter, 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 denote integers. 

Definition 2.2.1. We say d divides n and we write d|n whenever n = cd for some c. The d is also 

called a divisor of n. Besides, d is some factor of n. If d does not divide n we put down d ∤ n. 

Definition 2.2.2. A prime number is describing that a number greater than 1 and the positive divisors of 

it just have 1 and itself. If a integer is not prime, then it is called composite. 

Definition 2.2.3. The greatest common divisor of two or more integers(≠ 0), is the biggest positive 

integer which divides each of the integers. We can write it as (a, b) for two integers a and b. 
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Definition 2.2.4. We say two integers a and b are coprime if (a, b) = 1. 

3.  Theorem and Proof 

Theorem 3.1. (Lagrange's theorem). If G have a subgroup H, then |G| = [G: H] ∙ |H|. 
Proof. Any two cosets Hx and Hy have a bijective map (x−1y)R: z → z(x−1y) because for any 

h ∈ H  there exists hx(x−1y) = hy  and it inverse (y−1x)R: z → z(y−1x)  , so cardinality of every 

coset is equal. And H1 = H is one of the cosets relatives to H. So the |G| = [G: H] ∙ |H|. 

Theorem 3.2. Assume 𝐂 is the cyclic group, 𝐇 is certain subgroup belonging to 𝐂, then we have that 

𝐇 must be a cyclic group. 

Proof. If 𝐂 is a cyclic group, then 𝐂 =< 𝐚 >. Then every element 𝐠 ∈ 𝐂 can be put down as a 

form 𝐠 = 𝐚𝐤, 𝐤 ∈ 𝐙. 

If 𝐇 is a subgroup of 𝐂, and 𝐇 can be written by 𝐇 = {𝐚𝐤𝟏 , 𝐚𝐤𝟐 , 𝐚𝐤𝟑 , ⋯ }. 

Let 𝐤𝐣 = 𝐦𝐢𝐧{𝐤𝐢|𝐤𝐢 > 𝟎} . < 𝐚𝐤𝐣 >= {𝐚𝐦𝐤𝐣|𝐦 ∈ 𝐙} ∈ 𝐇  because 𝐇  is a group. If 𝐛 ∈ 𝐇\<

𝐚𝐤𝐣 , then because 𝐛 ∈ 𝐂, b can be written as 𝐛 = 𝐚𝐭. Because every element has its inverse. If 𝐭 ≤ 𝟎, 

then we can choose 𝐜 = 𝐚−𝐭. Assume that 𝐭 > 𝟎. Because 𝐛 ∉< 𝐚𝐤𝐣 > so 𝐤𝐣 ∤ 𝐭. So we can find 𝐦 ∈

𝐙 such that 𝐭 − 𝐦𝐤𝐣 = 𝐫, 𝟎 < 𝐫 < 𝐤𝐣. And because 𝐇 is a group, so 𝐛 ∙ (𝐚𝐤𝐣)−𝐦 = 𝐚𝐫 ∈ 𝐇 and 𝐫 <

𝐤𝐣 which are introduced contradictions. So 𝐇 =< 𝐚𝐤𝐣 >. 

Theorem 3.3. (Bézout's Lemma). If 𝐚, 𝐛 are integers and (𝐚, 𝐛) = 𝐝, then there exist integers 𝐱, 𝐲, 

where 𝐚𝐱 + 𝐛𝐲 = 𝐝. 

Proof. Z is a cyclic group. Then 𝐇 = {𝛍𝐚 + 𝛕𝐛|𝛍, 𝛕 ∈ 𝐙} is a subgroup of Z because 

 (𝛍𝟏𝐚 + 𝛕𝟏𝐛) + (𝛍𝟐𝐚 + 𝛕𝟐𝐛) = (𝛍𝟏 + 𝛍𝟐)𝐚 + (𝛕𝟏 + 𝛕𝟐)𝐛  and (𝛍𝐚 + 𝛕𝐛) + ((−𝛍)𝐚 +
(−𝛕)𝐛) = 𝟎. So H is also a cyclic group because of Theorem 2. So there must have a generator 𝐇 =<
𝐠 >  which 𝐠 = 𝐚𝐱 + 𝐛𝐲  and when 𝛍 = 𝟎, 𝛕 = 𝟏  or 𝛍 = 𝟏, 𝛕 = 𝟎 ,  𝐚, 𝐛 ∈ 𝐇 , so 𝐠|(𝐚, 𝐛) . And 

because 𝐠 = 𝐚𝐱 + 𝐛𝐲, so 𝐝|𝐠. So 𝐝 = 𝐠. 

We can easily proof if 𝐭𝐡𝐞𝐫𝐞 𝐞𝐱𝐢𝐭𝐬 𝐝 𝐰𝐡𝐢𝐜𝐡 𝐢𝐬 𝐛𝐢𝐠𝐠𝐞𝐫 𝐭𝐡𝐚𝐧 𝟎 𝐚𝐧𝐝 𝐝 ∈ 𝐙  such that 

𝐚𝐱 𝐩𝐥𝐮𝐬𝐢𝐧𝐠 𝐛𝐲 𝐞𝐪𝐮𝐚𝐥𝐬 𝐭𝐨 𝐝 which |𝐚, 𝐛, such that 𝐝 = (𝐚, 𝐛). If 𝐝 ≠ (𝐚, 𝐛), and (𝐚, 𝐛)|𝐚, (𝐚, 𝐛)|𝐛, 

so (𝐚, 𝐛)|𝐝. Because d is a positive integer, so 𝐝 > (𝐚, 𝐛). This makes contradictions of (𝐚, 𝐛) is the 

greatest divisor. 

Theorem 3.4 (Euler’s theorem). if there are two coprime integers n and a, and φ(n) is Euler's totient 

function, φ(n) donates the number of elements which coprime to n in {0,1, ⋯ , n − 1}, then we can 

discover aφ(n) ≡ 1(mod n). 
Proof. We first prove that elements which coprime to n in {0,1, ⋯ , n − 1} are a group H with 

common multiplication (mod n), which is called reduced residues system. 

If b, c ∈ H , then we have k1b + k2n = 1 , k3c + k4n = 1 . Then (k1b + k2n)(k3c + k4n) =
k1k3bc + (k1k4b + k2k3c + k2k4)n = 1. So (bc, n) = 1 and bc ∈ H. (1, n) = 1 give that 1 ∈ H. 

We should prove if X is a reduced residues system of n and b is coprime to n, then bX is also a 

reduced residues system modulo n. 

We know that for x ∈ X  , (x, n) = 1 , so (bx, n) = 1 . And for any x1, x2 ∈ X,  if bx1 ≡
bx2(mod n),  we know k1b + k2n = 1  and k1bx1 + k2nx1 ≡ (k1b + k2n)x1 ≡ (k1b + k2n)x2 ≡
k1bx2 + k2nx2(mod n). We have x1 ≡ x2(mod n). So elements in bX is also φ(n). This also is a 

reduced residues system. 

So there exists an element c , such that bc ≡ 1(mod n)  because 1 ∈ bX.  A reduced residues 

system of n with common multiplication (mod n) is a group. 

Because (a, n) = 1, So a ∈ H and < a > is a subgroup of H. Because of Theorem 1, aφ(n) ≡

a|H| ≡ ak|<a>| ≡ 1k ≡ 1(mod n).  
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Theorem 3.5 (Fermat's little theorem). Assume p is a prime number and p is not a divisor of an integer 

a, then the p − 1 power of a is equal to 1 in the sense of module p. 

Proof. Because p ∤ a and p is a prime, so (p, a) = 1. Because all number is coprime to a prime, so 

φ(n) = p − 1.  

Theorem 3.6 (Wilson's theorem). p  is a prime is a sufficient necessary condition for (p − 1)! =
−1(mod p). 

Proof. First, because of the process in Theorem 3.4, we know (Z/Zp\{0},∙) is a abelian group. 

(Because every positive integer under p is coprime to p.) So we know (Z/Zp, +,∙) is a field. Because 

it is a field, so every product by some elements ≠ 0 cannot be 0. So if the equation xn = 1, x ∈ Z/Zp 

has more than n solves γ1, γ2, γ3 ⋯ γn+1 ⋯  

We have (γn+1 − γ1)(γn+1 − γ2) ⋯ (γn+1 − γn) = 0 but every product by some elements ≠ 0 

cannot be 0. So every xn = 1, x ∈ Z/Zp should have ≤ n. 

Because it is a finite field. So we could find an element g in (Z/Zp\{0},∙) which has the biggest 

order. If ord(g) = p. Because of Theorem 3.1, q|p − 1. If (Z/Zp\{0},∙) is not a cyclic group, q <
p − 1. 

Now we want to prove that in finite abelian group G, if the biggest order of elements in G equals to 

m, then ∀g ∈ G, ord(g)|m. 
If ∃g ∈ G, but ord(g) ∤ m, then ∃p such that (assume the biggest order element is x) ord(g) =

pam, ord(x) = pbn ((p, m) = (p, n) = 1), a > b.  

So ord (xpb
) = n, ord(gs) = pa , then ord (gsxpb

) = pan > pbn = m  which makes 

contradiction. So order of any elements must divide q. So xq = 1 have p − 1 solves. But p − 1 >
q, which makes contradiction. So (Z/Zp\{0},∙) must be a cyclic group. If its generator is a. And it has 

odd number of elements. Because ∏ gg∈(Z/Zp\{0},∙) = a
p−1

2  and every element has it inverse s, but a
p−1

2  

is the only 2 order element because p-1 is even, p is odd. 

Because of Theorem 3.4, we know φ(p) = p − 1. So we can see that aφ(p) ≡ 1(mod p) and then 

we can see that a𝑝−1 ≡ 1(mod p) and we can see a
p−1

2 ≡ ±1(mod p). At this point, there are only 

two scenarios to consider, so we discuss them in separate cases. If a
p−1

2 = 1, a
p−1

2
+1 = a which make 

contradiction because every element in <a> must be different. So a
p−1

2 = −1, ∏ gg∈(Z/Zp\{0},∙) = −1. 

So we proof (p − 1)! = −1(mod p).  

4.  Conclusion 

This paper uses the ideas of group theory to prove the problems of number theory, although they are all 

elementary number theory problems. Few people go back to elementary number theory after studying 

group theory, because for non-numerical math students, elementary number theory is just a key to group 

theory. But when they look back, and the ideas of group theory are applied to prove the theorems of 

elementary number theory, it is rare to find that the theorems of elementary number theory, which 

require so much skill to prove. After all, elementary number theory is nearly inseparable from difficult 

constructions and flashy tricks [9], but group theory seems very simple but useful. During the proof, the 

author spent a lot of time thinking about avoiding group theory proofs that use the basic theory of number 

theory, because if the proof of group theory uses the theory of number theory again, it would essentially 

be a circular argument, which is very unnecessary and needing to be avoid. This allows many of the 

theorems of number theory in this paper to be supported almost entirely by the system of group theory. 

Many theorems of number theory are proved in group theory without many complex definitions, and in 

fact many of them can be proved in three sentences. But if one does not learn group theory well, one 

may not quite understand them. This paper assumes that the reader does not understand group theory 

and number theory at all, and proves these theorems in an initial way, so that they can be easily read and 

understood. Although the study of algebraic number theory is very deep [10], the study and learning of 
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elementary number theory is very often divorced from the language of algebra. As algebra becomes 

more and more an important part of modern mathematics, elementary number theory will also have 

more of an algebraic flavor. Number theory and algebra will progress together to the next level. 
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