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Abstract. A constructive Function is a computer program that transforms a Constructive Real 

Number (CRN) into another CRN. A left number is a program that generates an increasing se-

quence of rational numbers with an upper bound. We use algorithmic functions to generate CRNs 

and Left numbers. In this essay, we will prove the continuity of such functions on Left numbers 

in topological space with the base of right rays. 
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1.  Definitions 

1.1.  Definition 1 (Constructive Real Number) 

A computer program to describe a number with two parts 𝛼, 𝛽. Here 𝛼 produces a Cauchy sequence of 

rational numbers, and 𝛽 generates a convergence regulator, which tells how fast the sequence converges. 

They were first introduced by Turing [1,2]. 

1.2.  Definition 2 (Constructive Function) 

an algorithm transforming CRN to CRN. 

1.3.  Definition 3 (Left number) 

an increasing has algorithmically given sequence of rational numbers with an upper bound. Besides, 

there are two schools of Constructive Analysis: one follows the bishop-Bridges approach, and the other 

follows the Markov-Shanin approach [3-6]. 

1.4.  Definition 4 (Topology) 

Topology is the mathematical study of the properties that are preserved through deformations, twistings, 

and stretchings of objects. The study of topology is much more comprehensive than that of Euclidean 

geometry, and the notions of distances and points are much broader. 

A more precise definition: 

Let X be a non-empty set. A set T of subsets X is said to be a topology if: 

(i) X and the empty set, ϕ belongs to T 

(ii) the union of any finite or infinite number of sets T belongs to T and 
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(iii) the intersection of any two sets T belongs to T 

The pair (X,T) is called a topological space. 

1.5.  Definition 5 (Topological base) 

Given a set, a collection of subsets of the set is said to form a basis for a topological space or a basis for 

a topology if the following two conditions are satisfied: 

1.The union of all members of the collection is the whole space 

2.Any finite intersection of members of the collection is itself a union of members of the collection 

The topology generated by this basis is the topology in which the open sets are precisely the unions 

of basis sets. 

2.  Introduction 

Continuity demonstrates itself in different ways in different spaces. Before the formal proof of the result, 

there are three lemmas we need to prove. Lemma 1 and Lemma 2 together imply that all algorithmic 

functions on the space of Left Numbers are monotonic, and with Lemma 3 together, we can formulate 

the corollary:  

𝐸𝑣𝑒𝑟𝑦 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓: ℒ ⟶ ℒ 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑟𝑎𝑦𝑠. 

Note: ℒ is the space of all left numbers. 

Moreover, decidability and enumerability are two essential properties about sets. Subset 𝐴 of the set 

of positive integers ℕ+ is decidable if we can find an algorithm 𝑈 , ∀ 𝑛 ∈ ℕ+ to tell if 𝑈(𝑛) is inside 𝐴 

or not. Set 𝐴 is called enumerable if we can generate an algorithm which prints out all the elements in 

𝐴. There do exist examples of enumerable but undecidable sets; see Theorem 11 Shen and Vereshchagin 

[7-9].  

3.  Main Part 

A left number is a strictly increasing algorithmically given sequence of rational numbers with a rational 

upper bound. Two left numbers can be added together but cannot be subtracted because the result would 

generally not be a Left number. Also, we can add and subtract a rational number from a left number. 

Moreover, we can define the relationship of < and ≤ on left numbers.  

The relationship 𝐿1 < 𝐿2 is defined as  

𝐿1 < 𝐿2 𝑖𝑓 ∃
𝑝𝑖

𝑞𝑖
∈ 𝐿2, 𝑠. 𝑡 

𝑝𝑖

𝑞𝑖
> 𝑎𝑙𝑙 

𝑝𝑗

𝑞𝑗
∈ 𝐿1. 

The relationship 𝐿1 ≤ 𝐿2 is defined as 

𝐿1 ≤ 𝐿2 𝑖𝑓 ∀
𝑝𝑖

𝑞𝑖
∈ 𝐿1, ∃

𝑝𝑗

𝑞𝑗
∈ 𝐿2, 𝑠. 𝑡 

𝑝𝑗

𝑞𝑗
>

𝑝𝑖

𝑞𝑖
. 

In the definitions above the exists symbol means that the existing object can be found algorithmically.  

Previously we have introduced the definition of Constructive Real Number (CRN). However, left 

numbers are not always CRNs. One such example comes from the famous Specker sequence. More 

precisely, consider the Specker sequence (Kushner, 1984), whose elements have standard regulators and 

choose an increasing subsequence of the rational entries. By definition of the Specker sequence, it would 

not admit a regulator. Recall that an algorithmically given sequence of natural numbers 𝛽(𝑛) is called 

the regulator of convergence of a CRN if  

𝑖𝑓 ∀𝑛, 𝑖, 𝑗, 𝑖, 𝑗 ≥ 𝛽(𝑛), 𝑤𝑒 ℎ𝑎𝑣𝑒 |𝛼(𝑖) − 𝛼(𝑗)| < 2−𝑛. 

3.1.   Main Theorem (Monotonicity) 

𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓: ℒ ⟶ ℒ, 𝑖𝑓 𝑎 ≥ 𝑏, 𝑡ℎ𝑒𝑛 𝑓(𝑎) ≥ 𝑓(𝑏). 
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3.2.   Corollary 

𝐸𝑣𝑒𝑟𝑦 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓: ℒ ⟶ ℒ 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑟𝑎𝑦𝑠. 

(We will discuss the right ray topology later on.) 

Remark: this is spiritually similar to the Markov-Tseitin theorem, saying that all constructive func-

tions are continuous (Kushner, 1984). 

The proof of the main theorem and the corollary follows from the combination of the lemmas below. 

3.2.1.  Lemma 1 

𝐹𝑜𝑟 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑓: ℒ ⟶ ℒ, 𝑎 ≥ 𝑏 ⟹ 𝑖𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑟𝑢𝑒 𝑡ℎ𝑎𝑡 𝑓(𝑎) < 𝑓(𝑏). 

Here ℒ is the space of all Left numbers. 

Proof: 

Take a program 𝐻: ℕ+ ⟶ ℕ+ that has an undecidable domain; therefore, we cannot algorithmically 

predict if the program will ever terminate on every given input. 

We construct a left number 𝑃𝑛 that till certain moment behaves as 𝑏 and then jumps to behave as 𝑎. 

𝑃𝑛 satisfies that 𝑃𝑛(𝑘)=𝑏(𝑘) if 𝐻 is still working on input 𝑛 by step 𝑘. 

Assume 𝐻(𝑛) terminated on step 𝑚, we look at 𝑏(𝑚). Because 𝑎 is greater than or equal to 𝑏, we 

can algorithmically find a 𝑠(𝑚) such that 𝑎𝑠(𝑚)>𝑏(𝑚). 

Put 𝑃𝑛(𝑚) = 𝑎𝑠(𝑚) > 𝑏(𝑚) and 𝑃𝑛(𝑚 + 𝑘) = 𝑎𝑠(𝑚)+𝑘 

This sequence 𝑃𝑛 satisfies the property of the left number because it is strictly increasing and ulti-

mately has the same bound as left number 𝑎. 

Now, we argue by contradiction and assume 𝑓(𝑎) < 𝑓(𝑏), i.e., we can algorithmically find 𝑣 in the 

sequence of rational numbers forming the left number 𝑓(𝑏), which is greater than all elements in 𝑓(𝑎). 

We will create a program that detects if 𝐻 will terminate on 𝑛 or not. If this program exists, it con-

tradicts the definition of 𝐻 since 𝐻 has an undecidable domain, but this constructed program provides a 

decision process. We will prove that there exists one such program. 

Take 𝑛 and launch two parallel processes with step alternation. On odd steps, we try to compute 

𝐻(𝑛), and on even steps, we compute 𝑓(𝑃𝑛) and compare it to 𝑣.  

If 𝐻 is not applicable to 𝑛, which means that 𝐻 will not terminate, then 𝑓(𝑃𝑛) is simply left number 

𝑓(𝑏). Therefore, there will be a moment 𝑛 when 𝑓(𝑃𝑛) > 𝑣 and we can detect that moment. 

If 𝐻 is applicable to 𝑛, then the program we constructed will compute 𝐻(𝑛) and terminate. Therefore, 

the sequence 𝑃𝑛 turns into 𝑎n after a certain moment and thus, the elements in 𝑓(𝑃𝑛) never exceed 𝑣. 

We can check when 𝐻 terminates and this, together with comparing the elements of 𝑓(𝑃𝑛) with 𝑣 is the 

decision process. 

However, according to the definition of 𝐻, a decision process cannot exist. Therefore, the assumption 

that 𝑓(𝑎) < 𝑓(𝑏) is not true. 

Q.E.D 

3.2.2.  Lemma 2 

𝐹𝑜𝑟 𝑙𝑒𝑓𝑡 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑎, 𝑏, 𝑖𝑓 𝑖𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑟𝑢𝑒 𝑡ℎ𝑎𝑡 𝑎 > 𝑏, 𝑡ℎ𝑒𝑛 𝑎 ≤ 𝑏. 

It is remarked here that this Lemma 2 was independently proved by the participants in Hybrid 2021 

Neoscholar Program. 

Proof: 

Because 𝑎 > 𝑏 is not true, there doesn’t exist an 𝑎𝑖 bigger than all the elements in 𝑏. In order to 

prove that 𝑎 is less than equal to 𝑏, we offer an algorithm which determines a 𝑏𝑖 bigger than any given 

𝑎𝑘.  

We start from 𝑎1, check elements one by one in 𝑏 until there is a 𝑏𝑖>𝑎1. 

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics (CONF-CIAP 2023)
DOI: 10.54254/2753-8818/5/20230268

49



Then proceed to 𝑎2, we start from 𝑏𝑖 to check which is bigger, if 𝑏𝑖<𝑎2, then continue to check 𝑏𝑖+1 

and so on until there is a 𝑏𝑘> 𝑎2, if 𝑏𝑖> 𝑎2 then 𝑏𝑘 satisfies the condition. 

We carry on with these steps, and we can always find a 𝑏𝑖 bigger than a given 𝑎𝑘  using this algorithm. 

Therefore, 𝑎 is less than or equal to 𝑏.  

Q.E.D 

Main Theorem (Monotonicity): 

𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓: ℒ ⟶ ℒ, 𝑖𝑓 𝑎 ≥ 𝑏, 𝑡ℎ𝑒𝑛 𝑓(𝑎) ≥ 𝑓(𝑏). 

Proof: 

Substitute 𝑎, 𝑏 in Lemma 2 with 𝑓(𝑎), 𝑓(𝑏) and combine Lemma 1 and Lemma 2, we can prove the 

main theorem that function from left numbers to left numbers is monotonic.  

Q.E.D 

Before proving Lemma 3, we introduce how a left number compares with a rational number and the 

base of topology on the space of Left numbers. 

Note: a right ray is an interval of Left numbers from a rational number to positive infinity. 

Here we define how a left number compares with a rational number 𝑞.  

Define a left number 𝓆 s.t 

𝑞𝑛 = 𝑞 − 2−𝑛, 𝑛 ∈ ℕ+ 

We say that a left number 𝐿 > 𝑞 when 𝐿 > 𝓆. 

Define a set as 

𝐵 = {𝐿 ∈ ℒ, 𝐿 ≥ 𝑞, 𝑞 ∈ 𝑄} 

This is a base element of the topology of right rays on the space of Left numbers because 

1. The union of all 𝐵s constitutes the whole space of the Left number. 

2. 𝐹𝑜𝑟 𝑟𝑖𝑔ℎ𝑡 𝑟𝑎𝑦𝑠 𝐵1, 𝐵2 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑎𝑡 𝑞1𝑎𝑛𝑑 𝑞2 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑎𝑛𝑑 𝑥 ∈ ℒ, 𝑥 ∈ 𝐵1 ∩ 𝐵2, because 

𝐵1 ∩ 𝐵2 is a right ray, since there exists a 𝐵3 starting at max{𝑞1, 𝑞2}, s.t  

𝑥 ∈ 𝐵3 = 𝐵1 ∩ 𝐵2. 

3.2.3.  Lemma 3 

𝐹𝑜𝑟 𝑎, 𝑏 ∈ ℒ, 𝑎 𝑖𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝑒𝑣𝑒𝑟𝑦 𝑜𝑝𝑒𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑏 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑤ℎ𝑒𝑛 𝑎 ≥ 𝑏. 

Proof: 

We first give an equivalent condition to 𝑎 ≥ 𝑏. Then, we claim that  

𝑎 ≥ 𝑏 ⟺ ∀𝑞 ∈ 𝑄, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏 > 𝑞, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎 > 𝑞. 

Here every rational number 𝑞 is regarded as a left number by considering 𝑞 −
1

2𝑛. 

We first prove this claim from right to left. 

We can assign 𝑞 to be 𝑏𝑖+1, then 𝑏𝑖 <  𝑞.  

Because 

∃𝑎𝑗 , 𝑠. 𝑡 𝑎𝑗 > 𝑞, 𝑎𝑗 > 𝑏𝑖+1 > 𝑏𝑖 = 𝑞 

So 

∀𝑏𝑖 , 𝑤𝑒 𝑐𝑎𝑛 𝑓𝑖𝑛𝑑 𝑎𝑛  𝑎𝑗 > 𝑏𝑖 . 

Then we prove from left to right. 

Because 𝑎 ≥ 𝑏, we have 

 ∀𝑏𝑖 , ∃𝑎𝑗 > 𝑏𝑖 . 

Therefore, if there is a 𝑏𝑖 > 𝑞, there exists an 𝑎𝑗 > 𝑞. 
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Now we return to the original lemma. 

First, we prove from right to left.  

We try to show that 𝑎 is contained in every open neighborhood of 𝑏.  

Obviously, 𝑏 ∈ 𝐵. We use the equivalent condition to 𝑎 ≥ 𝑏 here. Because there is a member of 𝑏 >
𝑞, there is a member of 𝑎 > 𝑞. Therefore 𝑏 > 𝑞 and 𝑎 > 𝑞, and 𝑎 ∈ 𝐵.  

Then we prove from left to right. 

Without the loss of generality, we take an open neighborhood of 𝑏 to be 

𝐵 = {𝐿 ∈ ℒ, 𝐿 ≥ 𝑞, 𝑞 ∈ 𝑄}. 

Then 𝑎 is contained in this 𝐵. Here we use the equivalent condition to 𝑎 ≥ 𝑏 described in the beginning 

of Lemma’s proof again. Because 𝑏 belongs to 𝐵, we have 𝑎 > 𝑞 and 𝑏 > 𝑞. So, there is always a mem-

ber of the left number 𝑎 bigger than 𝑞 if there is a member of the left number 𝑏 bigger than 𝑞, which is 

equivalent to 𝑎 ≥ 𝑏.  

Q.E.D 

3.3.   Corollary 

𝐸𝑣𝑒𝑟𝑦 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓: ℒ ⟶ ℒ 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑜𝑓 𝑟𝑖𝑔ℎ𝑡 𝑟𝑎𝑦𝑠. 

Proof: 

The continuity of function in topological space is equivalent to the claim that the preimage of an 

open set is open. 

Assume 

𝐿° ∈ 𝑓−1(𝐿′) ∈ 𝐵. 

Then by monotonicity of 𝑓, 

𝑓−1({𝐿 ≥ 𝐿′}) ⊂ {𝐿 ≥ 𝐿°}, 

which is open by the claim in the proof of Lemma 3. 

Moreover, we prove that there are no 𝐿 ∈ {𝐿 ≥ 𝐿°} which are not in 𝑓−1({𝐿 ≥ 𝐿′}) and thus  

𝑓−1({𝐿 ≥ 𝐿′}) = {𝐿 ≥ 𝐿°}. 

Indeed, assume such 𝐿 exists and take one such L*. 

By monotonicity, we have  

𝑓(𝐿∗) ≥ 𝐿′. 

So, 

𝐿∗ ∈ 𝑓−1({𝐿 ≥ 𝐿′}). 

We have a contradiction. 

Q.E.D 
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