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Abstract. Generative Adversarial Networks (GANs) is becoming more and more popular, artists 

use them to find their own inspirations, computer scientists use it for data synthesis, workers use 

it for machine fault diagnosis and so on. However, GANs are flawed despite its popularity: they 

are unstable. GANs are based on game theory. In a typical GAN model, the generator and the 

discriminator are both improved by competing with each other. Therefore, in this highly 

competitive training process, GANs can easily run into trouble while they move towards the 

optimal solution. In most cases, the case of such instability arises from the loss function, or in 

other words, the gradient of the loss function. This research proposed a new set of GAN that 

replaces its objective function with supcon, or the supervised contrastive loss to solve gradient-

related problems. We have also proved that under our model, the GANs are less likely to suffer 

from these two factors of instability. Finally, we have compared our model and the traditional 

generative adversarial nets. 

Keywords: Generative Adversarial Networks, Contrastive learning, 2C loss, Machine Learning. 

1.  Introduction 

Generative Adversarial Nets are first proposed by Goodfellow et al. [1, 2] and has achieved great success 

in generating realistic data, images in particular and multiple variants of generative adversarial nets have 

tried to improve the model by altering its structure and objective function. Throughout the past few years, 

GANs remains to be one of the most popular fields in deep learning. However, there is one major 

problem that have been noticed by scholars – the train process of GANs are not stable. This instability 

could lead to serious mode collapse. 

Many scholars have attempted to solve the problem with numerous approaches by proving some 

aspects of the traditional GANs theoretically and try to apply some additional transformations to 

stabilize the training process. Nagarajan et al. [3] has proved that the original GANs with gradient based 

learning is locally stable. Heusel et al [4]. introduced a Two Timescale Update Rule(TTUR) into the 

traditional GAN training and theoretically prove that it converges to local equilibrium. 

Contrastive learning has also gained much attention in learning visual representations with or without 
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supervision. The common idea of contrastive losses is pulling the anchor and a positive sample together 

in the embedding space, do- ing just the opposite to the positives. Furthermore, Cui. et al. introduced a 

set of parametric class-wise centers to help contrastive losses deal with noisy datasets. The examples 

above are just a tiny portion of the scholars attempts. However, we believe that changes in the objective 

functions are necessary to further stabilize GANs’training. Due to the excellent performances of 

contrastive losses, we proposed a new contrastive objective function in the GAN model based on the 

contributions of supcon loss [5] and 2C loss. Our contributions are as follows: 

(1) We implemented the supcon loss into the original GAN framework to replace the original 

objective function as the original GAN objective encourages gradient explosion in the discriminator and 

thus lead to mode collapse. 

(2) We prove that the GANs trained by SupCon loss are less likely to suffer gradient explosion or 

gradient disappearance. Thus gaining more stability in the training process. 

2.  Related work 

Nagarajan et al. [3] and Heusel et al. [4] has proven their GANs to be locally stable. Arora et al. [6] 

proved that a generator can deceive the discriminator by recording a set of training sample, thus implying 

that low capacity discriminators lack the ability to distinguish the lack of diversity, in other words, the 

generator is unable to learn the target distribution. Except these theoretical re- searches, many practical 

trick have been used to stabilize the training process of GANs. Radford et al. [7] performed a variety of 

empirical tricks to help stabilize GANs. Arjovsky and Bottou [8] signals the importance of divergences 

in GAN training. They also introduced Wasswestein distance in to the GAN model, creating Wasserstein 

GANs, or WGANs [9]. The traditional form of GANs is based on game theory where a discriminator 

and a generator compete on the same loss function and can be converted into a minmax problem. The 

objective function of traditional GANs are as follows: 

min
𝐺

𝑚𝑎𝑥
𝐷

𝐸𝑥𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔 𝐷 (𝑥)] + 𝐸𝑥𝑃𝑥(𝑧)[𝑙𝑜𝑔( 1 − 𝐷(𝐺(𝑥)))] 

where G is the discriminator, D is the discriminator, Pdata is the data distribution over the dataset and Pz 

is the data distribution over the generated samples. This minmax formula can be seperated into two parts, 

First: 

𝐸𝑥𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔 𝐷 (𝑥)] 

This part of the formula tries to maximize the discriminator’s ability to distinguish the real samples from 

the generated samples. Second: 

𝐸𝑥𝑃𝑧(𝑧)[𝑙𝑜𝑔( 1 − 𝐷(𝐺(𝑥)))] 

where G is the discriminator, D is the discriminator, Pdata is the data distribution over the dataset and Pz 

is the data distribution over the generated samples. The rest part of the formula tries to maximize the 

generator’s ability to cheat the discriminator. So we could notice that the generator wants its generated 

samples to be closer to the real images, and the discriminator wanted the sample he classified as real are 

real samples and the samples it classifies as fake to be the generated samples. The two models compete 

against each other to finally reach an equilibrium. Besides GANs, supervised contrastive learning has 

also become a major focus. Khosla et al.[5] introduced the unsupervised contrastive loss in the 

supervised learning framework and proposed SupCon. In Supcon, the loss is illustrated as follows: 

𝐿𝑖 = ∑ 𝑙𝑜𝑔
𝑒𝑥𝑝( 𝑧+ • 𝑇(𝑥𝑖))

∑ 𝑒𝑥𝑝( 𝑧𝑘 • 𝑇(𝑥𝑖))𝑧𝑘∈𝐴(𝑖)
𝑧𝑘∈𝐴(𝑖)
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Where 

𝑤(𝑧+) =  {
𝛼, 𝑧+ ∈ 𝑃(𝑖)

1.0, 𝑧+ ∈ {𝑐 + 𝑦}
 

And 

z• T(𝒳𝑖) =  {
𝑧•G(𝑥𝑖), 𝑧 ∈ 𝐴(𝒾)

𝑧•F(𝒳𝑖), 𝑥 ∈  𝐶
 

Where P (i) is the distribution of the dataset, 𝑤(𝑧+) is the parametric weight, C is the set of class-wise 

centers and tt() is a multi-layer perceptron and F () is the identity mapping or 𝐹(𝑥) = 𝑥. The loss is scale 

with a temperatureτ applied to the loss function. Furthermore Kang et al. incorporated the concept of 

contrastive learning into the GAN framework. Kang also improve the loss into 2C loss so it better fits 

the GAN’s goal. Originally, the SupCon loss is like the three equations above. However, the Supcon 

loss, along with many other contrastive losses, NT Xent, for example, did not consider any data-to-class 

representations. Therefore, Kang introduced a set of class embedding function in the 2C loss so it suit 

the goal of GANs better. The pesudocode for training Kang’s ContraGAN with 2C loss along with the 

2C loss are as follows: 

𝑙2𝐶(𝑥𝑖 , 𝑦𝑖; 𝑡) = − 𝑙𝑜𝑔(
𝑒𝑥𝑝( 𝑙(𝑥𝑖)𝑇𝑒(𝑦𝑖)/𝑡) + ∑ 𝐼𝑦𝑘=𝑦𝑖

• exp(𝑙(𝑥𝑖)𝑇𝑙(𝑥𝑘)/𝑡)𝑚
𝑘=1

𝑒𝑥𝑝( 𝑙(𝑥𝑖)𝑇𝑒(𝑦𝑖)/𝑡) + ∑ 𝐼𝑘≠𝑖 • 𝑒𝑥𝑝( 𝑙(𝑥𝑖)𝑇𝑙(𝑥𝑘)/𝑡)𝑚
𝑘=1

) 

 

Inspired by Kang’s work but still consider 2C loss as overly complex, we decided to develop our own 

set of contrastive GANs. Currently, two of the simplest contrastive losses are Supcon [5] and its dataset 

imbalance tolerant variant Paco [10]. Although in the traditional supervised learning framework, noise 

and dataset imbalance are two main factors that may lead to a low model quality.  In the generative 

adversarial networks, where almost half of our samples are generated and the class labels sometimes do 

not affect the overall quality of the generator and the generated images. In addition, the lack of data-

class representation in the loss can be solved by only comparing images from different classes, in other 

words, the latent feature of the generated images and the latent feature of the original real pictures. In 

this method, it will bring the generated samples closer to the contrasted real images and the discriminator 

maximizes the loss function, it pushes the generated samples away from the real images Therefore, our 

final loss function are as follows: 

𝐿 = −
∑ ∑ 𝑒𝑥𝑝( 𝑥+ • 𝑥−/𝜏)𝑥−∈𝐺(𝑧)𝑥+∈𝑃(𝑖)

∑ ∑ 𝐼𝑥≠𝑦 𝑒𝑥𝑝( 𝑥 • 𝑦/𝜏)𝑦∈𝑃(𝑖)𝑥∈𝑃(𝑖)
 

3.  Method 

3.1.  Loss 

We implement Supcon loss to help it gain stability in the dangerous training periods. The main feature 

of the loss has been mentioned in section two. But allow me to display the the formula again for the 

gradient analysis section and further analysis that will be illustrated below. 

𝐿 = −
∑ ∑ 𝑒𝑥𝑝( 𝑍𝑥 • 𝑍𝑦/𝜏)𝑥−∈𝐺(𝑧)𝑥∈𝑃(𝑖)

∑ ∑ 𝐼𝑥≠𝑦 𝑒𝑥𝑝( 𝑍𝑥 • 𝑍𝑦/𝜏)𝑦∈𝐴(𝑖)𝑥∈𝐴(𝑖)
 

Where P(i) is the real images and G(z) is the set of generated samples and zx stands for the feature of x 

when it passes through the discriminator. The samples that belong to the same class are multiplied 
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together, then added into the loss function and divide a common denometer to normalize the loss. The 

loss has the following attractive properties: First and the most important is that it prevents the GAN 

model from suffering gradient catastrophes. we offer a proof to our conclusion in the gradient analysis 

section. Second, it requires less computational effort to calculate the gradient, thus gaining faster training 

speed. Third, as elaborated by [5], this loss has great ability to perform hard positive or negative mining. 

𝑙2𝐶(𝑥𝑖 , 𝑦𝑖; 𝑡) = − 𝑙𝑜𝑔(
𝑒𝑥𝑝( 𝑙(𝑥𝑖)𝑇𝑒(𝑦𝑖)/𝑡) + ∑ 𝐼𝑦𝑘=𝑦𝑖

• exp(𝑙(𝑥𝑖)𝑇𝑙(𝑥𝑘)/𝑡)𝑚
𝑘=1

𝑒𝑥𝑝( 𝑙(𝑥𝑖)𝑇𝑒(𝑦𝑖)/𝑡) + ∑ 𝐼𝑘≠𝑖 • 𝑒𝑥𝑝( 𝑙(𝑥𝑖)𝑇𝑙(𝑥𝑘)/𝑡)𝑚
𝑘=1

) 

3.2.  Gradient analysis 

The gradient of this loss function can be calculated with the following equations, for the sake of clarity, 

we define 𝐴(𝑖) = 𝐺(𝑧) ∪ 𝑃(𝑖) , therefore: 

𝐿 = −
∑ ∑ 𝑒𝑥𝑝( 𝑥+ • 𝑥−/𝜏)𝑥−∈𝐺(𝑧)𝑥+∈𝑃(𝑖)

∑ ∑ 𝐼𝑥≠𝑦 𝑒𝑥𝑝( 𝑥 • 𝑦/𝜏)𝑦∈𝑃(𝑖)𝑥∈𝑃(𝑖)

 
𝜕𝐿𝑖

𝜕𝑧𝑖
=

1

|𝑃(𝑖)|
∑

𝜕

𝜕𝑧𝑖
{
𝑧𝑖 • 𝑧𝑝

𝜏
− 𝑙𝑜𝑔 ∑ 𝑒𝑥𝑝( 𝑧𝑖 • 𝑧𝑎)

𝑎∈𝐴(𝑖)

}

𝑝∈𝑃(𝑖)

 

=
−1

𝜏|𝑃(𝑖)|
∑ {𝑧𝑝 −

∑ 𝑧𝑎 𝑒𝑥𝑝( 𝑧𝑖 • 𝑧𝑎/𝜏)𝑎∈𝐴(𝑖)

∑ 𝑒𝑥𝑝( 𝑧𝑖 • 𝑧𝑎/𝜏)𝑎∈𝐴(𝑖)
}

𝑝∈𝑃(𝑖)

 

=
−1

𝜏|𝑃(𝑖)|
∑ {𝑧𝑝 − ∑ 𝑧𝑝′𝑃𝑖𝑝′ + ∑ 𝑧𝑛𝑃𝑖𝑛

𝑛∈𝐺(𝑧)𝑝′∈𝑃(𝑖)

}

𝑝∈𝑃(𝑖)

 

=
−1

𝜏|𝑃(𝑖)|
∑ { ∑ 𝑧𝑝 − ∑ ∑ 𝑧𝑃′𝑃𝑖𝑛

𝑝′∈𝑃(𝑖)

+ ∑ ∑ 𝑧𝑛𝑃𝑖𝑛

𝑝∈𝑃(𝑖)𝑛∈𝐺(𝑧)𝑝∈𝑃(𝑖)𝑝∈𝑃(𝑖)

}

𝑝∈𝑃(𝑖)

 

=
−1

𝜏|𝑃(𝑖)|
{ ∑ 𝑧𝑝 − ∑ |𝑃(𝑖)|𝑧𝑝′𝑃𝑖𝑝′

𝑝′∈𝑃(𝑖)𝑝∈𝑃(𝑖)

+ ∑ |𝑃(𝑖)|

𝑛∈𝑁(𝑖)

𝑧𝑛𝑃𝑖𝑛} 

=
1

𝜏
{ ∑ 𝑧𝑝(𝑃𝑖𝑝 −

1

|𝑃(𝑖)|
) − ∑ 𝑧𝑛𝑃𝑖𝑛

𝑛∈𝐺(𝑧)𝑝∈𝑃(𝑖)

} 

Furthermore, if the model gradually reaches optimal state, as stated by Goodfellow [1], the distribution 

of the real data will gradually become equal to the distribution of the generated samples. In other words: 

𝑃(𝑖) = 𝐺(𝑧) 

Under such circumstances, we can further our analysis on the gradient: 

𝜕𝐿𝑖

𝜕𝑧𝑖
=

1

𝜏
{ ∑ 𝑧𝑝𝑃𝑖𝑝

𝑝∈𝑃(𝑖)

− ∑ 𝑧𝑛𝑃𝑖𝑛 −
∑ 𝑧𝑝𝑝∈𝑃(𝑖)

|𝐴(𝑖)|
𝑛∈𝐺(𝑧)

} 

Therefore, this the gradient of this loss will not explode or disappear as the generator reaches optimal. 

4.  Experiments 

This paper mainly conduct research on the CIFAR10 and MNIST dataset. 
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4.1.  Dataset 

MNIST [11] (Modified National Institute of Standards and Technology database) is a large hand written 

digits dataset, it consists of over 60000 images and is widely used as a basic dataset to test a model’s 

quality. CIFAR10 also consists over 60000 images, but different from MNIST, its data were colored 

and consists of ten classes. 

4.2.  Stability comparison 

As stated before in section1, a major contribution of our GANs is that it helps to improve the stability 

of the model. Following Arjovskky et al. [9] we construst two models to compare stability One is created 

by deleting the batch normalization layer in the generator.  another omitting all batch normalizations. At 

the same time, we would like to test the difference between different optimizer, Adam and RMSProp in 

particular. These combinations meant four different models need to be constructed for comparison [12-

19]. We train the models above on CIFAR10 as differences in color pictures are more easily captured. 

Regular GAN suffer great mode collapse while Contrastive GANs usually perform better than traditional 

GANs with or without batch normalization layers. Like Arjovsky et al [9] mentioned. We also noted 

that when generated samples becomes worse, Adam [15] displays a negative cosine with its gradient 

and thus indicates instability. Similarly, we abandoned Adam and turned to RMSProp [14]. Besides this, 

we also find out that the images generated by GANs with supcons tend to have a smoother loss curve 

than the traditional GANs, indicating improved stability. 

5.  Conclusion 
In this research, we created a GAN model based on SupCon loss to improve the stability of the model. 

By analyzing it gradient, we proved that GANs with this loss are less likely to suffer gradient explosion 

or gradient disappearance. We also conducted experiments to further prove that our model is more stable. 
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