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Abstract. Generative Adversarial Networks (GANS) is becoming more and more popular, artists
use them to find their own inspirations, computer scientists use it for data synthesis, workers use
it for machine fault diagnosis and so on. However, GANSs are flawed despite its popularity: they
are unstable. GANSs are based on game theory. In a typical GAN model, the generator and the
discriminator are both improved by competing with each other. Therefore, in this highly
competitive training process, GANSs can easily run into trouble while they move towards the
optimal solution. In most cases, the case of such instability arises from the loss function, or in
other words, the gradient of the loss function. This research proposed a new set of GAN that
replaces its objective function with supcon, or the supervised contrastive loss to solve gradient-
related problems. We have also proved that under our model, the GANSs are less likely to suffer
from these two factors of instability. Finally, we have compared our model and the traditional
generative adversarial nets.
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1. Introduction

Generative Adversarial Nets are first proposed by Goodfellow et al. [1, 2] and has achieved great success
in generating realistic data, images in particular and multiple variants of generative adversarial nets have
tried to improve the model by altering its structure and objective function. Throughout the past few years,
GANSs remains to be one of the most popular fields in deep learning. However, there is one major
problem that have been noticed by scholars — the train process of GANSs are not stable. This instability
could lead to serious mode collapse.

Many scholars have attempted to solve the problem with numerous approaches by proving some
aspects of the traditional GANs theoretically and try to apply some additional transformations to
stabilize the training process. Nagarajan et al. [3] has proved that the original GANs with gradient based
learning is locally stable. Heusel et al [4]. introduced a Two Timescale Update Rule(TTUR) into the
traditional GAN training and theoretically prove that it converges to local equilibrium.

Contrastive learning has also gained much attention in learning visual representations with or without
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supervision. The common idea of contrastive losses is pulling the anchor and a positive sample together
in the embedding space, do- ing just the opposite to the positives. Furthermore, Cui. et al. introduced a
set of parametric class-wise centers to help contrastive losses deal with noisy datasets. The examples
above are just a tiny portion of the scholars attempts. However, we believe that changes in the objective
functions are necessary to further stabilize GANs’training. Due to the excellent performances of
contrastive losses, we proposed a new contrastive objective function in the GAN model based on the
contributions of supcon loss [5] and 2C loss. Our contributions are as follows:

(1) We implemented the supcon loss into the original GAN framework to replace the original
objective function as the original GAN objective encourages gradient explosion in the discriminator and
thus lead to mode collapse.

(2) We prove that the GANSs trained by SupCon loss are less likely to suffer gradient explosion or
gradient disappearance. Thus gaining more stability in the training process.

2. Related work

Nagarajan et al. [3] and Heusel et al. [4] has proven their GANSs to be locally stable. Arora et al. [6]
proved that a generator can deceive the discriminator by recording a set of training sample, thus implying
that low capacity discriminators lack the ability to distinguish the lack of diversity, in other words, the
generator is unable to learn the target distribution. Except these theoretical re- searches, many practical
trick have been used to stabilize the training process of GANs. Radford et al. [7] performed a variety of
empirical tricks to help stabilize GANSs. Arjovsky and Bottou [8] signals the importance of divergences
in GAN training. They also introduced Wasswestein distance in to the GAN model, creating Wasserstein
GANs, or WGANSs [9]. The traditional form of GANs is based on game theory where a discriminator
and a generator compete on the same loss function and can be converted into a minmax problem. The
objective function of traditional GANSs are as follows:

MINMAxEyp,.. 01109 D ()] + Exp, ) [10g (1= D(G(x))]

where G is the discriminator, D is the discriminator, Pgata IS the data distribution over the dataset and P,
is the data distribution over the generated samples. This minmax formula can be seperated into two parts,
First:

Edeam(x) [lOg D (x)]

This part of the formula tries to maximize the discriminator’s ability to distinguish the real samples from
the generated samples. Second:

Exp,(»llog(1 = D(G(x)))]

where G is the discriminator, D is the discriminator, Pgata IS the data distribution over the dataset and P,
is the data distribution over the generated samples. The rest part of the formula tries to maximize the
generator’s ability to cheat the discriminator. So we could notice that the generator wants its generated
samples to be closer to the real images, and the discriminator wanted the sample he classified as real are
real samples and the samples it classifies as fake to be the generated samples. The two models compete
against each other to finally reach an equilibrium. Besides GANSs, supervised contrastive learning has
also become a major focus. Khosla et al.[5] introduced the unsupervised contrastive loss in the
supervised learning framework and proposed SupCon. In Supcon, the loss is illustrated as follows:

~ exp(zy * T(x))
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Where

a,z, € P(Q)

wlz,) = {1.0, z, € {c+y}

And

zeG(x;),z € A(Q)
Z‘F(Xi),x eEC

Where P (i) is the distribution of the dataset, w(z,.) is the parametric weight, C is the set of class-wise
centers and tt() is a multi-layer perceptron and F () is the identity mapping or F(x) = x. The loss is scale
with a temperaturer applied to the loss function. Furthermore Kang et al. incorporated the concept of
contrastive learning into the GAN framework. Kang also improve the loss into 2C loss so it better fits
the GAN’s goal. Originally, the SupCon loss is like the three equations above. However, the Supcon
loss, along with many other contrastive losses, NT Xent, for example, did not consider any data-to-class
representations. Therefore, Kang introduced a set of class embedding function in the 2C loss so it suit
the goal of GANs better. The pesudocode for training Kang’s ContraGAN with 2C loss along with the
2C loss are as follows:

20 T = |

exp(10x) e(y)/6) + Xk Lyy=y; * exp(L ()1 (x) /)
exp(L(x)Te(y)/t) + Xicken i * exp(L(x)T1(x1) /1)

Inspired by Kang’s work but still consider 2C loss as overly complex, we decided to develop our own
set of contrastive GANs. Currently, two of the simplest contrastive losses are Supcon [5] and its dataset
imbalance tolerant variant Paco [10]. Although in the traditional supervised learning framework, noise
and dataset imbalance are two main factors that may lead to a low model quality. In the generative
adversarial networks, where almost half of our samples are generated and the class labels sometimes do
not affect the overall quality of the generator and the generated images. In addition, the lack of data-
class representation in the loss can be solved by only comparing images from different classes, in other
words, the latent feature of the generated images and the latent feature of the original real pictures. In
this method, it will bring the generated samples closer to the contrasted real images and the discriminator
maximizes the loss function, it pushes the generated samples away from the real images Therefore, our
final loss function are as follows:

Lyc(xi,yis t) = —log(

_ 2x+ep(i) Zx_eG(z) exp(xy *x_/7)

L=
Yixep(i) 2yep(i) lx=y €xp(x * ¥ /1)

3. Method

3.1. Loss

We implement Supcon loss to help it gain stability in the dangerous training periods. The main feature
of the loss has been mentioned in section two. But allow me to display the the formula again for the
gradient analysis section and further analysis that will be illustrated below.

_ ZxEP(i) Ex_EG(z) exp(Zy ® Zy/T)
Yixea(i) 2yea(i) lxzy €xp(Zy * Zy /)

Where P(i) is the real images and G(z) is the set of generated samples and z, stands for the feature of x
when it passes through the discriminator. The samples that belong to the same class are multiplied

L =
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together, then added into the loss function and divide a common denometer to normalize the loss. The
loss has the following attractive properties: First and the most important is that it prevents the GAN
model from suffering gradient catastrophes. we offer a proof to our conclusion in the gradient analysis
section. Second, it requires less computational effort to calculate the gradient, thus gaining faster training
speed. Third, as elaborated by [5], this loss has great ability to perform hard positive or negative mining.

e e e/ + By bymy, + XU G/
2c( i) =~ oG e Ter)/0) + ST, It » exp (LG 10 /D)

3.2. Gradient analysis
The gradient of this loss function can be calculated with the following equations, for the sake of clarity,
we define A(i) = G(z) U P(i) , therefore:
_ 2x+EP(i) Zx_EG(z) exp(xy *x_/7)
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Furthermore, if the model gradually reaches optimal state, as stated by Goodfellow [1], the distribution
of the real data will gradually become equal to the distribution of the generated samples. In other words:

P(i) = G(2)

Under such circumstances, we can further our analysis on the gradient:

oL 1 Lper) Zp
oz p. — z p. _Zper7p
0z; T{ Z Zotip Znti |A(D] )

Therefore, this the gradient of this loss will not explode or disappear as the generator reaches optimal.

pEP(i) neG(z)

4. Experiments
This paper mainly conduct research on the CIFAR10 and MNIST dataset.
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4.1. Dataset

MNIST [11] (Modified National Institute of Standards and Technology database) is a large hand written
digits dataset, it consists of over 60000 images and is widely used as a basic dataset to test a model’s
quality. CIFAR10 also consists over 60000 images, but different from MNIST, its data were colored
and consists of ten classes.

4.2. Stability comparison

As stated before in sectionl, a major contribution of our GANS is that it helps to improve the stability
of the model. Following Arjovskky et al. [9] we construst two models to compare stability One is created
by deleting the batch normalization layer in the generator. another omitting all batch normalizations. At
the same time, we would like to test the difference between different optimizer, Adam and RMSProp in
particular. These combinations meant four different models need to be constructed for comparison [12-
19]. We train the models above on CIFAR10 as differences in color pictures are more easily captured.
Regular GAN suffer great mode collapse while Contrastive GANs usually perform better than traditional
GANSs with or without batch normalization layers. Like Arjovsky et al [9] mentioned. We also noted
that when generated samples becomes worse, Adam [15] displays a negative cosine with its gradient
and thus indicates instability. Similarly, we abandoned Adam and turned to RMSProp [14]. Besides this,
we also find out that the images generated by GANSs with supcons tend to have a smoother loss curve
than the traditional GANSs, indicating improved stability.

5. Conclusion

In this research, we created a GAN model based on SupCon loss to improve the stability of the model.
By analyzing it gradient, we proved that GANs with this loss are less likely to suffer gradient explosion
or gradient disappearance. We also conducted experiments to further prove that our model is more stable.
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