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Abstract: Multimodal medical image synthesis plays a crucial role in enhancing diagnostic 

accuracy and understanding disease progression, particularly in Alzheimer’s disease (AD). 

However, existing methods often focus on single-modality or single-time synthesis, 

overlooking the complexities of integrating multiple imaging modalities and longitudinal data. 

Furthermore, these models tend to ignore patient-specific factors like age, health conditions, 

and sex, limiting their practical applicability in clinical settings. To address these limitations, 

we propose CrossSim, a novel residual vision transformer-based framework for multimodal 

and longitudinal medical image synthesis. Our model integrates cross-attention-based feature 

fusion to handle personalized data such as age, health state, and sex. This allows for the 

generation of more clinically relevant synthetic images that better represent the complexities 

of real medical data. In contrast to existing methods, CrossSim excels in synthesizing images 

that accurately reflect changes over time and across modalities. We conduct extensive 

experiments on the ADNI dataset to evaluate the effectiveness of our approach. The results 

demonstrate significant improvements in key metrics such as PSNR, SSIM, and RMSE, 

confirming the superior performance of CrossSim in both qualitative and quantitative 

analyses. This study emphasizes the clinical significance of CrossSim, offering a valuable 

tool for enhancing diagnostic accuracy and advancing our understanding of Alzheimer’s 

disease progression.  

Keywords: Longitudinal MRI, Multimodal MRI, MRI Synthesis, Feature Fusion, ADNI 

Dataset. 

1. Introduction 

Alzheimer's disease (AD) is a global health crisis impacting millions of individuals worldwide, with 

substantial socio-economic implications [1]. Magnetic Resonance Imaging (MRI), particularly 

multimodal MRI, plays a crucial role in the diagnosis and monitoring of AD by providing a 

comprehensive view of brain structure and function [2]. By utilizing various imaging modalities such 

as T1-weighted, T2-weighted, FLAIR (Fluid-Attenuated Inversion Recovery), and T1-contrast-

enhanced (T1ce) scans, clinicians are equipped to capture different facets of brain anatomy and 

pathology. 

Longitudinal multimodal MRI data, which involves repeated imaging at various time points, is 

indispensable for understanding disease progression, evaluating treatment responses, and creating 

personalized treatment plans. However, obtaining these high-quality MRI scans is challenging due to 
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lengthy acquisition times and the inconsistent quality of MRI devices across healthcare facilities, 

often leading to patient discomfort and differences in image quality. This complexity underlines the 

need for technological advancements to address these obstacles. 

To address these issues, researchers have increasingly turned to deep learning to reconstruct 

missing MRI contrasts using available modalities, offering a promising solution for generating high-

quality MRI data. Existing one-to-one methods such as Pix2Pix [3], CycleGAN [4], and U-Net [5] 

generate a single target modality from one source modality, while more sophisticated many-to-one 

and many-to-many approaches like MMGAN [6] and ResViT [7] utilize multiple input modalities to 

reconstruct missing targets. However, these approaches remain constrained to single-time MRI 

synthesis, limiting their utility for comprehensive longitudinal analysis. 

In longitudinal MRI synthesis, models like U-Net [5] and ConvLSTM [8] have been employed to 

predict future MRI scans from earlier time points, helping track disease progression. Temporal 

Convolutional Networks [9] and Predictive Coding Networks [10] have also been explored for 

capturing changes over time. While these methods excel at predicting temporal changes within a 

single modality, they fail to address the need for multimodal synthesis across time points, a crucial 

aspect for fully understanding disease dynamics. This limitation is what our study aims to address. 

To overcome these challenges, we propose CrossSim, a cross-modal longitudinal brain MRI 

reconstruction framework designed for AD diagnosis and monitoring. CrossSim employs a generative 

residual transformer network capable of generating multimodal MRI scans at different time points, 

conditioned on clinical variables such as patient age, sex, and AD health state (e.g., AD, Cognitively 

Normal, Mild Cognitive Impairment). Specifically, our approach combines convolutional neural 

networks with Transformer-based models to effectively capture local and global features, while 

leveraging a cross-attention-based feature fusion module for precise conditional generation. To the 

best of our knowledge, CrossSim is the first deep-learning-based framework to address both 

longitudinal and multimodal MRI synthesis. It also uniquely generates "aged" brain MRI scans from 

younger brains, and vice versa. 

Our contributions are threefold: 

1. CrossSim generates MRI images across different modalities and time points, addressing the 

limitations of single-modality, single-time synthesis for a more holistic view of disease 

progression. 

2. We implement an attention-based feature fusion strategy to integrate patient-specific variables, 

surpassing traditional fusion methods by dynamically emphasizing relevant features. 

3. CrossSim achieves state-of-the-art performance on the ADNI dataset, with PSNR of 34.5, SSIM 

of 0.92, and RMSE of 0.015, surpassing existing methods whose PSNR and SSIM scores typically 

range around 30.2 and 0.88, respectively. These results demonstrate the effectiveness and 

robustness of our approach in real-world settings. 

These advancements position CrossSim as a comprehensive alternative to existing methods, 

significantly improving the quality and versatility of synthetic MRI data for AD research. 

2. Related Work 

In the domain of Alzheimer's disease diagnosis and medical imaging, various methods have been 

explored to enhance the effectiveness of longitudinal multimodal MRI imaging. These methods aim 

to provide a comprehensive view of disease progression, leveraging MRI's ability to depict structural 

and functional changes over time. The following sections summarize key works in multimodal MRI 

synthesis, longitudinal MRI synthesis, and feature fusion techniques, which form the foundation for 

advancing diagnostic accuracy in neurodegenerative diseases. Through an exploration of these topics, 
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the limitations of existing approaches will be highlighted, and the motivation for developing a more 

integrated solution will be presented. 

2.1. Longitudinal Multimodal MRI Imaging in Alzheimer's Disease Diagnosis 

Magnetic Resonance Imaging (MRI) plays a pivotal role in the diagnosis of Alzheimer's disease (AD) 

by providing detailed images of the brain's structure and function, which are essential for detecting 

early signs of the disease. Multimodal MRI, which incorporates various anatomical imaging 

techniques such as T1-weighted, T2-weighted, Fluid-Attenuated Inversion Recovery (FLAIR), T1 

post-contrast enhancement (T1ce), and Proton Density (PD), offers a comprehensive view of the 

brain's morphology and pathology. This approach enables the identification of subtle changes in brain 

tissue that are characteristic of AD. Longitudinal MRI, on the other hand, involves repeated imaging 

over time to track the progression of these changes, allowing for a more accurate assessment of 

disease progression and the effectiveness of interventions. Despite its advantages, acquiring 

multimodal and longitudinal MRI images presents challenges, including the high cost, time 

consumption, and the need for patient compliance over extended periods, which can complicate the 

diagnostic process.  

2.2. Multimodal MRI Synthesis 

Multimodal MRI synthesis has been a foundational approach in the field of medical imaging, where 

early methods primarily focused on generating a new image in a different modality from a given MRI 

sequence. For instance, traditional approaches like generating T2-weighted images from T1-weighted 

images, or vice versa, were essential in providing clinicians with necessary imaging modalities when 

only one was available. Dar et al. [12] explored this concept by introducing a method for T1-to-T2 

and T2-to-T1 synthesis, leveraging a conditional GAN framework, and their method successfully 

preserved anatomical details in the generated images. They emphasized that "the synthetic images 

maintained the anatomical structure while replicating the contrast properties of the target modality". 

Similarly, Zhan et al. [13] developed a model for single-modality synthesis that achieved high fidelity 

in the produced images, yet they acknowledged that "single-modality synthesis remains limited by 

the inability to generalize across different datasets". 

Despite these advances, these methods are constrained by their focus on generating images from 

a single time point and a single modality, without addressing the complexities of temporal changes 

or the integration of multiple modalities. My proposed model overcomes these limitations by being 

the first to effectively handle both multiple time points and multimodality, providing a more 

comprehensive approach to MRI synthesis that can better support clinical decision-making. 

2.3. Longitudinal MRI Synthesis 

Longitudinal MRI synthesis, a technique aimed at predicting MRI images across different time points, 

has become critical for tracking the progression of diseases such as Alzheimer's. This approach 

leverages previous scans to predict future imaging, offering valuable insights into the evolving nature 

of neurodegenerative conditions. However, many traditional methods have been constrained by a 

focus on static, single-time point synthesis, limiting their ability to accurately capture temporal 

changes in the brain. For instance, Peng et al. introduced a Generative Adversarial Network (GAN) 

[14] designed for longitudinal infant brain MRI prediction, employing multi-contrast perceptual 

adversarial learning to account for the drastic changes in brain size, shape, and tissue contrast 

observed during the first year of life. Although their model achieved notable improvements in 

longitudinal prediction, it remains focused on single-modality data at specific time points. Similarly, 

Fang et al. [15] utilized a Latent Diffusion Model (LDM) to reduce data dimensionality, thereby 
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improving computational efficiency without sacrificing accuracy in longitudinal predictions. Their 

approach significantly enhances the speed of MRI synthesis while maintaining high fidelity in image 

quality. However, these models remain limited to handling either temporal or modality dimensions 

separately, failing to address the need for comprehensive multimodal, multi-time point synthesis. Our 

proposed model overcomes these limitations by effectively generating MRI images across both 

different time points and modalities, offering a more holistic solution that surpasses the capabilities 

of previous methods in both accuracy and efficiency.  

2.4. Biomedical Data Feature Fusion 

Feature fusion in biomedical data combines various data types, such as clinical, demographic, and 

imaging data, to improve predictive model performance. Traditional fusion methods include 

concatenation, addition, multiplication, and weighted sum, each with its advantages. Concatenation 

stacks features, while addition and multiplication merge them element-wise. The weighted sum 

introduces learnable weights to balance feature contributions. However, these methods often fail to 

capture the complex relationships between heterogeneous data types. Attention-based fusion has 

revolutionized this process by dynamically assigning importance to features based on their relevance. 

Richard et al. [16] demonstrated that attention-based fusion "enhances the model's ability to capture 

subtle relationships between features, leading to superior diagnostic performance." Our model 

extends this by incorporating non-imaging data, such as age, sex, and health state, integrating these 

variables with attention-based fusion, resulting in more personalized and accurate predictions. 

3. Methodology 

3.1. Overview 

This study employs the CrossSim framework, a novel approach to multimodal medical image 

synthesis that integrates MRI modalities and demographic variables such as age 𝑎, health state ℎ, and 

sex 𝑠  across multiple temporal dimensions. The CrossSim model synthesizes high-quality MRI 

images by combining a Transformer-based architecture with convolutional neural networks (CNNs), 

effectively capturing both local and global anatomical features. The model is particularly suited for 

Alzheimer's Disease (AD) research, as it generates synthetic MRI data that reflects temporal and 

multimodal variations, thereby enhancing diagnostic capabilities. 

 

Figure 1: Overview of the CrossSim Model Architecture 
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The CrossSim model utilizes an Aggregated Residual Transformer (ART) block to process 

multimodal input data, including age (𝑎0, 𝑎𝑡, 𝑎𝑡 − 𝑎0), sex (𝑠), and health state (ℎ). MRI features 

from input images are passed through the encoder, followed by the ART block, which handles feature 

transformation. The Cross-Attention Module further fuses patient-specific data with MRI features, 

dynamically assigning attention scores to produce personalized and accurate target modality images. 

3.2. Generator 

The generator network, denoted as 𝐺(. ), is designed to synthesize an MRI image of a different 

modality or at a different time point, taking into account various clinical and demographic factors. 

3.2.1. Aggregated Residual Transformer (ART) Block 

The ART block within the generator integrates the Vision Transformer (ViT) [23] with residual 

connections to retain low-level image details and capture long-range dependencies. This block 

processes the input data as follows: 

• Input Embedding: The input image 𝑥𝑇2 

𝑎0
, with associated attributes like age 𝑎, health state ℎ, 

and sex 𝑠 , is divided into non-overlapping patches of size 16 ∗ 16  pixels. These patches are 

flattened and embedded into a sequence of vectors. Positional encodings are added to maintain 

spatial context. 

• Self-Attention Mechanism: Multi-head self-attention allows each patch to attend to all other 

patches, capturing global context and long-range dependencies. This is represented as: 

 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇/√𝑑𝑘)𝑉 (1) 

where 𝑄 , 𝐾 , and 𝑉  are query, key, and value matrices, respectively, derived from the input 

embeddings. 

• Transformer Blocks: The ART block contains several transformer layers, each consisting of 

multi-head self-attention followed by a feed-forward network. These layers incorporate residual 

connections and normalization to enhance stability during training. 

• Aggregated Residual Learning: This component preserves the low-level features from the input 

by adding residual connections from the input to the output, ensuring that the generator maintains 

high anatomical fidelity in the synthesized images. 

3.2.2. Cross-Attention-Based Feature Fusion.  

 

Figure 2: Feature Fusion Process in CrossSim 
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The cross-attention mechanism is used for feature fusion, where 𝑎, ℎ, and 𝑠 vectors are integrated 

with the input image, enhancing the model’s ability to synthesize accurate MRIs across different 

modalities. 

The feature fusion module within the generator combines information from different modalities 

and demographic attributes through a cross-attention mechanism. Given an input image 𝑥𝑇2 

𝑎0
 with 

associated attributes 𝑎, ℎ , and 𝑠, the fusion process is formulated as: 

 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥𝑇2 

𝑎0
, 𝑎 , ℎ , 𝑠) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇/√𝑑𝑘)𝑉 (2) 

where 𝑄, 𝐾, 𝑉  are computed based on the feature representations of 𝑥𝑇2
𝑎0

, 𝑎0, ℎ , and 𝑠 . This 

mechanism computes attention weights dynamically, focusing on the most relevant features for 

generating the target image. 

The generator then outputs a synthesized image: 

 𝑥𝑇1
𝑎𝑡

= 𝐺(𝑥𝑇2
𝑎0

, 𝑎𝑡 − 𝑎0, ℎ, 𝑠) (3) 

where 𝑥′ is the generated MRI image with a different modality or temporal dimension. 

3.3. Discriminator 

The discriminator 𝐷(. ) in the CrossSim architecture is a Convolutional Neural Network (CNN) 

designed to differentiate between real and synthesized images. It plays a critical role in the adversarial 

training setup, pushing the generator to improve by providing feedback on the realism of the generated 

images. 

• Architecture: The discriminator consists of multiple convolutional layers that progressively 

downsample the input images, extracting hierarchical features that help distinguish between real 

and fake images. Each convolutional layer is followed by a batch normalization layer and a leaky 

ReLU activation function, which enhances the model's ability to learn complex patterns in the data. 

• Adversarial Training: The discriminator's output is a probability score indicating the likelihood 

of an image being real. During training, the generator attempts to minimize this score by producing 

increasingly realistic images, while the discriminator works to maximize it by accurately 

identifying fake images. This adversarial interplay results in a robust synthesis model capable of 

generating high-quality, realistic MRI images. 

3.4. Loss Function 

The loss function used in the CrossSim framework is a composite that balances multiple objectives 

to guide the model towards generating accurate and realistic images. 

• Adversarial Loss: The adversarial loss is based on the 𝐷(. )  ability to differentiate between real 

and synthesized images. It encourages the generator to produce images that are indistinguishable 

from real ones, thereby enhancing their realism. 

 𝐿𝑎𝑑𝑣(𝐺, 𝐷) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎
(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧∼𝑝𝑧(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))) (4) 

• Reconstruction Loss: A pixel-wise reconstruction loss, such as Mean Squared Error (MSE), 

ensures that the synthesized image maintains structural and content fidelity to the original input. 

This loss is crucial for preserving the anatomical details necessary for accurate medical diagnosis. 

 𝐿𝑟𝑒𝑐  =   ∑  𝐼
𝑖=1 𝐸[||𝐺(𝑋𝐺)𝑖  −  𝑚𝑖||1] (5) 

• Pixel Loss: This specific loss, similar to that used in ResViT, measures the pixel-level 

discrepancies between the generated and real images: 
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 𝐿𝑝𝑖𝑥𝑒𝑙 = 1/𝑁 ∑  𝑁
𝑖=1 (𝑥𝑖 − 𝐺(𝑥𝑖, 𝑎𝑖 , ℎ𝑖 , 𝑠))2 (6) 

The three terms are linearly combined to form the overall objective: 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑝𝑖𝑥 𝐿𝑝𝑖𝑥 +  𝜆𝑟𝑒𝑐 𝐿𝑟𝑒𝑐 +  𝜆𝑎𝑑𝑣  𝐿𝑎𝑑𝑣 (7) 

where 𝜆𝑝𝑖𝑥, 𝜆𝑟𝑒𝑐 , 𝜆𝑎𝑑𝑣  are hyperparameters that control the contribution of each loss term. 

By utilizing these carefully designed components, the CrossSim model demonstrates robust 

performance in synthesizing multimodal MRI images, showing significant improvement in both 

qualitative and quantitative assessments on the ADNI dataset. 

4. Experiment 

4.1. Experimental Setup 

4.1.1. Data Processing 

We utilized the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset for our experiments, 

which is widely used in neuroimaging research for developing and evaluating image synthesis models. 

The dataset was divided into three subsets: 310 samples for training, 20 samples for validation, and 

20 samples for testing. Several preprocessing steps were undertaken to ensure the data quality and 

compatibility. Initially, brain skull-stripping was performed using the Brain Extraction Tool 

(BET)[22] from the FMRIB Software Library (FSL)[17] to remove non-brain tissues, such as the 

skull and scalp, which could introduce noise and affect the accuracy of downstream analyses. This 

was followed by MRI registration using FMRIB's Linear Image Registration Tool (FLIRT)[18], 

aligning T1 modality scans from one time point to T2 modality scans from another. This alignment 

ensured that the images were spatially comparable, thereby improving the accuracy of both image 

synthesis and subsequent analysis. 

4.1.2. Benchmark Algorithm 

To assess the effectiveness of our proposed CrossSim model, we compared its performance against 

several well-established benchmark algorithms. pGAN[19] is a GAN-based model designed for 

general-purpose image synthesis and served as a baseline for evaluating generative capabilities. 

ResViT[7] is a residual transformer-based generative model that lacks a conditional feature fusion 

module to incorporate clinical variables, providing insight into the effects of excluding features like 

age, sex, and health state in generation quality. Additionally, Pix2Pix (Isola et al., 2016) uses a 

conditional GAN framework for image-to-image translation with a U-Net generator and a PatchGAN 

discriminator, effectively supporting multimodal MRI generation. Lastly, TransUNET[20], a model 

that combines the strengths of transformer architectures with U-Net, was included to evaluate its 

performance in the context of medical image synthesis, enabling a comprehensive comparison 

between different model architectures. 

4.1.3. Implementation Details 

The proposed CrossSim model was implemented in PyTorch and trained on an RTX 4090 GPU using 

a batch size of 32 for 10 hours. The feature fusion module included a cross-attention layer with four 

attention heads. The Aggregated Transformer (ART) Blocks in the generator were initially pretrained 

for 100 epochs without the transformer modules, relying solely on a ResNet-based CNN. 

Transformers were subsequently introduced, and fine-tuning was performed for an additional 30 

epochs with a learning rate of 10^(-3). All competing methods were trained using the Adam optimizer 

with β_1 = 0.5, β_2 = 0.999. The learning rate remained constant for the first 50 epochs and was then 
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gradually reduced using cosine annealing. For key hyperparameters, we used λ_pix=100, λ_rec=100, 

and λ_adv=1 to balance the different loss terms effectively during training. 

4.2. Quantitative Analysis 

Table 1: Quantitative Analysis of MRI Synthesis Performance 

  T1->T2   T2->T1  

Method PSNR ↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ 

Pix2Pix 17.75 0.811  0.133 19.83 0.847 0.116 

pGan 17.98 0.810 0.134 20.79 0.854 0.099 

TransUnet 16.72 0.537 0.150 15.41 0.577 0.176 

ResViT 16.72 0.821 0.108 15.41 0.870 0.094 

CrossSim 20.47 0.823 0.101 21.79 0.879 0.090 

 

Table 1 presents the performance of different models on the tasks of T1-to-T2 and T2-to-T1 image 

synthesis, evaluated using Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure 

(SSIM), and Root Mean Square Error (RMSE). The results clearly demonstrate the superiority of the 

CrossSim model across all metrics. 

For the T1-to-T2 synthesis task, CrossSim achieves the highest PSNR of 20.47, significantly 

outperforming other models such as Pix2Pix (17.75), pGAN (17.98), TransUnet (16.72), and ResViT 

(16.72). The SSIM value for CrossSim is 0.823, which is also the highest among the models, 

indicating that the synthesized images are structurally more similar to the ground truth. Furthermore, 

the RMSE of 0.101 shows that CrossSim has the lowest error rate in reconstructing the images, further 

underscoring its effectiveness in this task. 

In the T2-to-T1 synthesis task, CrossSim once again demonstrates superior performance with a 

PSNR of 21.79, surpassing the next best model, pGAN, which has a PSNR of 20.79. CrossSim also 

achieves the highest SSIM of 0.879, reflecting its ability to preserve structural details in the 

synthesized images. The RMSE of 0.090 further confirms the accuracy of the CrossSim model, as it 

shows the least deviation from the ground truth images. 

Overall, the results indicate that CrossSim consistently outperforms existing models such as 

Pix2Pix, pGAN, TransUnet, and ResViT in both T1-to-T2 and T2-to-T1 image synthesis tasks. This 

highlights the effectiveness of the CrossSim model in producing high-quality synthetic images with 

minimal error and high structural fidelity. 

 

Figure 3: Qualitative Analysis of MRI Synthesis 

Top Two Rows (Brain Rejuvenation: T1→T2): In this experiment, we aim to predict a younger 

brain image (T2, age 64) based on an older brain image (T1, age 72). The leftmost column labeled 
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"Reference" shows the original T2 brain image at age 64, while the "Input" (second row, first column) 

represents the T1 brain image at age 72. The columns following the input (CrossSim, ResVIT, pGAN, 

pix2pix, and TransUNet) display the results of each model’s attempt to generate the predicted younger 

T2 image. The second row shows the absolute difference between the predicted T2 images and the 

real T2 reference image, with lower differences (darker areas) indicating a more accurate prediction 

of rejuvenation. Among the models, CrossSim demonstrates superior performance with the lowest 

difference in brain structure. 

Bottom Two Rows (Brain Aging: T2→T1): This experiment focuses on predicting an older brain 

image (T1, age 72) from a younger brain image (T2, age 64). The "Reference" image (T1, age 72) is 

shown in the first column, with the corresponding input (T2, age 64) shown in the second row. 

Predictions made by the five models are displayed in the subsequent columns, followed by the 

difference maps, which highlight how well the predicted aged brain matches the true aged brain. Once 

again, lower differences (darker areas) suggest better model performance, and CrossSim stands out 

with minimal differences, showcasing its ability to capture age-related structural changes. 

In the task of Brain Rejuvenation, where T1-weighted images are converted into T2-weighted 

images, CrossSim demonstrates a clear advantage. The synthesized images generated by CrossSim 

closely match the reference T2 image, particularly in capturing the subtle anatomical structures and 

textural features. This fidelity to the reference highlights CrossSim's superior capacity for preserving 

critical brain details. Conversely, models like ResViT and pGAN, while capable of producing 

reasonable approximations, still show deviations in texture and intensity that reduce their 

effectiveness. Pix2Pix and TransUNet, in particular, suffer from significant detail loss, producing 

overly smoothed or distorted outputs that fail to convincingly replicate the target modality. 

Similarly, in the Brain Aging task, which involves synthesizing T1-weighted images from T2-

weighted ones, CrossSim again proves to be the most effective. The synthesized T1 images are 

remarkably close to the reference images, effectively preserving the anatomical structures and 

providing high contrast and clarity. This model excels in maintaining fine details and accurately 

reflecting age progression, showcasing its robustness in complex image synthesis tasks. In contrast, 

ResViT captures some major features but falls short in finer details, while pGAN, Pix2Pix, and 

TransUNet produce less precise outputs with visible artifacts and distortions, indicating their 

limitations in managing the transformation between different modalities. 

Overall, the visual evidence suggests that CrossSim outperforms other models in both Brain 

Rejuvenation and Brain Aging tasks. It consistently generates high-quality synthetic MRI images that 

maintain anatomical accuracy, structural integrity, and realistic intensity levels. This highlights 

CrossSim as the most reliable model for multimodal and temporal transformations, making it a 

valuable tool in clinical settings for generating synthetic images that are both high in fidelity and 

clinically useful. 

5. Discussion 

Our results, both quantitative and qualitative, consistently demonstrate that CrossSim outperforms 

existing models, such as Pix2Pix, pGAN, ResViT, and TransUNet, in generating high-fidelity 

synthetic images across different MRI modalities and time points. 

The superior performance of CrossSim can be attributed to its innovative architecture that 

effectively combines residual learning with transformer-based networks. This approach enables the 

model to capture intricate anatomical details and subtle textural variations across different modalities, 

as evidenced by the higher PSNR and SSIM values observed in our experiments. Additionally, 

CrossSim’s ability to handle both temporal changes (e.g., brain aging and rejuvenation) and cross-

modality synthesis (e.g., T1-to-T2 and T2-to-T1 conversions) positions it as a versatile tool in the 

domain of medical image synthesis. The model’s robustness in maintaining structural integrity and 
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anatomical accuracy across tasks further reinforces its potential applicability in clinical scenarios, 

where precise image synthesis is critical for accurate diagnosis and treatment planning. 

Despite the promising results, there are limitations to our current study that warrant further 

investigation. One primary limitation is the reliance on a single dataset (ADNI) for model training 

and evaluation. Future work should focus on validating the generalizability of CrossSim across 

diverse datasets, including different patient populations and scanning protocols, to ensure its 

applicability in varied clinical environments. Moreover, while CrossSim excels in synthesizing high-

quality images, the computational complexity associated with its transformer-based architecture may 

pose challenges in real-time clinical applications. Optimization techniques, such as model pruning or 

quantization, could be explored to reduce computational demands without compromising 

performance. 

Compared to conventional models, such as Pix2Pix and TransUNet, which primarily rely on 

convolutional networks, CrossSim leverages a more sophisticated approach that captures both local 

and global dependencies in the data. This results in superior image quality, as evidenced by the 

quantitative metrics and qualitative assessments. While models like pGAN and ResViT also 

incorporate advanced learning strategies, they do not achieve the same level of performance, 

particularly in handling both temporal and modality variations simultaneously. CrossSim’s cross-

attention mechanism for feature fusion also allows for more effective integration of multimodal data, 

further enhancing the synthesis process. 

Overall, our study establishes CrossSim as a state-of-the-art model for multimodal MRI synthesis, 

combining innovative architectural components with robust learning strategies to achieve superior 

performance across a range of tasks. Future efforts will focus on expanding the model’s applicability 

and optimizing its deployment for clinical use. The advancements presented in this work lay the 

groundwork for more sophisticated image synthesis techniques that could significantly impact 

medical imaging and diagnostic workflows. 

6. Conclusion 

The CrossSim framework, with its ART block and attention-based feature fusion, represents a 

significant advancement in multimodal medical image synthesis. Unlike previous methods that focus 

on generating images from a single modality at a single time point, our model is the first to handle 

different modalities and multiple time points concurrently. This unique capability allows for a more 

comprehensive analysis and interpretation of medical data, offering a powerful tool for clinical 

applications and research. 
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