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Abstract. To mitigate or avoid losses caused by earthquakes, it is necessary to understand them 

deeply. In our project, two idealized second-story structures with different properties with multi-

degree of freedom-free vibration will be analyzed. The displacement response of the first 

structure is analyzed under the conditions with and without an available load by the modal 

superposition method. As a result, the properties, including the natural frequencies, mode shapes, 

and the second-floor story shears, have also been obtained. Moreover, the same properties of the 

second structure are obtained, too, except for the story shear. Moreover, the displacement 

response of each phase of the impulsive loading of the second structure is also computed by 

using Duhamel Integral. 

Keywords: Natural frequencies, Mode shapes, Modal superposition method, multi-degree of 

freedom vibration, the Displacement response. 

1.  Introduction  

Earthquakes are the products of the earth's interior tectonic movements and area natural phenomena. 

There are about 5 million earthquakes worldwide each year. The vast majority, which accounts for about 

99% of the total number of earthquakes in a year, are small enough to be measured only with susceptible 

instruments. Moreover, the remaining 1% is the severe earthquake that people can feel and are capable 

of causing severe damage, of which the average annual occurrence is about 18 times in the whole world 

[1]. The earthquake has brought disasters to society, causing different degrees of personal injury and 

economic loss. At 14:28 on May 12, 2008, a strong earthquake of magnitude 8.0 on the Richter scale 

occurred in Wenchuan County, Sichuan Province, China, which was the largest, most destructive 

earthquake since the founding of the People's Republic of China, causing huge losses to people's lives 

and property safety [2,3]. Highways, bridges, tunnels, and other essential infrastructure were seriously 

damaged during the earthquake. The damage to buildings is mainly due to the strong vibration of the 

ground caused by seismic waves, resulting in the collapse of ground buildings.  
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Therefore, to understand the earthquake's impact on buildings or how the earthquake destroyed the buildings, we 

decided to find out the characteristics of the two-story building under the effect of an earthquake. We simulated 

the earthquake by making two different two-story frames under an applied and impulsive load. As a result, we 

managed to find the displacement of the structures with and without damping.  

2.  Procedure 

2.1.   Challenge 1  

2.1.1.  Formulate the equation of motion. The mass of each story of the idealized two-story frame is 

m=50kips/g, which is  

 
50𝑘𝑖𝑝𝑠

386 𝑖𝑛/𝑠2 = 0.130𝑘𝑖𝑝𝑠 ∙
𝑠2

𝑖𝑛
  (1) 

for each story. Moreover, the stiffness for each story is k=15.77 kips/in (k/2 for each column). To set up 

the equation of motion for a multiple-degree-of-freedom system (two-degree of freedom for this project), 

the mass and stiffness properties have to be derived as a matrix [4]. Therefore, the mass matrix and 

stiffness matrix for this project is 

 𝒎 = [
𝑚 0
0 𝑚

] = [
0.13 0

0 0.13
]  (2)  

and 

 𝒌 = [
𝑘1 + 𝑘2 −𝑘2

−𝑘2 𝑘2
] = [

31.54 −15.77
−15.77 15.77

]  (3) 

respectively. Since the equation of motion for the undamped multiple-degree-of-freedom system with 

no applied force is 

 𝒎�̈� + 𝒌𝒖 = 𝟎  (4) 

in our case, it can be set up as  

 [
0.13 0

0 0.13
] [

�̈�1

�̈�2
] + [

31.54 −15.77
−15.77 15.77

] [
𝑢1

𝑢2
] = [

0
0

]  (5) 

when plugging the mass matrix and stiffness matrix in. 

2.1.2.  Compute natural frequencies (𝜔1 and 𝜔2) and the corresponding mode shapes (𝝓1 𝑎𝑛𝑑 𝝓2). 

Multi-degree freedom systems can do free vibration at specific natural frequencies [1]. For the equation 

of motion of multiple-degree of freedom system (1-4), assume the displacement response as a function 

of time (t) 

 𝒖(𝑡) = �̂� sin(𝜔𝑡 + 𝜃)  (6) 

where �̂� is the modal component. Then the second derivative of 𝒖(𝑡) is 

 �̈�(𝑡) = −𝜔2�̂� sin(𝜔𝑡 + 𝜃),  (7) 

So, it can be written down as 

 �̈� = −𝜔2𝒖  (8) 

Then apply this equation to the equation of motion, we can get 

 [𝒌 − 𝜔2𝒎]𝒖 = 𝟎  (9) 

Moreover, the displacement cannot always be 0 because of the arbitrary loading. Thus, the equation can 

be written as 
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 |𝒌 − 𝜔2𝒎| = 0,  (10) 

which is called the frequency equation. Then plug the mass and stiffness matrix in the frequency 

equation, and another equation concerning 𝜔 can be obtained as 

  0.0169𝜔4 − 6.1503𝜔2 + 248.6929 = 0,  (11) 

From which there are two opposing and two positive values for 𝜔. Since the natural frequencies cannot 

be less than 0, the negative results must be neglected, so the natural frequencies for this structure are 

{
𝜔1 = 6.807 𝑟𝑎𝑑/𝑠

𝜔2 = 17.821 𝑟𝑎𝑑/𝑠
. When free vibration at a natural frequency, the structure will remain a fixed shape 

called a mode shape. For the first mode where 𝜔1 = 6.807 𝑟𝑎𝑑/𝑠, assume u1=1. Then the equation can 

obtain the mode shape for the first mode.  

 [
25.516 −15.77
−15.77 9.746

] [
𝑢1 = 0

𝑢2
] = [

0
0

]  (12) 

and 𝝓1 =  [
1

1.618
]. Similarly, for the second mode where 𝜔2 = 17.821 𝑟𝑎𝑑/𝑠, the mode shape can 

be obtained by  

 [
−9.746 −15.77
−15.77 −25.516

] [
𝑢1 = 0

𝑢2
] = [

0
0

]  (13) 

and 𝝓2 =  [
1

−0.618
]. In addition,  

 𝚽 = [𝝓1 𝝓2] = [
1 1

1.618 −0.618
]  (14) 

which is the mode shape matrix. The mode shapes of the structure and the corresponding natural 

frequencies are shown in Figure 1 below. 

 

Figure 1. Mode shapes and corresponding natural frequencies. 

2.2.   Determine the undamped displacement response of the structure with the initial condition. 

For any modal component �̂�𝑛, we can write  

 �̂�𝑛 = 𝝓𝑛𝑌𝑛,  (15) 
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where 𝑌𝑛 is the 𝑛𝑡ℎ normal coordinate (or modal coordinate). Then the total displacement through the 

modal superposition is  

 𝒖 = ∑ 𝝓𝑛𝑌𝑛
𝑁
𝑛=𝟏 = 𝚽𝒀,  (16) 

where N is the degree of freedom. The total displacement calculated by the modal superposition method 

can be shown in Figure 2. 

 

Figure 2. Modal superposition method. 

With equation (16), we use orthogonality to evaluate Y. Since  

 𝒖 = 𝚽𝒀,  (17) 

we multiply both sides of the equation by 𝝓𝑛
𝑇𝒎:  

 𝝓𝑛
𝑇𝒎𝐮 = 𝝓𝑛

𝑇𝒎𝝓1𝑌1 + 𝝓𝑛
𝑇𝒎𝝓2𝑌2 + ⋯ + 𝝓𝑛

𝑇𝒎𝝓𝑛𝑌𝑛 + ⋯ + 𝝓𝑛
𝑇𝒎𝝓𝑁𝑌𝑁,  (18) 

Where 𝝓𝑛
𝑇  is the matrix transpose of 𝝓𝑛. Then due to the orthogonality condition:  

 {
𝝓𝑚

𝑇 𝒎𝝓𝑛 = 0,       𝑚 ≠ 𝑛

𝝓𝑚
𝑇 𝒎𝝓𝑛 = 𝑀𝑛,     𝑚 = 𝑛 

,  (19) 

And similarly for stiffness. 

 {
𝝓𝑚

𝑇 𝒌𝝓𝑛 = 0,       𝑚 ≠ 𝑛

𝝓𝑚
𝑇 𝒌𝝓𝑛 = 𝐾𝑛,     𝑚 = 𝑛 

,  (20) 

Other terms vanish where 𝑀𝑛 and 𝐾𝑛 are scalars are called general mass and general stiffness. 

Consequently, we have 

 𝝓𝑛
𝑇𝒎𝐮 = 𝝓𝑛

𝑇𝒎𝝓𝑛𝒀𝑛,  (21) 

which means 

 𝑌𝑛 =
𝝓𝑛

𝑇𝒎𝐮

𝝓𝑛
𝑇𝒎𝝓𝑛

  (22) 

Therefore, the general mass must be obtained for calculating the modal coordinate. The equation can 

calculate the general mass for the first mode shape. 

 𝑀1 = 𝝓1
𝑇𝒎𝝓1 = [1 1.618] [

0.13 0
0 0.13

] [
1

1.618
]  (23) 

Then we can get our first general mass 𝑀1 = 0.4703 𝑘𝑖𝑝𝑠 ∙ 𝑠/𝑖𝑛2. Similarly, the second general mass 

𝑀2 = 0.1797 𝑘𝑖𝑝𝑠 ∙ 𝑠/𝑖𝑛2. 

Last step before we calculate the modal coordinate is to achieve modal equations of motion using 

orthogonality. Therefore, for each modal equation of motion (4), the multi-degree-of-freedom problem 

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics (CONF-CIAP 2023)
DOI: 10.54254/2753-8818/5/20230429

243



 

becomes a single-degree-of-freedom problem [5]. For the multi-degree of freedom equation of motion, 

we now have 𝒖 = 𝚽𝒀 and 

 �̈� = 𝜱�̈�  (24) 

(Mode shapes do not change through time). Then the equation of motion can be written as  

 𝒎𝜱�̈� + 𝒌𝜱𝒀 = 𝟎  (25) 

Multiply both sides by 𝝓𝑛
𝑇; we can get  

 𝝓𝑛
𝑇𝒎𝜱�̈� + 𝝓𝑛

𝑇𝒌𝜱𝒀 = 𝟎  (26) 

And due to the orthogonality, the equation of motion becomes 

 𝝓𝑛
𝑇𝒎𝝓𝑛�̈�𝑛 + 𝝓𝑛

𝑇𝒌𝝓𝑛𝑌𝑛 = 0,  (27) 

where 𝝓𝑛
𝑇𝒎𝝓𝑛�̈�𝑛 and 𝝓𝑛

𝑇𝒌𝝓𝑛𝑌𝑛 are general mass and general stiffness, respectively, which are both 

scalars as well as �̈�𝑛 and 𝑌𝑛. Therefore, we have the single degree of freedom equation of motion 

 𝑀𝑛�̈�𝑛 + 𝐾𝑛𝑌𝑛 = 0  (28) 

for each mode. For this equation, we use a second-order ordinary differential equation, and we can get  

 𝑌𝑛(𝑡) = A𝑠𝑖𝑛𝜔𝑛𝑡 + Bcos𝜔𝑛𝑡 and �̇�𝑛(𝑡) = A𝜔𝑛𝑐𝑜𝑠𝜔𝑛𝑡 − B𝜔𝑛𝑠𝑖𝑛𝜔𝑛𝑡   (29) 

And according to the initial condition, which is when t=0,  

 {
𝑌𝑛(0) = B     

�̇�𝑛(0) = 𝐴𝜔𝑛     
  (30) 

Thus,    

 𝑌𝑛(𝑡) =
�̇�𝑛(0)

𝜔𝑛
𝑠𝑖𝑛𝜔𝑛𝑡 + 𝑌𝑛(0)cos𝜔𝑛𝑡  (31) 

Then plug the initial condition given: {
𝒖(0) = [

1
0

]

�̇�(0) = [
0
2

]
 in the equations:  

 {
𝑌𝑛(0) =

𝝓𝑛
𝑇𝒎𝒖(0)

𝑀𝑛
      

�̇�𝑛(0) =
𝝓𝑛

𝑇𝒎�̇�(0)

𝑀𝑛
     

  
(32)
(33)

 

we can get  

 {
𝑌1(0) =

𝝓1
𝑇𝒎𝒖(0)

𝑀1
= 0.2764     

𝑌2(0) =
𝝓2

𝑇𝒎𝒖(0)

𝑀2
= 0.7234     

  
(34)
(35)

 

and 

  {
�̇�1(0) =

𝝓1
𝑇𝒎�̇�(0)

𝑀1
= 0.8945    

�̇�2(0) =
𝝓2

𝑇𝒎�̇�(0)

𝑀2
= −0.8972    

. 
(36)
(37)
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Next, we plug {
𝑌1(0) = 0.2764

𝑌2(0) = 0.7234
 and {

�̇�1(0) = 0.8945

�̇�2(0) = −0.8972
 in equation (1-31); we can get our equation 

of 𝑌𝑛(𝑡):  

 {
𝑌1(𝑡) = 0.1314𝑠𝑖𝑛6.807𝑡 + 0.2764𝑐𝑜𝑠6.807𝑡            

𝑌2(𝑡) = −0.0502𝑠𝑖𝑛17.821𝑡 + 0.7234𝑐𝑜𝑠17.821𝑡   
  

(38)
(39)

 

Finally, according to the modal superposition method, the ultimate undamped displacement response of 

the structure is  

𝒖 = [
1

1.618
] (0.1314𝑠𝑖𝑛6.807𝑡 + 0.2764𝑐𝑜𝑠6.807𝑡) + [

1
−0.618

] (−0.0502𝑠𝑖𝑛17.821𝑡 +

0.7234𝑐𝑜𝑠17.821𝑡).   (40) 

Consequently, the displacement for the first floor is:  

𝒖1 = 0.1314𝑠𝑖𝑛6.807𝑡 + 0.2764𝑐𝑜𝑠6.807𝑡 − 0.0502𝑠𝑖𝑛17.821𝑡 + 0.7234𝑐𝑜𝑠17.821𝑡  (41) 

Moreover, the second floor is: 

𝒖2 = 0.2208𝑠𝑖𝑛6.807𝑡 + 0.4644𝑐𝑜𝑠6.807𝑡 + 0.031𝑠𝑖𝑛17.821𝑡 − 0.4471𝑐𝑜𝑠17.821𝑡  (42) 

2.3.   The displacements as functions of time when the undamped system is subjected to a suddenly 

applied force at the first floor: 𝑝1(𝑡) = 𝑝0, where 𝑡 ≥ 0 and 𝑝0 = 10 𝑘𝑖𝑝𝑠, and the shear force 

for the second story. 

Since we have obtained the single degree of freedom equation of motion with no applied load (4), the 

equation of motion with applied load is  

 𝑀𝑛�̈�𝑛 + 𝐾𝑛𝑌𝑛 = 𝑃𝑛(𝑡)  (43) 

Moreover, since only the first story is subjected to a force, the equation of motion for the second story 

remains the same as equation (1-4). The position of the applied force is shown in Figure 3 below. 

 

Figure 3. The undamped structure with force applied at the first story. 

Do the second-order ordinary differential equation to the first-floor equation of motion, we can get  

 𝑌1(𝑡) = A𝑠𝑖𝑛𝜔1𝑡 + B𝑐𝑜𝑠𝜔1𝑡 +
𝑝0

𝐾1
  (44) 

and 

 �̇�1(𝑡) = A𝜔1𝑐𝑜𝑠𝜔1𝑡 − B𝜔1𝑠𝑖𝑛𝜔1𝑡  (45) 

Then we use the initial condition like before we can get  
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 {
A = �̇�1(0)

𝜔1
                 

B = 𝑌1(0) −
𝑝0

𝐾1
    

,  
(46)
(47)

 

which means we have to solve for the general stiffness first. For the first and second stories, the general 

stiffness is  

 𝐾1 = [1 1.618] [
31.54 −15.77

−15.77 15.77
] [

1
1.618

] = 21.793 𝑘𝑖𝑝𝑠/𝑖𝑛  (48) 

and   

 𝐾2 = [1 −0.618] [
31.54 −15.77

−15.77 15.77
] [

1
−0.618

] = 25.517 𝑘𝑖𝑝𝑠/𝑖𝑛  (49) 

Respectively. So,  

 {
A =

0.8945

6.807
= 0.1314                      

B = 0.2764 −
10

21.793
= 0.1825    

  (50) 

and  

 𝑌1(𝑡) = 0.1314𝑠𝑖𝑛6.807𝑡 − 0.1825𝑐𝑜𝑠6.807𝑡 + 0.458  (51) 

Since the second story remains in the same condition, the displacement response now becomes 

𝒖 = [
1

1.68
] (0.1314𝑠𝑖𝑛6.807𝑡 − 0.1825𝑐𝑜𝑠6.807𝑡 + 0.458) + [

1
−0.618

] (−0.0502𝑠𝑖𝑛17.821𝑡 +

0.7234𝑐𝑜𝑠17.821𝑡)    (52) 

And the displacement for the first and second stories is 

 𝑢1(𝑡) = 0.1314𝑠𝑖𝑛6.807𝑡 − 0.1825𝑐𝑜𝑠6.807𝑡 + 0.458  

 −0.0502𝑠𝑖𝑛17.821𝑡 + 0.7234𝑐𝑜𝑠17.821𝑡    (53) 

and  

𝑢2(𝑡) = 0.2126𝑠𝑖𝑛6.807𝑡 − 0.2953𝑐𝑜𝑠6.807𝑡 + 0.741 

 +0.031𝑠𝑖𝑛17.821𝑡 − 0.4471𝑐𝑜𝑠17.821𝑡   (54) 

respectively. 

For the story shear in the second story,  

 𝑉2 = 𝑘(𝑢2 − 𝑢1),  (55) 

where k=15.77 kips/in is the stiffness for the second story. The relative displacement for the second 

story is  

 (𝑢2 − 𝑢1) = 0.0812𝑠𝑖𝑛6.807𝑡 − 0.1128𝑐𝑜𝑠6.807𝑡 + 0.283 + 0.0812𝑠𝑖𝑛17.821𝑡 −
1.1705𝑐𝑜𝑠17.821𝑡    (56) 

Therefore, the story shear on the second floor is  

𝑉2 = 1.281𝑠𝑖𝑛6.807𝑡 − 1.779𝑐𝑜𝑠6.807𝑡 + 4.463 + 1.281𝑠𝑖𝑛17.821𝑡 − 18.459𝑐𝑜𝑠17.821𝑡   (57) 

2.4.   Assume there is stiffness-proportional damping (𝐶𝑛 = 𝛼𝐾𝑛) with a modal damping ratio 

corresponding to the first mode 𝜉1 = 0.05. 

For the damped multi-degree of freedom equation of motion, we must assume that the damping can 

satisfy the orthogonality as well, which means  
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 {
𝝓𝑚

𝑇 𝒄𝝓𝑛 = 𝐶𝑛 , 𝑚 = 𝑛

 𝝓𝑚
𝑇 𝒄𝝓𝑛 = 0 , 𝑚 ≠ 𝑛

.     
（58）

（59）
 

Then for the damped multi-degree of freedom equation of motion  

 𝒎�̈� + 𝒄�̇� + 𝒌𝒖 = 𝟎,  (60) 

we can pre-multiply both sides by 𝝓𝑛
𝑇  and get  

 𝝓𝑛
𝑇𝒎𝜱�̈� + 𝝓𝑛

𝑇𝒄𝜱�̇� + 𝝓𝑛
𝑇𝒌𝜱𝒀 = 𝟎.  (61) 

Due to the damping orthogonality, we just assumed the equation of motion could be uncoupled into  

 𝑀𝑛�̈�𝑛 + 𝐶𝑛�̇�𝑛 + 𝐾𝑛𝑌𝑛 = 0,  (62) 

which is the single degree of freedom equation. And in a single degree of freedom problems  

 𝐶𝑛 = 2𝜉𝑛𝜔𝑛𝑀𝑛,  (63) 

where 𝜉𝑛 is the damping ratio. Therefore,  

 𝐶1 = 2𝜉1𝜔1𝑀1 = 0.3201.  (64) 

And according to stiffness-proportional damping  

 𝐶𝑛 = 𝛼𝐾𝑛,  (65) 

the coefficient 𝛼 can be solved by  

 𝛼 =
𝐶1

𝐾1
,  (66) 

which equals 0.0147. Then we can solve the second damping by  

 𝐶2 = 𝛼𝐾2,  (67) 

which is 0.375. Moreover, according to equation (63), the second damping ratio is  

 𝜉2 = 
𝐶2

2𝜔2𝑀2
= 0.058.  (68) 

2.5.   Challenge 2  

2.5.1.  Derive the mass matrix(m) and the stiffness matrix(k). The question is a two-story frame. The 

mass of the top floor is m=10𝑘𝑖𝑝𝑠 ∙ 𝑠2 𝑖𝑛⁄ , and the mass of the ground floor is 2m=20𝑘𝑖𝑝𝑠 ∙ 𝑠2 𝑖𝑛⁄ . 

Therefore, the stiffness for the top floor is k=500kips/in, and the stiffness for the ground floor is 

2k=1000kips/in. After having these data, we can derive them as a matrix. For example, we know the 

equation for the mass matrix[
2𝑚 0
0 𝑚

] and the stiffness matrix[
𝑘1 + 𝑘2 −𝑘2

−𝑘2 𝑘2
]. Therefore, we can get 

the mass matrix[
20 0
0 10

] and the stiffness matrix[
1500 −500
−500 500

]. 

2.5.2.  Compute the two natural frequencies 𝜔 and mode shapes. The natural frequency is when a 

structural system is excited to generate motion, the specific frequency is determined only by the nature 

of the system itself. We use the mass matrix and the stiffness matrix to get the equation of motion [4]. 

The equation of motion of multiple degrees of freedom system is  

 𝐦�̈� + 𝐤𝐮 = 𝟎. (69) 

Similarly, the acceleration �̈� equals −ω2�̂� sin(ωt + θ). Then it can be written down as −ω2𝐮. After 

that, we can get  
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 [𝐤 − ω2𝐦]�̂� = 𝟎, (70) 

as the frequency equation and the displacement is what we are trying to compute. Thus, it cannot always 

be 0. So, the equation can be written as 

 |k − ω2m|.  (71)  

That is the equation that will help us find the natural frequency. Then we can plug the mass and stiffness 

matrix which have been obtained in the first step; the equation is 

 [𝐤 − ω2𝐦]= [1500 − 20ω2 −500
−500 500 − 10ω2], (72) 

which can be calculated to 200ω4 − 25000ω2 + 500000, and make it equal to 0. Then we can get 

four values for natural frequencies, which are -5, -10, +5, and +10. The natural frequencies cannot be 

harmful, so the natural frequencies for this structure are ω1 = 5 rad/s and ω2 = 10 rad/s. For ω1 =
5rad/s, we can get the first mode shape 

 𝛟1 = [
1
2

] (73) 

by assuming u1 = 1. Similarly, the 𝛟2 can be computed in the same way. For the natural frequency 

of the second mode shape, ω2 = 10 rad/s. The first and second mode shapes are shown in Figure 4. 

 𝛟2 = [
−1
1

] (74) 

 

Figure 4. natural frequencies and corresponding mode shapes for each mode. 

2.5.3.  Determine the displacements 𝒗𝟏 and 𝒗𝟐 of the structure as a function of time. Firstly, we plan 

to find the general mass by using the equation 

  ϕm
T mϕn = Mn, (75)  

the mass matrix[
20 0
0 10

] and the 𝛟1 matrix [
1
2

]are for M1, so the equation is 

 M1 = [1 2] [
20 0
0 10

] [
1
2

]=60kips ∙ s/in2.  (76) 

Similarly, we can get M2 using the mass matrix[
20 0
0 10

] and the 𝛟2  matrix [
1

−1
]. So,  M1the is 

60kips ∙ s/in2 and the M2 is 30kips ∙ s/in2. Secondly, we need to determine the p(t) expression for 

each phase. In phase 1, from the graph, we can get p(0) is equal to 1000kips, and the period in phase 1 

t(1) is equal to 0.02sec. Then we can determine the equation for the p(t) is equal to P0 × (
t

t1
). We plug 

the value of p(0) and t(1) into the equation, so  
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 p(t)=50000t. (77) 

For phase 2 from the graph, we can regard this part of the function as a linear function  

 y=kx+b.  (78) 

Then we can get  

 k=
0−P(0)

0.1−t1
 (79) 

and plug P(0)=1000Kips, t1=0.02sec into the equation. Therefore, we can getk = −12500. After that, 

we can get b=-0.01k. So, the value of b is 1250, and  

 p(t) = −12500t+1250. (80) 

For phase 3, there is no p(t) on the graph, so the value equals 0.  
 

 

Figure 5. The undamped structure at rest is subjected to dynamic impulsive loads. 

Thirdly, we should use the Duhamel integral to express the function of displacements by time. At first, 

the equation for the Duhamel integral is  

 v(t) = ∫
p(τ)

mω
sinω(t − τ)dτ

t2

t1
. (81) 

In our project, for phase 1, we can get the equation that is  

 ∫
p(τ)

mω
sinω(t − τ)dτ

t

0
 (82) 

Then for phase 2, we need to add the equation between 0 and 0.02 and the equation between 0.02 and t. 

The equation between 0.02 and t is  

 ∫
p(τ)

mω
sinω(t − τ)dτ

t

0.02
 (83) 

So, the equation for phase 2 is  

 ∫
p(τ)

mω
sinω(t − τ)dτ + ∫

p(τ)

mω
sinω(t − τ)dτ

t

0.02

0.02

0
 (84) 

For phase 3, we need to add the equation between 0 and 0.02, the equation between 0.02 and 0.10, and 

the equation between 0.10 and t together, which is  

 ∫
p(τ)

mω
sinω(t − τ)dτ

t

0.10
 (85) 

Then we can get the equation for phase 3 is  
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 ∫
p(τ)

mω
sinω(t − τ)dτ + ∫

p(τ)

mω
sin ω(t − τ)

0.10

0.02

0.02

0
+ ∫

p(τ)

mω
sinω(t − τ)dτ

t

0.10
. (86) 

3.  Results and Discussion 

3.1.   Challenge 1  

The following results have been obtained by conducting previous procedures: 

The undamped displacement response of the structure: 

𝒖(𝑡) = [
1

1.68
] (0.1314𝑠𝑖𝑛6.807𝑡 + 0.2764𝑐𝑜𝑠6.807𝑡) + [

1
−0.618

] (−0.0502𝑠𝑖𝑛17.821𝑡 +

0.7234𝑐𝑜𝑠17.821𝑡)   (87) 

When applied force in the first story: 

(i) Displacement for each floor as a function of time: 

𝑢1(𝑡) = 0.1314𝑠𝑖𝑛6.807𝑡 − 0.1825𝑐𝑜𝑠6.807𝑡 + 0.458 − 0.0502𝑠𝑖𝑛17.821𝑡 

+0.7234𝑐𝑜𝑠17.821𝑡 (88) 

 𝑢2(𝑡) = 0.2126𝑠𝑖𝑛6.807𝑡 − 0.2953𝑐𝑜𝑠6.807𝑡 + 0.741 + 0.031𝑠𝑖𝑛17.821𝑡 

−0.4471𝑐𝑜𝑠17.821𝑡 (89) 

(ii) Story shear on the second floor: 

𝑉2 = 1.281𝑠𝑖𝑛6.807𝑡 − 1.779𝑐𝑜𝑠6.807𝑡 + 4.463 + 1.281𝑠𝑖𝑛17.821𝑡 − 18.459𝑐𝑜𝑠17.821𝑡 (90) 

Assuming stiffness-proportional damping: 

(i)Damping matrix: 𝐶1 = 0.3201 & 𝐶2 = 0.375 

(ii)Damping ratio for the second mode: 𝜉2 = 0.058 

According to the previous procedure, the key reason that the modal superposition method would 

work for an undamped multi-degree of freedom system is due to the formula  

 𝒖 = 𝜱𝒀 = ∑ 𝝓𝑛𝑌𝑛 = 𝝓1𝑌1 + 𝝓2𝑌2
𝑁
𝑛=1 + ⋯ + 𝝓𝑁𝑌𝑁,  (91) 

where the mode shapes are the basis vectors. With this formula, we can convert our multi-degree of 

freedom problem into the single-degree of freedom problem and obtain the displacement of the structure 

at any time (when t equals any value) [5]. Another important reason is the orthogonality of mode shapes, 

which allows us to find the equation of the modal coordinate in order to uncouple the multi-degree of 

freedom equation of motion. 
When there is damping in the system, the critical assumption that the modal superposition method would work for 

a multi-degree-of-freedom problem is that the damping has to satisfy the damping orthogonality [5], which is  

 𝝓𝑚
𝑇 𝒄𝝓𝑛 = 0 (m ≠ 𝑛).  (92) 

We can uncouple the damped multi-degree of freedom equation of motion with the orthogonality 

condition. In other words, to satisfy the key assumption, the damping matrix types must be able to apply 

the damping orthogonality. For example, in our project, Rayleigh damping, which is a special case of 

Caughey damping:  

 𝒄 = 𝑎0𝒎 + 𝑎1𝒌 = 𝒎 ∑ 𝑎𝑏[𝒎−1 𝒌]𝑏
𝑏 ,  (93) 

𝑏 = 0,1. 

And for the Rayleigh damping,  

 𝐶𝑛 = 𝝓𝑛
𝑇𝒄𝝓𝑛 = 2𝜉𝑛𝜔𝑛𝑀𝑛 = 𝑎0𝑀𝑛 + 𝑎1𝐾𝑛  (94) 

which is called proportional damping. Then damped eigenproblem becomes an undamped eigenproblem. 

As for Caughey damping [6],  
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 𝒄 = 𝒎 ∑ 𝑎𝑏[𝒎−1 𝒌]𝑏
𝑏 ≜ ∑ 𝑐𝑏𝑏 ,  (95) 

where  

 𝑐𝑏 ≜ 𝑎 [𝒍𝒃𝒖𝒎−1 𝒌]𝑏 .  (96) 

3.2.   Challenge 2 

There are two situations for phase 1, which is between 0 sec and 0.02 sec. The first one is when ω=5rad/s, 

the displacement equation is  

 V1(t)=∫
0

t 2P(τ)

M1ω1
sin ω1(t−τ) dτ. (97) 

Then we plug p(t)=50000t, M1 =60kips ∙ s/in2  and ω1=5rad/sec into the equation, so we get the 

equation  

 V1(t)=333.33∫
0

t
τ(sin 5t cos 5τ − cos 5t sin 5τ)dτ. (98) 

The second one is ω=10rad/s, and the displacement equation is  

 V2(t)=∫
0

t P(τ)

M2ω2
sin ω2(t−τ) dτ. (99) 

Then we plug p(t)=50000t, M2 =30kips ∙ s/in2 and ω2=10rad/sec into the equation, so we get the 

equation 

 V2(t)=166.67 ∫
0

t
τ(sin 10t cos 10τ − cos 10t sin 10τ)dτ. (100) 

There are two situations for phase 2, which is between 0.02sec and 0.1sec. We can use a similar method 

to phase 1. The first one is when ω=5rad/s, we need to get the integral equation between 0.02s and t. the 

equation is 

  ∫
0.02

t 2P(τ)

M1ω1
sin ω1(t−τ) dτ. (101) 

Then we plug p(t)=−25000τ + 2500, M1 =60kips ∙ s/in2 and ω1=5rad/sec into the equation, so we 

get the equation  

 ∫
0.02

t
(

−25000t

300
τ +

2500

300
) × (sin 5tcos 5τ − cos 5t sin 5τ) dτ. (102) 

The equation for the entire phase 2 is  

V1(t) = 333.33∫
0

0.02
τ(sin 5t cos 5τ − cos 5t sin 5τ) dτ+∫

0.02

t
(

−25000t

300
τ +

2500

300
) × (sin 5 𝑡 cos 5τ −

cos 5t sin 5τ)dτ.  (103) 

The second one is when ω=10rad/s, we need to get the integral equation between 0.02 and t. the equation 

is  

  ∫
0.02

t 2P(τ)

M1ω1
sin ω1(t−τ) dτ. (104) 

Then we plug p(t)=−25000τ + 2500, M2 =30kips ∙ s/in2 and ω2=10rad/sec into the equation, so 

we get the equation  

 ∫
0.02

t
(

−12500t

300
τ +

1250

300
) × (sin 10tcos 10τ − cos 10t sin 10τ) dτ. (105) 

The equation for the entire phase 2 is  

 V2(t) = 166.67 ∫
0

0.02
τ(sin 10t cos 10τ − cos 10t sin 10τ) dτ +

(
−12500t

300
τ +

1250

300
) × (sin 10 t cos 10τ − cos 10t sin 10τ) dτ. (106) 
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For the phase3 which is when t is more significant than 0.1sec, the displacement equation is  

∫
p(τ)

mω
sinω(t − τ)dτ + ∫

p(τ)

mω
sin ω(t − τ)

0.10

0.02

0.02

0
+ ∫

p(τ)

mω
sinω(t − τ)dτ

t

0.10
. (107) 

However, the third phase does not have impulsive loadings on the structure, which means the p(t) is 0 

between 0.1 sec and t sec. We can get the displacement equation is  

 ∫
p(τ)

mω
sinω(t − τ)dτ + ∫

p(τ)

mω
sin ω(t − τ)

0.10

0.02

0.02

0
. (108) 

Then we plug each value of natural frequency and mass into the equation above. We can get when 

ω=5rad/s, the equation is  

𝑉1(t) = 333.33∫
0

0.02
τ(sin 5t cos 5τ − cos 5t sin 5τ) dτ+∫

0.02

0.1
(

−25000t

300
τ +

2500

300
) × (sin 5 𝑡 cos 5τ −

cos 5t sin 5τ) dτ.  (109) 

When ω=10 rad/s, the equation is  

𝑉2(t) =

166.67∫
0

0.02
𝜏(sin 10𝑡 cos 10𝜏 − cos 10𝑡 sin 10𝜏) 𝑑𝜏+∫

0.02

0.1
(

−12500𝑡

300
𝜏 +

1250

300
) × (sin 10𝑡 cos 10𝜏 −

cos 10𝑡 sin 10𝜏)d𝜏.  (110) 

4.  Conclusion 

According to the calculation, we have derived the equation of motion by using the mass matrix and 

stiffness matrix. Also, with the frequency equation, we have derived the natural frequencies of the multi-

degree-of-freedom structure with the mass and stiffness of the building. This frequency equation shows 

that the mass and the square of natural frequency are inversely proportional, and the structure's stiffness 

is proportional to the square of natural frequency. Therefore, each vibration mode shape can be 

determined by the corresponding frequency. Using the modal superposition method, the undamped 

displacement response has been obtained. When the system is subjected to an applied force on the first 

floor, we can derive the equation of motion for two floors. Then, after solving the two stiffness, we can 

get the displacement for the two floors. 

Predicting the behavior of the two-story building under the influence of the earthquake can help 

reduce the loss of lives since people now have measures to distinguish the insecure buildings and secure 

buildings, or they can predict the possibility of the collapse of a building. 
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