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Abstract: The functional organization of the human brain exhibits certain heterogeneity; 

however, the topological subtype characteristics of brain networks in healthy populations 

have not been fully explored. This study, based on resting-state functional magnetic 

resonance imaging data from 48 healthy adults in the UK Biobank dataset, employs persistent 

homology analysis to identify and characterize different subtypes of brain network topology. 

By constructing individual functional connectivity matrices and extracting their zero-

dimensional (connected components) and one-dimensional (circular structures) topological 

features, unsupervised clustering analysis revealed three brain network subtypes with distinct 

functional organizational characteristics: the mainstream subtype (52.1%) exhibited moderate 

network connectivity and moderate modularity; the high modularity subtype (27.1%) 

displayed the most persistent circular structures and the highest network segregation; the 

integrative subtype (20.8%) featured extensive functional connectivity but a simple 

topological structure. Further statistical analysis confirmed significant differences between 

these subtypes across all topological feature dimensions (p < 0.001). These findings, for the 

first time, reveal the heterogeneity of brain functional organization in healthy populations 

from a topological perspective, providing important evidence for constructing more accurate 

brain network models and developing individualized clinical applications. 

Keywords: Resting-state functional magnetic resonance imaging, Persistent homology 

analysis, Topological data analysis, Healthy brain topological subtypes 

1. Introduction 

The human brain is a highly organized complex system whose function depends on the 

synchronization of neuronal activity and information exchange between different brain regions. 

Through resting-state functional magnetic resonance imaging (fMRI), researchers have discovered 

that even at rest, the brain exhibits stable functional connectivity patterns, which reflect the temporal 

correlation of spontaneous neural activity between brain regions [1]. These functional connections 

constitute the brain’s basic operational modes, supporting human cognitive functions and behavioral 

performance [2]. Current research indicates that several neurological disorders are associated with 

specific changes in functional connectivity: the severity of motor symptoms in Parkinson’s disease 

patients is significantly related to the functional connectivity strength of certain brain regions [3]; 

social cognitive impairments in autism spectrum disorder can be traced to abnormalities in specific 

functional networks [4]. However, these studies primarily rely on group comparisons between patient 
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populations and healthy controls, a method that struggles to capture finer patterns of functional 

connectivity changes. Some studies suggest that the brain’s functional organization in healthy 

individuals may exhibit multiple stable patterns [5], and treating the healthy population as a single 

standard for comparison may obscure these important biological features. A deeper understanding of 

functional connectivity subtypes in healthy individuals not only helps reveal the basic principles of 

brain functional organization but also provides a critical foundation for developing more precise 

diagnostic and treatment strategies for diseases [6].   

To systematically investigate the functional organization of the brain, researchers introduced the 

concept of brain networks, viewing the brain as a complex system composed of multiple functional 

nodes connected through relationships. Traditional graph theory methods represent brain functional 

connectivity as a network model of nodes and edges, used to analyze the functional interactions 

between brain regions [7]. This approach has revealed the modular structure of brain networks, small-

world properties, and their association with cognitive functions, laying an important foundation for 

brain network research [8]. Topological Data Analysis (TDA) is an emerging mathematical tool that 

reveals the structural information of complex systems by studying the geometric and topological 

features of data. Unlike graph theory, which focuses only on bilateral relationships between nodes, 

TDA can capture higher-order interaction features between multiple brain regions [9]. These features 

not only reflect the efficiency of information flow but also embody the dynamic integration and 

segregation characteristics of brain networks [10]. Persistent Homology analysis, which tracks the 

“birth” and “death” of topological features, quantifies the stability of these higher-order features and 

provides a powerful tool for understanding the organizational principles of brain networks.   

Therefore, based on Topological Data Analysis, this study designs a systematic analytical 

approach to explore the brain network organizational characteristics of healthy individuals. First, 

persistent homology analysis is used to extract the topological features of each subject’s brain 

functional network, including the temporal dynamics of connected components and circular structures. 

Second, these topological features are used for unsupervised clustering to identify potential brain 

network subtypes. Third, differences in topological features between subtypes are analyzed to 

validate the rationality of subtype classification. Finally, typical samples are selected for in-depth 

analysis of their functional connectivity patterns and topological features, revealing the 

neurophysiological significance of different subtypes. 

2. Methods 

2.1. Dataset and Construction of Functional Connectivity Matrices   

This study utilized resting-state fMRI data from 48 healthy adult volunteers in the UK Biobank public 

dataset. The data was based on the brain network parcellation proposed by Yeo et al., using the 7-

networks, 400-regions parcellation [11]. The fMRI data preprocessing was carried out using the 

DPABI toolkit [12]. The specific process included the following steps: First, the first 10 time points 

of the functional images were discarded to eliminate data instability. Then, slice timing correction 

and head motion correction were applied. Functional images were standardized to MNI space using 

the Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) method. 

Next, spatial smoothing was performed using a Gaussian kernel (full-width at half-maximum of 

6×6×6 mm³). To reduce noise, signals from white matter, cerebrospinal fluid, and Friston 24 head 

motion parameters were regressed out. Additionally, a band-pass filter was applied to extract signals 

within the range of 0.009 to 0.08 Hz. Following preprocessing, the Pearson correlation coefficient of 

the time series between the 400 regions of interest (ROIs) was computed for each subject to construct 

the functional connectivity matrix. The positive part of the matrix, A+, was then extracted as the 

adjacency matrix. Based on the theory of brain network optimization for information transmission 
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efficiency and connection cost by Bullmore and Sporns [13], the positive functional connectivity 

matrix A+ was converted into a distance matrix D=1−A+. 

2.2. Topological Data Analysis - Persistent Homology Computation   

We applied the theory of persistent homology in computational topology [14] to perform topological 

data analysis on the distance-related matrix. First, the GUDHI library [15] was used to construct a 

Vietoris-Rips complex with a maximum dimension of 2 [14], and the 0-dimensional (connected 

components) and 1-dimensional (circular structures) persistent homology were computed. The results 

of persistent homology are represented by “birth-death” pairs, where “birth” indicates the threshold 

at which the topological feature begins to exist, and “death” indicates the threshold at which the 

feature disappears. The difference between these values reflects the lifetime of the topological feature. 

Topological structures with shorter lifetime are generally considered noise [16], so a minimum 

lifetime threshold of 0.025 was set for filtering purposes. 

The results of persistent homology computation were visualized in two ways: barcode plots and 

persistence diagrams [14]. The barcode plot uses the length of horizontal bars to represent the birth 

and death of topological features (as shown in Figure 1b), while the persistence diagram (as shown 

in Figure 1c) maps the intervals from the barcode onto points in a plane, with the x-axis representing 

the birth time and the y-axis representing the death time. The further a point is from the diagonal line, 

the more persistent the topological feature is. 

 

Figure 1: Example of persistent homology computation for a rectangular complex. (a) Schematic of 

the complex construction process: starting from 4 discrete vertices, short edges, long edges, and 

finally the diagonal are added. (b) Barcode plot, with red indicating connected components (H0) and 

blue indicating circular structures (H1). (c) Persistence diagram, with the x-axis representing birth 

time and the y-axis representing death time. 

In the persistent homology computation, we focus on the evolutionary process of the 0-

dimensional homology group (connected components) and the 1-dimensional homology group 

(circular structures). For the 0-dimensional homology features, we concentrate on the statistical 

properties of the middle 50% of connected components, as these features best represent the primary 

connectivity patterns of the network. Specifically, a larger mean lifetime (M0) indicates greater 

stability in the network’s basic connectivity structure; a smaller standard deviation of lifetime (S0) 

suggests more stable fluctuations in network connectivity. For the 1-dimensional homology features, 
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we construct a hierarchical feature system. First, we extract the average birth time (B1) and average 

death time (D1) of the circular structures in the time dimension. Later birth times indicate that circular 

structures form under higher connection strengths, while later death times suggest that these structures 

can be maintained under stronger connection conditions. Next, we calculate the statistical features of 

the circular structures: the average lifetime (M1), which reflects the overall persistence of the circular 

structures, and the standard deviation of the lifetime (S1), which quantifies the variability of the 

stability of these structures. These two indicators jointly describe the dynamic features of the 

network’s circular structures. Finally, we introduce two distributional features: the Shannon entropy 

of the lifetime (E1) and the average lifetime of the top 25% most persistent circular structures (T1). 

A higher Shannon entropy of the lifetime indicates that the network has richer multiscale topological 

features, while the average lifetime of the top 25% most persistent circular structures specifically 

highlights the most prominent circular structures, providing a quantitative measure of the network’s 

key topological features. 

Based on the extracted topological features, we first perform MinMax normalization on all the 

features, then apply the K-means algorithm [17] to cluster the samples of the 48 participants. The 

optimal number of clusters is determined using the silhouette coefficient [18], thereby identifying the 

topological subtypes in the healthy population. 

2.3. Statistical Analysis   

For the identified topological subtypes, we calculated the sample distribution of each subtype and the 

descriptive statistics (mean and standard deviation) of their topological features. We then 

quantitatively evaluated the contribution of each topological feature to subtype differentiation using 

a random forest classifier (with 100 trees) [19]. In the statistical analysis, given the relatively small 

sample size, we performed pairwise comparisons of the subtypes obtained from clustering using the 

non-parametric Mann-Whitney U test [20] to assess the significance of differences in topological 

features between subtypes. To control for the false positive rate due to multiple comparisons, all 

comparisons were corrected using the Bonferroni method [21], with the correction factor based on 

the number of comparisons. Statistical analysis was implemented in Python, with the significance 

level set at 0.05. Finally, typical samples of each category were identified by calculating the Euclidean 

distance between the sample and the cluster center, providing a basis for the subsequent analysis of 

functional connectivity patterns and topological features. 

3. Results   

3.1. Identification of Brain Network Subtypes   

K-means clustering analysis identified three distinct brain network subtypes, with a silhouette 

coefficient of 0.5621, indicating moderate to good separation of the clusters. Among the 48 

participants, subtype 1 included 25 subjects (52.1%), subtype 2 included 13 subjects (27.1%), and 

subtype 3 included 10 subjects (20.8%). To further understand the characteristics of these subtypes, 

we conducted analyses from multiple dimensions (Figure 2). 

Principal component analysis showed that the first two principal components explained 92.2% and 

3.7% of the total variance, respectively (cumulative 95.9%). The three subtypes exhibited clear 

separation in the reduced-dimensional space (Figure 2A). The feature radar chart further revealed the 

differences in topological features across the three subtypes: subtype 2 exhibited the highest feature 

values, subtype 1 showed a balanced distribution of intermediate values, while subtype 3 displayed 

lower feature values across most dimensions (Figure 2B). Random forest classification analysis 

indicated that the most important features for distinguishing between subtypes were the average birth 
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time (importance 0.229), average death time (importance 0.163), and life cycle standard deviation 

(importance 0.156) from the one-dimensional ring topological features (Figure 2C). 

 

Figure 2: Feature analysis of brain network subtypes. (A) Principal component analysis, showing the 

distribution of the three subtypes in the 2D space (blue: subtype 1, green: subtype 2, red: subtype 3), 

with red cross marks indicating cluster centers; (B) Feature radar chart, displaying the distribution of 

each subtype in the topological feature dimensions; (C) Feature importance ranking derived from 

random forest classification. 

3.2. Topological Subtype Feature Analysis   

As shown in Figure 3, the comparison results of the differences in topological features between 

subtypes indicate that all subtypes exhibit significant differences across all topological feature 

dimensions (p < 0.001, Bonferroni correction). In terms of zero-dimensional topological features, the 

statistical characteristics of the middle 50% of connected components show a clear hierarchical 

pattern: subtype 2 exhibits the highest average life cycle and standard deviation, followed by subtype 

1, and subtype 3 shows the lowest values. In one-dimensional topological features, temporal feature 

analysis revealed significant organizational differences between subtypes: subtype 2 has the latest 

birth and death times, forming stable and persistent ring structures; subtype 1 maintains an 

intermediate level; while subtype 3 shows the earliest birth and death times, indicating that its network 

topology is relatively unstable. This hierarchical pattern is further corroborated by life cycle-related 

indicators. Additionally, analysis of the standard deviation and entropy of the life cycle reveals that 

subtype 2 not only has the longest life cycle but also exhibits the most stable and complex ring 

structure features, while subtype 3 shows the weakest performance in these aspects. 
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Figure 3: Comparison of topological features of brain network subtypes. Boxplots display the 

distribution of eight topological features across the three subtypes (blue: subtype 1, green: subtype 2, 

red: subtype 3), including connected component features (S0, M0) and ring structure features (B1, 

D1, M1, S1, E1, T1). Asterisks indicate statistical significance of group differences (***p < 0.001). 

The scatter plots on the right side of the boxplots show the distribution of individual samples within 

each group. 

3.3. Functional Connectivity and Topological Feature Analysis of Typical Samples   

The typical samples of the three subtypes show significant differences in functional connectivity 

patterns and topological features (Figure 4). The representative sample of subtype 1 (subject 40) 

demonstrates moderate network organizational characteristics. The functional connectivity matrix 

displays a symmetric block pattern between the two hemispheres, with moderate connectivity (FC ≈ 

0.6) observed within the visual (VIS) and somatomotor (SMT) networks. This characteristic is 

reflected in the topological analysis: the barcode plot shows a moderate number of ring structures 

(blue bars), concentrated in the filter value range of 0.2–0.4; the feature points in the persistence 

diagram are located at a moderate distance from the diagonal. The typical sample of subtype 2 (subject 

32) exhibits clear modular characteristics: the functional connectivity matrix shows a distinct block 

structure, with moderate connectivity (FC > 0.4) within the visual (VIS), somatomotor (SMT), and 

default mode (DMN) networks, while the connections between networks are generally weaker (FC < 

0.2), forming a typical sparse connectivity pattern. This highly selective network organizational 

feature is reflected in the topological analysis: the barcode plot shows a large number of persistent 

ring structures, distributed over a wider filter value range (0.2–0.6); the feature points in the 

persistence diagram are distant from the diagonal and densely distributed. The typical sample of 

subtype 3 (subject 26) exhibits a unique network organizational pattern. Its functional connectivity 

matrix shows widespread high-intensity connections within networks, particularly between the visual 

(VIS) and somatomotor (SMT) networks on both sides, with FC values generally exceeding 0.8. 

Additionally, the strength of inter-network connectivity is higher than in the other two subtypes. 

However, its topological analysis reflects a relatively simple structure: the barcode plot shows the 

fewest ring structures, mainly concentrated in the low filter value range (0.1–0.2); the feature points 

in the persistence diagram are tightly clustered near the diagonal and sparsely distributed. 
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Figure 4: Comparison of typical samples across the three subtypes. Each row displays the 

representative sample of a subtype: the functional connectivity matrix (left) shows the correlation 

strength (0–1) between 400 brain regions, with seven functional networks (VIS, SMT, DAN, VAN, 

LIM, FPN, DMN) in each hemisphere; the persistence barcode (middle) shows red for connected 

components (H0) and blue for ring structures (H1); the persistence diagram (right) shows the 

distribution of life cycles of topological features, where the horizontal and vertical axes represent the 

birth and death times of the features. 

4. Conclusion   

This study, based on persistent homology analysis, identified three significantly different brain 

network subtypes in a healthy population and further analyzed the differences in topological features 
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and functional connectivity among these subtypes. The results indicate that these three subtypes 

exhibit significant differences in topological features, with subtype 1 having the highest proportion 

of subjects, and its topological feature statistics concentrated in the moderate range. In contrast, 

subtypes 2 and 3 exhibit distinct distributions of topological features, representing more complex 

higher-order interaction patterns. Previous studies, such as those by Gratton et al. [22], found that 

brain network structures in healthy individuals exhibit both group stability and significant individual 

differences, suggesting that brain functional networks may possess more complex higher-order 

interactive properties. This perspective aligns with the multi-scale complexity revealed in this study 

through one-dimensional ring topological features. Additionally, Martínez-Riaño et al. [23] used 

resting-state fMRI data and showed that the H1 feature lifetime of most individuals is concentrated 

within the range of 0.05 to 0.24, which is consistent with the findings for subtype 1 in this study. 

They also observed that some individuals had significantly longer H1 feature lifetime (>0.5), which 

corresponds with the features of subtype 2 in this study. These results further support the potential of 

persistent homology analysis in revealing brain network complexity and individual differences. 

Despite the use of persistent homology-based topological analysis to reduce the limitations of 

threshold selection in traditional graph theory methods, there are still several limitations. First, the 

small sample size may restrict the generalizability of the results, so future studies with larger sample 

sizes are needed to validate the universality of these subtypes. Second, the choice of distance metric 

for calculating topological properties may influence the analysis results [24]. Different distance 

metrics could lead to bias in the representation of topological features, potentially affecting the precise 

characterization of brain network structures. Furthermore, the reliance of persistent homology 

analysis on data preprocessing could introduce the influence of non-neuronal noise [25]. However, 

the use of strict signal preprocessing procedures and multiple comparison correction strategies has 

mitigated these issues to some extent. 

Future research could combine cognitive and behavioral indicators to explore the functional 

significance of the different subtypes in more detail, further validating the potential associations 

between subtypes and individual characteristics. This could help identify abnormal brain network 

patterns and provide quantitative bases for clinical diagnosis and intervention. Additionally, 

integrating other multimodal data (such as cognitive assessments and genetic information) with 

persistent homology analysis could further reveal the complexity of brain function and its individual 

specificity. 
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