
 

 

Self-Shape Sensing Soft Pneumatic Grasper Based on 
Piecewise Liquid Metal Sensor and Piecewise Variational 

Curvature Model 

Zitong Zhou1,a,* 

1Culver Academies, Indiana, USA 

a. 654460@culver.org 

*corresponding author 

Abstract: The shape estimation function can help solve end positioning or gripping control 

of soft robots. However, there is a lack of sensing and modeling techniques for accurate 

deformation estimation and soft robots with axial elongation, e.g., pneumatic soft robotic 

graspers. This paper presents a self-shape sensing pneumatic soft grasper with integrated 

liquid metal composite piecewise curvature sensors. Ga-Ln-Sn alloy was used as the basis of 

the sensor with addition of NdFeB and Ni. Then, a piecewise variable curvature model was 

developed to predict the deformation of the robotic fingers. A three-fingers soft robotic 

grasper (working similarly as a two-finger grasper on the 2D working plane) was built to test 

the performances of the sensor and the model. The result indicated that the grasper is not only 

capable of self-shape sensing, but also contact detection and gripping object size estimation. 

By statistical analysis, it is proven valid that the data collected by the sensor is able to go 

through machine learning processes to achieve gripping object shape identification.   

Keywords: pneumatic soft actuator, self-sensing, shape estimation, liquid-metal, piecewise 

strain sensor. 

1. Introduction 

As a robotics enthusiast, I have dedicated extensive time and effort to creating various robotic 

structures, circuits, and programs, resulting in impressively functional robots. However, the deeper I 

delve into this field, the more I recognize the risks associated with rigid robotic structures. My 

experience of being accidentally hurt by my robots and incidents like a chess-playing robot injuring 

a child's hand have reinforced this concern. These experiences have led me to explore the field of soft 

robotics. 

With their inherent safety for human interactions, soft robots also excel in tasks involving confined 

spaces and delicate objects. Despite these advantages, current research on soft robots, particularly 

soft robotic arms, predominantly focuses on tracking the end effector's location to aid in control 

mechanisms such as forward and inverse kinematics and optimal control. However, this focus often 

overlooks the development of soft robotic intelligence, which critically depends on the robot's ability 

to perceive its own form and surroundings. 

Currently, the popular deformation control of pneumatic soft robots usually adopts two approaches: 

open loop control based on the mapping relationship between air pressure [1] and morphology and 
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feedback control based on visual servo [2]. The first one fails when the robot is in contact with items, 

and the second one relies on the visual servo so it cannot operate under confined circumstances. The 

works about object perception for soft robots are also popular. For example, Shu et al. embedded 

strain gauges into a pneumatic soft gripper for the target's size identification [3]. However, the 

disadvantages caused by the sensor's non-stretchable nature led to the development of stretchable or 

fluid-based strain sensors [4]. The fluid-based sensors often face the problem of complex structures, 

which makes them hard to fabricate.  

This paper proposes the development of a pneumatic soft robotic grasper and a mathematical 

model that enables self-shape perception and object-shape perception, thereby enhancing the 

intelligence of soft robots. A key challenge in this endeavor is the potential inaccuracy caused by 

changes in air pressure that do not immediately alter the robot's shape when the robot contacts a rigid 

object. To address this, I propose using a non-intrusive flexible sensor attached to the robot and a 

corresponding model to improve the accuracy and reliability of the robot's deformation estimation. 

Using both models, a differential method that estimates the size of the gripping object is proposed.  

Several key questions need to be addressed to validate this concept: (1) What material should be 

used for the sensor, and where should it be located for optimal effectiveness? (2) What theoretical 

frameworks and formulas can construct a robust and accurate self-shape perception model based on 

sensor outputs? (3) How can this model be utilized to detect the shapes of objects being gripped? (4) 

What experimental methods should be employed to investigate and evaluate the research outcomes? 

Driven by these questions, this paper proposes a new model for soft robots that enhances their 

perceptual capabilities. 

The paper's content is as follows: I explain the main principle behind the self-shape and gripping-

object shape perception capabilities and the fabrication process in the second section. Then, in the 

third section, I cover the mathematical model that outputs the precepted self-shape of the robot from 

both the sensing signal and the pneumatic pressure. In the fourth section, I showcase the 

experimentations that evaluate the performance of the robot model, and the conclusion is covered in 

the sixth section. 

2. Methodology 

2.1. Principle 

A three-segment liquid metal sensor is placed at the bottom of each robotic finger to achieve self-

shape and object-shape perception. When actuated by pneumatic pressure, the robotic fingers deform, 

mainly the axial elongation and bending. Since the resistance of a resistor is positively related to its 

length, the resistance of the liquid metal sensors would increase as it is elongated with the robotic 

fingers. Using the resistance change as a signal, a mathematical model develops a mapping between 

the detected signal and the self-shape perception. 

Using the resistance from a simultaneously deforming sensor provides better performance than the 

traditional pneumatic pressure method. When contacting an object, the robotic fingers' inner 

pneumatic pressure can continue to increase while the shape of the robotic fingers stays the same. 

Thus, when a model relies on the detection of pneumatic pressure, the sensing results could be 

primarily deviated from the actual situation and deformation of the robot. On the other hand, using a 

sensor that can deform simultaneously with the robotic fingers can accurately capture the deformation 

of the fingers at any instance, as the deformation of the sensors is precisely the deformation of the 

fingers. Nevertheless, the project's sensing system employs both methods to reach a more accurate 

sensing result. Using both sensing systems also enables the robot to sense the instances of contact 

when seeing an increasing pneumatic pressure with a constant resistance change. 
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Figure 1: The general principle of the sensing system 

The three-segment structure of the sensor realizes the object-shape perception function. The three 

segments separated one robotic finger into three parts from top to bottom. The three segments will be 

subjected to different curvatures when gripping objects with different shapes. For example, the three 

segments would be at similar curvature when gripping a cylinder. In contrast, when gripping a cube, 

the first and third segments will be subjected to higher curvature than the second. The resistance 

changes from different segments of the fingers would construct data points that can be used to develop 

algorithms to estimate the gripping object shape. The experimentation section includes a statistical 

analysis that can be performed to determine if the data are significantly different, and thus validating 

its ability to percept gripping object shape.  

 

Figure 2: The principle of object-shape sensing 

2.2. Design 

The structure of the robotic finger is chosen because it is simple to deform and efficient in gripping 

objects. The thicker limiting layer in the bottom and the air chambers cause the finger to deform in a 

fixed direction. In this case, the mathematical model would be simplified to two-dimensional since 

the range of movement is a working plane rather than a working space. 

Proceedings of  the 4th International  Conference on Computing Innovation and Applied Physics 
DOI:  10.54254/2753-8818/83/2025.19931 

53 



 

 

 

Figure 3: The preliminary design of the robotic finger structure. 

Since the project does not emphasize structural design, the kestrel model is a ready-made CAD 

model from the “MakeSoftRobot” project [5]. The structure features a three-finger robotic structure 

that includes the mold for the silicone fingers and the holder of the fingers. To cater to the engineering 

goal, the bottom layer of the finger was altered to be thinner from the mold. This would ease the effort 

to integrate the three-segment sensor on the bottom of the fingers. 

Due to the high conductivity of liquid metal, its resistance is comparatively small and thus its 

resistance changes in a smaller scale. To resolve this problem, a signal amplification circuit is 

designed to enlarge the resistance change signal when it is communicating to the computer. To reach 

this effect, the traditional ratio amplification circuit structure was used to enlarge the received signal 

before it was communicated to the Arduino chip. 

 

Figure 4: Signal Amplification Circuit 

Since each sensor segment requires one ratio amplifier, six amplification circuits with the same 

structure should be applied to fulfill the needs of the six sensor segments. While signal amplifying is 

one function of the circuit, the circuit must also communicate the resistance change to the Arduino 

chip and, thus, to the computer. The signal amplification circuit is then connected to a voltage-

dividing circuit. There will be one resistor with fixed resistance connected in series with each of the 

sensors of the robot fingers. Give this circuit a fixed voltage from the power source and a voltmeter 

connected for either of the two resistances; the ratio between the voltage of the two resistances can 

be calculated, which is also the ratio between the resistances. By measuring the voltage of one resistor, 

the ratio and, thus, the resistance change for the sensor can be calculated. The measured resistance 

will then be amplified. 

A GUI program was developed in Python to visualize the result from the mathematical model. The 

program receives the sensing signal in digital form via the serial port from an Arduino chip. The 

program then converts the digital signal to the original resistance value, an inverse transformation of 

the resistance change to a numerical value by the Arduino chip. Then, with the converted resistance 

value as the input, the program runs the mathematical model, which produces a curvature value that 

defines the shape of the robotic fingers. Matplotlib will then visualize the result. 
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2.3. Sensing Material 

The material chosen for the sensor is Ga-In-Sn alloy in the formula of 𝐺𝑎68.5𝐼𝑛21.5𝑆𝑛10 with a melting 

point of -19°C. The low freezing point of the material will enable the sensor to be capable under 

situations with temperature lower than 0°C. However, using raw Ga-In-Sn alloy would make the 

fabrication process hard due to the high surface tension of the liquid metal material. The high surface 

tension will cause the material to repel the sensor's silicone substrate. Thus, it is decided to find a 

process that will ease fabrication. 

 

Figure 5: The Liquid metal compound 

It is found that the addition of neodymium iron boron (𝑁𝑑2𝐹𝑒14𝐵) and nickel (𝑁𝑖) particles into 

the liquid metal would effectively reduce the surface tension of the liquid metal material and make it 

unsensitive to both tension and pressure [6]. The porous structure formed by the 𝑁𝑑𝐹𝑒𝐵 and 𝑁𝑖 
particles can store the liquid metal materials and thus lead to the reduced surface tension. Also, as a 

soft magnetic medium with high permeability, submicron or nanoscale nickel microspheres can 

increase the magnetic force between magnetized NdFeB particles. With this alteration, the liquid 

metal and magnetic particle composite will repel less to the silicone substrate and the removal of extra 

material to the substrate will now not affect the material already filled into the substrate. Thus, this 

alteration highly eased the fabrication process. 

The Ga-Ln-Sn/Ni/NdFeB composite is prepared by mechanical stirring. Ga–In–Sn, Ni, and NdFeB 

are placed in a container at a mass ratio of 5:2:3 and stirred for 30 min by the author. Table 1 provides 

the material parameters of the material: 

Table 1: Material paramters 

Material Parameters 

𝐺𝑎68.5𝐼𝑛21.5𝑆𝑛10 
Melting Point (°C) 

Conductivity 

(S/m) 

Density 

(g/𝑐𝑚3) 

Surface Tension 

(N/m) 

-19 3.46× 10
6
 6.3 0.7 

𝑁𝑖 
Particle Size (𝜇𝑚) 

Conductivity 

(S/m) 

Density 

(g/𝑐𝑚3) 
Permeability 

500 2.4 × 10
5
 7.1 202 

𝑁𝑑2𝐹𝑒14𝐵 
Particle Size (𝜇𝑚) 

Conductivity 
(S/m) 

Density 

(g/𝑐𝑚3) 

Magnetic energy 
product (Moe) 

6 0.6 × 10
5
 7.6 16.2 
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2.4. Fabrication 

The fabrication process starts with the fabrication of the robotic fingers. From the CAD model which 

provides a mold that can be used to cast the robotic finger, the fingers are created using the Ecoflex-

0050 silicone. The mold can be separated into three parts including the main mold, the lid, and the 

air chamber separator as shown in figure 6. 

 

Figure 6: The mold for the robotic fingers. 

 

Figure 7: Picture of casting the robotic finger. 

Due to the lack of vacuum equipment to eliminate the bubbles within the liquid silicone, I chose 

to store it under cold temperatures, which will increase the “flowability” of the silicone and accelerate 

the speed at which bubbles get out. However, this method still cannot eliminate some small bubbles 

deep down in the silicone, and thus, the robotic fingers are not perfectly free of bubbles. However, 

the presence of the bubbles does not affect the normal performance of the fingers.  

The sensor material is simply created by mixing purchased liquid metal material with the 

nanomagnetic particles. A mold is needed to fabricate the three-segment sensor to put the liquid metal 

material into a specific structure. A CAD mold is created to cast a silicone mold that can hold the 

sensor material, as shown in Figure 8. After the silicone mold is filled with the sensor material, 

another layer of silicone seals the sensor. Later, these sensors, with liquid metal held within a silicone 

mold, are stuck to each robot's finger's bottom by some liquid form silicone, as shown in Figure 9. 
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Figure 8: Mold for the sensor and its holder. 

 

Figure 9: The integrated sensor. 

The next step is to create the signal amplification circuit for the sensor. Since there are six sensors, 

I purchased a six-way ratio amplifier. Following the previously designed circuit structure, I attached 

the sensor as the variable resistor and all the circuit modules to the structure of the robotic grasper, as 

shown in Figure 10. 

 

Figure 10: The amplification and voltage-dividing circuit on the grasper. 
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An actuator is needed to drive the robotic grasper. It supplies pneumatic pressure for the robot and 

includes the Arduino chip that communicates the received data from the sensor to the computer via 

serial port.  

 

Figure 11: The actuator with labeled parts. 

Starting with the actuating module mainly consists of the pneumatic pump, the power supply, the 

relay and its switch, and the tube that connects the pump to the robot. The power supply provides a 

5-volt voltage to the pneumatic pump. The relay and its switch control the mode of the pneumatic 

pump – the binary switch decides whether the pump sucks air in or pumps air out. The pump is then 

connected to the air tube, which is also connected to the robotic grasper. On the other hand, the 

Arduino chip is connected to the signal amplification circuit and to a serial port USB. In this way, the 

signal from the sensor can be communicated to the computer. The Arduino chip converts the analog 

electrical signal from 0 to 5 volts to the digital signal from 0 to 1023. A GUI model is then developed 

to use the digital data to visualize the modeling result.  

3. Mathematical Model 

3.1. Geometric model and initial assumptions 

To develop a mathematical model that estimates the deformation of the robotic finger, an initial 

geometric model that describes the position and shape of the robotic fingers by its basic physical 

quantities must be created. 
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Figure 12: The initial geometric model 

As shown in Figure 12, the established geometric model took on a variable curvature assumption, 

which assumes that the shape of the finger can be represented by its centerline and that every part of 

the finger experiences elongation under pneumatic pressure. The significance of a variational 

curvature assumption instead of a constant curvature assumption is that it considers the flexible 

constraint layer of the robotic finger. Instead of having a fully rigid constraint layer, the robotic 

finger's bending deformation relies on the different rigidities of the upper and bottom layers. The 

deformation will possess a variable curvature due to the increasing pneumatic pressure that 

continuously enlarges the difference in curvature of the two layers, ultimately changing the curvature 

of the entire structure.  

A multi-chamber bending deformation sensing unit is given in Fig.4a. Here, a sensing unit is 

composed of three air chambers, a constrained layer, and a sensing layer (including a single liquid 

metal sensor). We define L0, li, and Li as the bottom arc length of the constraint layer, the sensing 

layer, and the axial centerline, respectively. Notice due to the variable curvature assumption, L0 is not 

a fixed quantity, and it is also assumed that the bottom-constrained layer elongates to provide the 

basis for the validity of the sensor. H0 is the thickness of the constraint layer, and H1 is the thickness 

of the sensing layer from the centerline. r0 and ri are the radius corresponding to arcs L0 and Li, 

respectively, and θi is the bending angle. From the figure, we can obtain the following geometric 

relationships:  

 

{
 
 

 
 

𝑟𝑖 = 𝐻1 +𝐻0 + 𝑟0

𝑙0 = 𝜃𝑖 ⋅ 𝑟0

𝑙𝑖 = 𝜃𝑖 ⋅ (𝐻0 + 𝑟0)

𝐿𝑖 = 𝜃𝑖 ⋅ (𝐻1 + 𝐻0 + 𝑟0)

 (1) 

Here, it is assumed that the centerline Li equivalent to the robotic finger and assume the main 

elongation ratio of the PSA are λ1
’, λ2

’
 and λ3

’. According to Eq. (1), the axial elongation of the PSA 

can be expressed as: 

 𝜆
1

′
=

𝐿𝑖

𝑙
0

=
𝑙
0
+𝜃𝑖(𝐻1

+𝐻
0
)

𝑙
0

 (2) 

3.2. Hyperelastic Model of Silicone 

Hyperelastic materials are the materials that have high Poisson ‘s ratio and is assumed to be 

incompressible. The behavior of this type of material, or the relationship between strain and stress 
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cannot be described by the general Hooke’s law which states a linear relationship between the strain 

and stress of a material. Hyperelastic models were born to the need of describing the non-linear strain-

stress relationship of hyperelastic materials. The material of the robotic finger is silicone, which is 

hyperelastic. 

In this section, we use the Mooney-Rivlin model [7] to describe the deformation of the proposed 

PSA. The strain energy density function W can be expressed as: 

 W = W(I
1
, I

2
, I

3
)  

 

{
 
 

 
 𝐼1 = 𝜆1

2 + 𝜆2
2 + 𝜆3

2

𝐼2 = 𝜆1
2𝜆2

2 + 𝜆2
2𝜆3

2 + 𝜆3
2𝜆1

2

𝐼3 = 𝜆1
2𝜆2

2𝜆3
2

 (4) 

 𝜆𝑖 = 1+ 𝜀𝑖  

where 𝐼1, 𝐼2, and 𝐼3 are the first, second, and third invariants of the deformation tensor, respectively. 

And 𝜆𝑖  is the main elongation ratio of the material, and 𝜀𝑖  is the main axis strain.  

Assuming that the deformation of the silicone material is isotropic and uniform, The strain energy 

density function can be expressed as an N-order polynomial as the following: 

 𝑊 = ∑ ∑ 𝐶𝑖𝑗
𝑁
𝑗=1

(𝐼1 − 3)𝑖𝑁
𝑖=1

(𝐼2 − 3)𝑗 +∑
1

𝐷𝑖
(𝐽 − 2)2𝑖𝑁

𝑖=1
 (5) 

Where Cij is the Rivlin coefficient, Di the incompressibility parameter, and J the volume change 

ratio, which is λ1λ2λ3. 

Thus, the second-degree Mooney Rivlin model can be expressed as the following: 

 W = C
10
(I

1
− 3) + C

01
(I

2
− 3) (6) 

By the incompressibility characteristic of hyperelastic materials, the volume change ratio 𝐽 = 1 

and thus can be neglected in the stress energy function. By definition, the main axial stress is related 

with the strain energy by: 

 𝜎1 = 𝜆1

𝜕𝑊

𝜕𝜆
1

= 𝜆1 (
𝜕𝑊

𝜕𝐼
1

𝜕𝐼
1

𝜕𝜆
1

+
𝜕𝑊

𝜕𝐼
2

𝜕𝐼
2

𝜕𝜆
1

) (7) 

Which is 

 𝜎1 = 2𝐶10 (𝜆1 −
1

𝜆
1

2
) + 2𝐶01 (1−

1

𝜆
1

3
) (8) 

Also by the volume change ratio we can obtain the following constraints: 

 𝜆2 = 𝜆3 =
1

√𝜆1
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3.3. Strain sensing model 

 

Figure 13: model for the sensing layer 

Since the liquid metal compound is a plastic material, its shape equals the shape of the microchannel 

of the sensor mode. Therefore, the resistance model of the liquid metal composites can be obtained 

by analyzing the deformation of microchannels. It is assumed that silicone and liquid metal 

composites are both incompressible materials, and the lateral deformation of the microchannel is 

uniform when the strain of the sensor does not exceed 20%. Total volume V of the microchannel 

remains unchanged before and after stretching [8]. According to figure 14: 

 V = l
0
w

0
h

0
= lwh (9) 

Where 𝑙0, 𝑤0, and ℎ0 are the length, width, and height of the microchannels before stretching, 

whereas 𝑙, 𝑤, and ℎ are the same parameters of the microchannel after stretching. 

According to the definition of resistance of a resistor: 

 𝑅 = 𝜌
𝑙

𝑤ℎ
 (10) 

Where 𝜌 is the electrical resistivity of the liquid metal material. 

As illustrated in Figure 13, when considering a serpentine shape, the resistor can be divided into 

two parts: one that runs parallel to the stretching direction and the other that is perpendicular to it. 

The resistances of these two parts are 𝑅∥and 𝑅⊥, respectively. The total resistance can be defined by 

 𝑅 = 𝛾𝑅∥ + (1− 𝛾) 𝑅⊥ (11) 

Where 𝛾 is the ratio of the parallel part of the serpentine shape microchannel on the axial direction.  

Based on the serpentine-shaped structure, the elongation of the strain sensor leads to an anisotropic 

deformation of the microchannels. This means that the dimensions of the channels behave differently 

depending on their orientation relative to the direction of elongation. Therefore, the parallel and 

perpendicular microchannels’ dimension variations can be expressed by 

 {

𝑙∥ = 𝜆1𝑙0

𝑤∥ℎ∥ =
1

𝜆
1

𝑤0ℎ
0

 (12) 

And, 

 

{
 
 

 
 𝑙⊥ =

1

√𝜆1

𝑙0

𝑤⊥ℎ
⊥
=

1

𝜆
1

𝑤0ℎ
0

 (13) 
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Using equations (10), (12), and (13), the expressions for the parallel and perpendicular resistance 

can be derived as follows: 

 𝑅∥ = 𝜆1
2𝜌

𝑙
0

𝑤
0
ℎ

0

 (14) 

 𝑅⊥ =
1

𝜆
1

 𝜌
𝑙
0

𝑤
0
ℎ

0

 (15) 

And thus, the total resistance can be expressed as: 

 𝑅 = [𝛾𝜆1
2 + (1− 𝛾)

1

𝜆
1

] 𝜌
𝑙
0

𝑤
0
ℎ

0

 (16) 

Ignoring the variation of the vertical resistance, the sensor strain is given by: 

 𝜆1 = √𝑅
𝑤

0
ℎ

0

𝛾𝜌𝑙
0

−
1

𝛾
+ 1 (17) 

3.4. Pneumatic Pressure Model 

 𝑠 = 𝑠0𝜆2
′𝜆3

′
 (18) 

After the deformation of the robotic finger, the expansion along the other two axial directions will 

deform the cross-sectional area of the robotic finger. From the above equation, we derive a 

relationship between the initial cross-sectional area of the robotic finger 𝑠0 and the cross-sectional 

area after expansion 𝑠. 
The force balance equation is formulated according to the shape of the soft drive section, and the 

relationship between the main stress and the driving pressure is deduced as 

 𝜎1 =
𝑝

𝜆
2

′𝜆
3

′
 (19) 

3.5. Shape Model 

To derive the relationship between bending angle and driving pressure, we can substitute equations(1), 

(2), and (19) into the initial geometric model to get the following : 

 𝜃𝑖 =
𝑙
0

(𝐻
1
+𝐻

0
)
(√

2𝐶
10

2𝐶
10
−𝑝

3

− 1) (20) 

According to Eq. (20), Eq(2) can be written as: 

 𝜆1
′ = 1+(√

2𝐶
10

2𝐶
10
−𝑝

3

− 1) (21) 

According to the curvature formula, we have 
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 𝑟𝑖 =
𝐿𝑖

𝜃𝑖
= (𝐻1 +𝐻0)

(

 
 1

√
2𝐶

10

2𝐶
10
−𝑝

3
+ 1

)

 
 

 (22) 

Now we have the model of a multi-chamber bending-sensing unit, and this model indicates that in 

the natural state (noncontact), the bending-sensing unit’s bending radius is related to the driving 

pressure. According the model given in Figure.4(a), we can use Eq. (16) to derive the curvature 

equation with strain resistance R as the independent variable as follows. 

 𝜃𝑖 =
𝑙
0

𝐻
0

(√𝑅
𝑤

0
ℎ

0

𝛾𝜌𝑙
0

−
1

𝛾
+ 1− 1) (23) 

 𝐿𝑖 = l (
𝐻

1
+𝐻

0

𝐻
0

√𝑅
𝑤

0
ℎ

0

𝛾𝜌𝑙
0

−
1

𝛾
+ 1−

𝐻
1

𝐻
0

)0  (24) 

As shown in Figure.4(b), L1, L2 and L3 are the lengths of the three arcs, and r1, r2, and r3 and θ1, 

θ2, and θ3 are the radii and bending angle of the three arcs, respectively. Therefore, the parameter 

equation for the deformation curve of the PSA can be expressed as follows 

 𝑥 =

{
 
 

 
 

𝑎1 − 𝑟1 cos𝛼      0 ≤ 𝛼 < 𝜃1

 

𝑎2 − 𝑟2 cos𝛼     𝜃1 ≤ 𝛼 ≤ 𝜃1 + 𝜃2

 
𝑎3 − 𝑟3𝑐𝑜𝑠 𝛼      𝜃1 + 𝜃2 < 𝛼 ≤ 𝜃1 + 𝜃2 + 𝜃3 

 (25) 

 𝑦 =

{
 
 

 
 𝑏1 − 𝑟1 cos𝛼      0 ≤ 𝛼 < 𝜃1

 

𝑏2 − 𝑟2 cos𝛼     𝜃1 ≤ 𝛼 ≤ 𝜃1 + 𝜃2

 
𝑏3 − 𝑟3𝑐𝑜𝑠 𝛼      𝜃1 + 𝜃2 < 𝛼 ≤ 𝜃1 + 𝜃2 + 𝜃3

 (26) 

Where  

 

𝑎1 = 0, 𝑏1 = 𝑟1

 

𝑎2 = 𝑟1 − (𝑟1 − 𝑟2) cos 𝜃1 , 𝑏2 = (𝑟1 − 𝑟2) sin 𝜃1

 

𝑎3 = 𝑟1 − (𝑟1 − 𝑟2) cos 𝜃1 − (𝑟2 − 𝑟3) cos(𝜃1 + 𝜃2)

 

𝑏3 = (𝑟1 − 𝑟2) sin 𝜃1 + (𝑟2 − 𝑟3) sin(𝜃1 + 𝜃2)

 (27) 

3.6. Contact Detection 

In the previous sections, two sets of variational curvature models were developed. One relies on the 

mapping between the pneumatic pressure and the deformation, and the other maps the resistance 

change to the deformation. The first mapping fails, however, when the robotic fingers are in contact 

with gripping objects. The deformation will be hindered by the object and will not deform as much 
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as during free deformation. On the other hand, the mapping utilizing the sensor (between resistance 

and deformation) can provide more accurate modeling results due to the nature of the sensor which 

can directly measure the deformation of the robotic fingers. Thus, contact does not influence the 

accuracy of this model. However, it does not mean that the pneumatic pressure model lost its 

usefulness. Contact can only be ascertained when βthe resistance changes stops and when the 

pneumatic pressure continues to increase. Figure 15 presents the differential sensing method for 

contact sensing based on the two models. 

 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝐵𝑜𝑜𝑙 = {
𝑇𝑟𝑢𝑒     𝑤ℎ𝑒𝑛 ∆𝜅 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝐹𝑎𝑙𝑠𝑒     𝑤ℎ𝑒𝑛 ∆𝜅 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 (28) 

Where the difference in curvature is defined as: 

 ∆𝜅 = 𝜅𝑟 − 𝜅𝑝 (29) 

 

Figure 14: Comparison between Resistance model and Pressure Model and Contact Sensing method. 

3.7. Size Estimation 

In this section, a method of gripping-object size estimation is proposed based on the mathematical 

model of self-shape perception. As shown in Figure 15, the grasper will have an inclination angle as 

steady state without pneumatic pressure which is labeled 𝛽, and the length of each robotic finger is 

𝐿. (𝑥𝑎 , 𝑦𝑎) and (𝑥𝑏 , 𝑦𝑏) are the end points of the grasper on a 2D plane, and 𝑞 is the distance between 

the two fingers from the bottom. The top opening distance 𝑄 can be defined as: 

 𝑄 = 2(𝐿𝑐𝑜𝑠(𝜋 − 𝛽)) (30) 

And the estimated diameter of the target can be defined by: 

 𝑑 = |𝑥𝑏 − 𝑥𝑎| (31) 
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Figure 15: Illustration of the size estimation method 

4. Experimentation 

4.1. Model Accuracy Test 

The model accuracy test is needed to test the accuracy of the mathematical model. A simulation of 

the model is created via MATLAB. The experiment starts with the collection of different 

deformations of the robotic fingers via pictures and record the according resistances from the sensors. 

One single robotic finger is fixed on a stand and the entire system connected with the computer 

recording the resistances sent from the sensors. 

 

Figure 16: the robotic finger set on the stand. 

 

Figure 17: robotic finger deformation under the four experimental cases. 

The following parameters for simulation were used. The total length L of the robotic fingers is 

100mm. The thickness of 𝐻0  and 𝐻1  are 4mm and 11mm, respectively. The resistivity 𝜌  is 

Proceedings of  the 4th International  Conference on Computing Innovation and Applied Physics 
DOI:  10.54254/2753-8818/83/2025.19931 

65 



 

 

0.0000073Ω/𝑚 and 𝐶10 is 0.12 mPa. The simulation of the mathematical model then produces the 

following results: 

 

Figure 18: The simulation result based on the data from the robotic fingers. 

The result showcases significant accuracy of the mathematical model in predicting the deformation 

of the robotic finger. The three-segment variational curvature model accounted for the increasing 

curvature to the end of the robotic finger due to more strain caused by pneumatic pressure which 

allows the model to be more accurate. In comparison, a single segment model would not account for 

this due to its single curvature output.  The comparison between the simulation and the experimental 

data can be shown in the following picture: 

 

Figure 19: Comparison between experiment and simulation 
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4.2. Object Shape sensing Test 

This section of the paper aims to test the validity of utilizing the model proposed to realize the 

gripping object shape sensing function. 

The basic experimental setup is as the following figure: 

 

Figure 20: Experimental Setup  

Where the robotic grasper is placed on a robotic arm that gives it the ability to move, and the 

grasper is also connected to the actuator and the computer to collect the resistance change data from 

the robotic fingers. The actuator was then given gripping objects of three shapes - circle, square, and 

triangle - with different sizes. Since the model is two-dimensional, the shapes are going to be axially 

elongated, which becomes cylinders, rectangular prisms, and triangular prisms.  

In the experiment, I tested the grasper with five sizes for each shape and placed them in three 

different grip positions: upper, middle, and lower. With two of the robotic fingers integrated with the 

three-segment sensor, six different resistance signals were gathered in each trial. 

 

Figure 21: Gripping Experiment Cases 

The experiment gathered a total of 45 six-dimensional data points. A statistical analysis is 

necessary to prove the validity of using this model in object-shape sensing to prove the significant 

differences between data points from each category since this provides the basis for a supervised 

learning model. 

I used the multivariate analysis of variance (MANOVA) to analyze the differences between data 

points from different categories. MANOVA evaluates the mean vectors of different groups and 

determines if these vectors are significantly different, providing a more comprehensive 

understanding of group differences when multiple outcomes are considered. In the test, I chose to 
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examine the four fundamental statistical data that reflects the differences between data: Wilks' 

lambda, Pillai's trace, Hotelling-Lawley trace, and Roy's greatest root, given by the following: 

 Λ
𝑊𝑖𝑙𝑘𝑠

= ∏
1

1−𝜆𝑝
= det (𝐼 − 𝐴)−1

1~𝑝  (32) 

 Λ
𝑃𝑖𝑙𝑙𝑎𝑖

= ∑
𝜆𝑝

1−𝜆𝑝
1~𝑝 = 𝑡𝑟(𝐼 − 𝐴)−1 (33) 

 Λ
𝐿𝐻
= ∑ 𝜆𝑝1~𝑝 = 𝑡𝑟(𝐴) (33) 

 Λ
𝑅𝑜𝑦

= max
 
( 𝜆𝑝) (34) 

 𝐴 =
𝑊

𝐵
 (35) 

Where W is the Within-Group Sum of Squares and Cross-Products Matrix, and B is the Between-

Group Sum of Squares and Cross-Products Matrix.  is the eigenvalue of the matrix A. 

The result of the analysis is as follow: 

Table 2: results from the MANOVA analysis 

Species Value F value P-value 

Λ
𝑊𝑖𝑙𝑘𝑠

 0.4378 3.1534 0.0011 

Λ
𝑃𝑖𝑙𝑙𝑎𝑖

 0.6627 3.1387 0.0012 

Λ
𝐿𝐻

 1.0546 3.1930 0.0016 

Λ
𝑅𝑜𝑦

 0.7474 4.7338 0.0011 

 

Notice that the p-value of the four species of data are lower than 0.05, which proves that the data 

tend to reject the null hypothesis and prove to be significantly different. The low p-value also provides 

a basis for further analysis based on the value of the four species. Wilk’s Lambda, with a significant 

p-value, proves more difference between data with a value closer to zero. In this case, the value is 

lower than 0.5, proving the data's differences. Pillai’s trace suggests the significance of differences 

with a value closer to 1, and in this case the value is greater than 0.5 which also proves the difference 

between data. The Hotelling-Lawley trace of around 1 and the Roy’s greatest root of 0.7474 also 

suggests the difference between data from different groups.  

The great differences between the data for different gripping object shapes prove the validity of 

using machine learning in the future to realize the function of gripping object shape sensing.  

5. Conclusions 

The paper proposes a method of enabling “self-shape perception” for pneumatic soft robot. Based on 

the liquid metal composite sensor designed, the resistance signal collected will act as the input to the 

variational curvature model that estimates the deformation of the robotic finger. The process includes 

the fabrication of devices, construction of mathematical models, and experimentations to evaluate the 

performances of the system. The model can achieve self-shape perception, gripping object size 

estimation, and the detection of contact of the robotic finger. The last experiment validated the 

model’s ability to achieve object shape perception based on machine learning algorithms.  

The experimentation in the paper still possesses numerous drawbacks. The lack of a professional 

experimentation setting and limits on experimenters and time caused problems such as the lack of 
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large amount of quantitative data points which is not persuasive enough to prove a trend or 

relationship. 

The contribution of the work mainly lies in the use of Ga-ln-Sn liquid metal composite as 

piecewise sensor for the robotic finger. Then, the mathematical model created to utilize the sensor to 

realize self-shape perception and other further applications to the robotic fingers. The meaning of the 

work does not merely lies in the creation of a model, but in a sense the work endowed the soft robotic 

graspers the ability to sense. It pushed the field of soft robotic studies from the level of structure to 

the level of intelligence, contributing to a process of improving from zero to one. The intelligent 

robotic grasper possesses numerous applications including mass production [9], human-machine 

interactions [10], and fragile item handling [11]. The elementary intelligence of the soft robots 

foresees a promising future of more advanced intelligence and even reaching the level of rigid-body 

robot today.  

Beside the contribution and applications of the work, the process of research also benefitted me in 

many ways. In the process of completing the paper, I have practically gone through the whole process 

of researching a topic. All the steps from choosing a topic, searching for information, and writing this 

final paper have been a refining and sharpening of my thinking skills. During the process, I was able 

to scrutinize the concept of “scientific research” and was deeply impressed by its difficulty. I also 

encountered many difficulties and challenges in the process of experimentation, which made me 

deeply understand the importance of prudence when facing difficulties in different stages of my 

research and study.  
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