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Abstract: In order to effectively cope with the complex agricultural environment and market 

uncertainty, this study proposed a crop planting optimization strategy based on the improved 

quantum genetic algorithm (QGA). Single-objective and multi-objective optimization models 

were proposed, focusing on profit maximization and risk balance under market fluctuations. 

The single-objective model used QGA to evaluate the optimal planting scheme under surplus 

and discount sales scenarios, and analyzed the crop area distribution and total income. For 

multi-objective optimization, the enhanced MO-QGA model combined with orthogonal 

experimental design generated a scheme that maximized expected income while minimizing 

the worst outcome. In addition, this study combined Pearson correlation and hierarchical 

clustering to quantify the substitutability and complementarity of crops, and optimized the 

planting strategy through crop combination analysis. The experimental results show that the 

enhanced QGA effectively balances profits and risks, and the effect is significantly better 

than traditional methods, which is conducive to improving agricultural decision-making 

efficiency. 

Keywords: quantum genetic algorithm, crop planting optimization, multi-objective 

optimization, agricultural decision-making 

1. Introduction 

With the development of global agriculture and increasing environmental pressure, optimizing crop 

planting strategies has become the key to improving agricultural productivity and achieving 

sustainable development [1]. In areas with variable geographical environments and complex climatic 

conditions, such as the mountainous areas of northern China, strategically planning crop planting can 

maximize the use of limited land resources and thus promote sustainable growth of the rural economy 

[2]. Effective crop planting optimization is not just about increasing yields; it also includes cost 

control, maximizing benefits, and reducing market risks. Traditional crop planting optimization 

methods, including linear programming, dynamic programming, and heuristic algorithms, have been 

widely used [3][4][5]. However, as the complexity of these problems increases with multidimensional 

constraints, traditional methods often have difficulty in getting rid of local optimality and lack 

sufficient global search capabilities. Recently, quantum genetic algorithms (QGAs) [6] have attracted 

attention for their global search capabilities and fast convergence. By incorporating quantum 

principles such as superposition, qubits, and revolving gates into classical genetic algorithms, QGAs 

excel in solving complex optimization problems. Its powerful global search capability effectively 
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prevents premature convergence, making it highly applicable in agricultural optimization. Optimizing 

crop planting strategies involves many uncertainties, including market demand fluctuations, climate 

change, and rising production costs [7]. In addition, the substitutability and complementarity of crops 

also affect planting decisions.  

In this study, we propose a crop planting optimization model based on quantum genetic algorithm. 

By considering various uncertainties (including market demand fluctuations, climate change, and 

rising production costs) as well as the substitutability and complementarity of crops, we aim to create 

a more adaptive and resilient planting strategy. The proposed model combines single-objective and 

multi-objective optimization, using an improved version of QGA to strike a balance between 

maximizing expected profits and minimizing risks. With this approach, we aim to optimize crop 

planting strategies and improve agricultural decision-making efficiency. 

2. Method 

2.1. Quantum Genetic Algorithm (QGA) 

The Quantum Genetic Algorithm (QGA) is an optimization method that combines the characteristics 

of quantum computing with classical genetic algorithms. Compared to traditional genetic algorithms, 

QGA introduces concepts from quantum computing, such as qubits and rotation gates, enhancing its 

global search ability and convergence speed. In QGA, an individual’s gene encoding is represented 

by qubits, each of which can simultaneously represent a superposition of states 0 and 1, significantly 

increasing the diversity of the solution space and the robustness of the algorithm. In the 

implementation of QGA, each chromosome is composed of multiple qubits, with the state of each 

qubit represented by the probability amplitudes 𝛼 and 𝛽: 

 |𝛹⟩ = 𝛼|0⟩ + 𝛽|1⟩, 𝑤ℎ𝑒𝑟𝑒 𝛼2 + 𝛽2 = 1 (1) 

The superposition property allows each qubit to exist in both 0 and 1 states simultaneously, thereby 

providing a larger search space. QGA mainly consists of the following key steps: quantum state 

initialization, quantum rotation gate operation, fitness calculation, and quantum measurement. 

In crop planting strategy optimization, QGA has significant advantages. We apply QGA to 

optimize crop planting strategies, exploring optimal planting plans under various constraints and 

uncertainties. Based on this, the QGA algorithm is further improved to meet multi-objective 

optimization requirements, constructing an optimization model based on the Multi-Objective 

Quantum Genetic Algorithm (MO-QGA). 

2.2. Single-Objective Optimization 

In the optimization model, we assume that market demand, planting costs, yield per acre, and sales 

prices for various crops remain unchanged from 2023. Therefore, we first construct a single-objective 

optimization model with the goal of maximizing profit to formulate an optimal crop planting plan. 

The model considers two scenarios: (1) surplus production cannot be sold, resulting in losses, and (2) 

surplus production is sold at a discounted price. 

In scenario 1 (where surplus production cannot be sold), the objective function is to maximize 

planting revenue, calculated as follows: 

 𝑀𝑎𝑥 𝑍1 = ∑ ∑ ∑ ∑ (𝑃𝑚 × min( 𝑄𝑚 × 𝑋𝑚,𝑛,𝑡,𝑞 , 𝑆𝑚) − 𝐶𝑚 × 𝑋𝑚,𝑛,𝑡,𝑞)2
𝑞=1𝑚𝑛

2030
𝑡=2024  (2) 

where 𝑃𝑚 is the sales price of crop 𝑚, 𝑄𝑚 is the yield per acre, 𝑆𝑚 is the expected sales volume, and 

𝐶𝑚 is the planting cost. 𝑋𝑚,𝑛,𝑡,𝑞 represent the planting area (in acres) of crop 𝑚 on plot 𝑛 in year 𝑡 
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and quarter 𝑞. 𝑌𝑚,𝑛,𝑡,𝑞 represent a 0-1 variable indicating whether crop 𝑚 is planted on plot 𝑛 in year 

𝑡 and quarter 𝑞. 

In scenario 2 (where surplus production is sold at a 50% discount), the objective function is: 

 𝑀𝑎𝑥 𝑍2 = ∑ ∑ ∑ ∑ (
𝑃𝑚 ⋅ min(𝑄𝑚 ⋅ 𝑋𝑚,𝑛,𝑡,𝑞 , 𝑆𝑚)

+0.5 ⋅ 𝑃𝑚 max(0, 𝑄𝑚 ⋅ 𝑋𝑚,𝑛,𝑡,𝑞 − 𝑆𝑚) − 𝐶𝑚 ⋅ 𝑋𝑚,𝑛,𝑡,𝑞

)2
𝑞=1𝑚𝑛

2030
𝑡=2024  (3) 

The constraints include: The total planting area on each plot cannot exceed the plot's area. 

 ∑ ∑ 𝑋𝑚,𝑛,𝑡,𝑞
2

𝑞=1
≤ 𝐴𝑛, ∀𝑛, ∀𝑡𝑚  (4) 

Different types of crops and planting seasons are limited depending on the plot type. For example, 

on dryland plots, only one season of non-rice crops can be planted per year. 

 ∑ ∑ 𝑋𝑚,𝑛,𝑡,𝑞
2

𝑞=1
≤ 𝐴𝑛, ∀𝑛 ∈ 𝐽1, ∀𝑡𝑚∈𝐺  (5) 

Each plot must grow legumes at least once every three years to improve soil quality. 

 ∑ ∑ ∑ 𝑋𝑚,𝑛,𝑡,𝑞𝑚∈𝐵
2

𝑞=1
𝑟+2
𝑡=𝑟 ≥ 1, ∀𝑛, ∀𝜏 ∈ {2024, ⋯ ,2028} (6) 

The single-objective optimization model is solved using QGA. By applying quantum superposition 

and rotation gates, QGA efficiently navigates the solution space to find the optimal planting strategy 

for both scenarios. The fitness function is evaluated at each generation, and quantum measurement is 

performed to derive the best solution. 

2.3. Multi-Objective Quantum Genetic Algorithm (MO-QGA)  

In practical crop planting strategy applications, a single objective is often insufficient to meet all 

requirements. To address multiple uncertainties, such as market demand, yield per acre, and planting 

costs, we constructs a multi-objective quantum genetic algorithm model (MO-QGA) with the goal of 

balancing profit and risk through multi-objective optimization. The multi-objective model primarily 

considers the following uncertainty factors. Uncertainty in Sales Volume: The sales volume of crop 

𝑚 in year 𝑡 is𝑆𝑚,𝑡 × 𝜉𝑆, where 𝜉𝑆 ∼ 𝑈(0.95,1.05). Uncertainty in Yield per Acre: The yield per acre 

of crop 𝑚 in year 𝑡 is 𝑄𝑚,𝑡 × 𝜉𝑄, where 𝜉𝑄 ∼ 𝑈(0.9,1.1). Uncertainty in Planting Cost: The planting 

cost of crop 𝑚 in year 𝑡 is 𝐶𝑚,𝑡 × 𝜉𝐶, where 𝜉𝐶 increases by 5% each year. Then, we use orthogonal 

experimental design to generate various uncertainty scenarios, with the dual objectives of maximizing 

expected profit and minimizing the worst-case profit. The objective functions for the multi-objective 

optimization model are: 

 Max Z1 =
1

K
∑ ∑ ∑ ∑ ∑ (Pm,t

(k)
× min( Qm,t

(k)
× Xm,n,t,q, Sm,t

(k)
) − Cm,t

(k)
× Xm,n,t,q)2

q=1mn
2030
t=2024

K
k=1  (7) 

Max 𝑍2 = min
𝑘∈{1,2,…,𝐾}

∑ ∑ ∑ ∑ (𝑃𝑚,𝑡
(𝑘)

× min( 𝑄𝑚,𝑡
(𝑘)

× 𝑋𝑚,𝑛,𝑡,𝑞 , 𝑆𝑚,𝑡
(𝑘)

) − 𝐶𝑚,𝑡
(𝑘)

× 𝑋𝑚,𝑛,𝑡,𝑞)2
𝑞=1𝑚𝑛

2030
𝑡=2024  (8) 

In the multi-objective model, the constraints must hold across all uncertainty scenarios. The 

constraints on plot area, crop combination, rotation, and intercropping are consistent with the single-

objective model, but the multi-objective optimization model requires robustness across different 

scenarios. In this study, we use the improved MO-QGA to solve the above multi-objective 

optimization problem. MO-QGA, which incorporates the concepts of the Non-dominated Sorting 

Genetic Algorithm II (NSGA-II), achieves dual-objective optimization. During evolution, the MO-

QGA can more effectively explore the global solution space through rotation and mutation operations 

of qubits. Non-dominated sorting is used to filter individuals that meet the Pareto optimality criteria, 

Proceedings of  the 4th International  Conference on Computing Innovation and Applied Physics 
DOI:  10.54254/2753-8818/79/2025.19952 

96 



 

 

and quantum measurement converts quantum states into planting strategies, ultimately obtaining 

optimal planting plans under various uncertainty scenarios. 

2.4. Crop Substitutability and Complementarity 

In crop planting planning, the substitutability and complementarity relationships among different 

crops significantly impact profits. we calculate crop correlations using Pearson correlation 

coefficients and groups crops with similar characteristics through hierarchical clustering. Based on 

this, we introduce substitution variables to quantify substitution effects between different crops, 

constructing a multi-objective optimization model incorporating crop substitutability and 

complementarity. 

The substitution variable 𝑍𝑚1,𝑚2,𝑛,𝑡,𝑞 represents the substitution effect between crops 𝑚1 and 𝑚2 

on plot 𝑛, in year 𝑡, and quarter 𝑞, defined as follows: 

 𝑍𝑚1,𝑚2,𝑛,𝑡,𝑞 ∈ [0,1] (9) 

When 𝑍𝑚1,𝑚2,𝑛,𝑡,𝑞 = 1, crops 𝑚1 and 𝑚2 are fully substitutable; when 𝑍𝑚1,𝑚2,𝑛,𝑡,𝑞 = 0, they are 

not substitutable at all. Based on the substitutability analysis, the objective function includes 

comprehensive revenue and substitution benefits: 

Max 𝑍1 = ∑ ∑ ∑ ∑ (𝑃𝑚 × min( 𝑄𝑚 × 𝑋𝑚,𝑛,𝑡,𝑞 , 𝑆𝑚) − 𝐶𝑚 × 𝑋𝑚,𝑛,𝑡,𝑞)2
𝑞=1𝑚𝑛

2030
𝑡=2024 + ∑ 𝛼𝑚1,𝑚2𝑚1,𝑚2 × 𝑍𝑚1,𝑚2,𝑛,𝑡,𝑞 (10) 

 𝑀𝑎𝑥 𝑍2 = ∑ 𝛽𝑚1,𝑚2𝑚1,𝑚2 × 𝑍𝑚1,𝑚2,𝑛,𝑡,𝑞 − 𝛾𝑚1,𝑚2 × |𝑋𝑚1,𝑛,𝑡,𝑞 − 𝑋𝑚2,𝑛,𝑡,𝑞| (11) 

The improved MO-QGA solves the multi-objective optimization model with substitutability and 

complementarity. Pareto optimal solutions with the best substitution benefits are selected using non-

dominated sorting, and optimal crop combinations are derived. 

3. Experimental analysis 

In order to verify the effectiveness of the multi-objective optimization model under different planting 

strategy scenarios, we conducted an experimental analysis. The experimental data included the basic 

values of variables such as the market price, expected sales volume, per-acre yield, and planting cost 

of the target crop, which mainly came from the crop planting data in North China in the past five 

years. In the multi-objective scenario, we introduced crop complementarity analysis to examine the 

impact of different crop combinations on the optimization results. 

3.1. Experimental results of the multi-objective quantum genetic algorithm (MO-QGA)  

In the multi-objective scenario, we introduced uncertain factors such as market demand, yield and 

planting cost, and used MO-QGA to solve them, aiming to balance the expected return and the worst-

case scenario return. The experimental results are shown in Figure 1. It shows the planting strategy 

in the multi-objective scenario from 2024 to 2030. In this scenario, the model not only considers high-

yield crops, but also selects some low-risk crops (such as legumes) to reduce the risks brought by 

potential market fluctuations. Through multi-objective optimization, the model effectively strikes a 

balance between maximizing returns and minimizing risks, ensuring that relatively stable returns can 

be obtained even when market demand fluctuates drastically. In the multi-objective scenario, MO-

QGA effectively utilizes the global search capability and multi-objective optimization strategy of 

quantum algorithms to ensure the stability of the model under multiple uncertainty scenarios. By 

generating multiple uncertainty scenarios through orthogonal experimental design, MO-QGA 

achieves the optimal balance between different objective functions. The results show that compared 
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with the single-objective model, the multi-objective model has more advantages in total return and 

return stability. 

 

Figure 1: Heat map of optimal planting strategy under multi-objective scenarios 

3.2. Complementarity analysis 

In addition, we use a bottom-up evolutionary tree clustering method to perform cluster analysis based 

on characteristics such as crop planting cost, per-acre yield, expected sales volume, and average 

selling price, as shown in Figure 2. From the clustering results, crops are divided into several different 

clustering groups. Green group: including "wheat", "corn", etc. The planting cost and expected sales 

volume of these crops are relatively low, but the yield is high, which is suitable for scenarios with 

large planting areas. Blue group: including "cabbage", "lettuce", etc., characterized by high per-acre 

yield and planting cost, usually planted in greenhouses or greenhouses. Red group: There are many 

types of vegetables and fruits, such as "tomatoes", "eggplants", etc. These crops usually have medium 

planting costs, moderate expected selling prices and sales volumes, and are suitable for diversified 

planting. 
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Figure 2: Cluster evolutionary tree diagram of crop characteristics 

3.3. Comparative Experimental Analysis 

In order to verify the advantages of the improved quantum genetic algorithm (QGA) in crop planting 

optimization, we designed a comparative experiment with the traditional genetic algorithm (GA) and 

particle swarm optimization algorithm (PSO). The experiment selected the same initial parameters 

and uncertainty scenarios, and used total revenue, convergence speed and algorithm stability as the 

main evaluation indicators to test the performance of the three algorithms under single-objective 

optimization (no sales and discount sales scenarios) and multi-objective optimization (market 

fluctuation scenarios).The results are shown in Table 1. 

Table 1: Comparative analysis of this method with other traditional methods 

Method 
Total Revenue (No 

Sale Scenario) 

Total Revenue 

(Discounted Sale 

Scenario) 

Convergence 

Generations 

Convergence 

Speed 

(seconds) 

Stability 

(Revenue 

Variance) 

QGA 145000 132000 200 0.8 1200 

GA 138000 128500 350 1.2 1500 

PSO 140500 130000 320 1.1 1400 

The experimental results show that the improved QGA is superior to the traditional GA and PSO 

in total revenue and convergence speed. Especially in the multi-objective optimization scenario, QGA 

shows better stability with lower variance, which is suitable for dealing with complex uncertainty 

factors in agricultural planting. 

4. Conclusion 

In this study, we demonstrate the great potential of enhanced quantum genetic algorithm (QGA) for 

optimizing crop planting strategies under uncertain conditions. By combining single-objective and 

multi-objective optimization models, we show that QGA can effectively balance profitability and risk, 

providing an effective solution for modern agricultural decision-making. Compared with traditional 

optimization methods such as genetic algorithm and particle swarm optimization, the improved QGA 

outperforms them in terms of total benefits, convergence speed, and stability under multiple uncertain 

scenarios. 
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