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Abstract: With the increasing complexity of power systems and higher demands for stability, 

accurately predicting current fluctuations is crucial. This study proposes an artificial 

intelligence prediction method combined with multivariate analysis, utilizing 

multidimensional information such as historical current data, new energy generation output, 

and meteorological conditions, and modeling through Long Short-Term Memory (LSTM) 

networks. This method optimizes the data processing process and improves the model's 

ability to adapt to dynamic changes in data. The results show that the proposed method 

effectively enhances the prediction accuracy of current fluctuations, providing practical value 

for grid operation and maintenance as well as fault warnings. 
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1. Introduction 

Current fluctuation prediction plays a crucial role in maintaining the stability and safe operation of 

power systems. Traditional prediction methods often rely on single data sources or simplified 

mathematical models, which are insufficient when handling the dynamics of complex power systems. 

With the development of big data technology and advancements in artificial intelligence algorithms, 

efficiently integrating and utilizing current data, new energy generation data, and meteorological 

information has become key to improving prediction accuracy. This study implements advanced 

multivariate analysis and deep learning techniques, particularly Long Short-Term Memory (LSTM) 

networks, which significantly improve the accuracy of current fluctuation prediction while enhancing 

the model’s adaptability to changes in the power system. This is of great significance for real-time 

grid monitoring and emergency response strategy formulation, helping achieve more precise and 

economical grid management. 

2. Data Preparation and Preprocessing 

2.1. Data Collection 

The focus of data collection is on acquiring various types of data directly related to current 

fluctuations, including historical current data, new energy generation data, and meteorological data. 
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These data are sourced from official records of the National Grid and local meteorological stations to 

ensure accuracy and reliability. 

Historical Current Data: Core data for predicting current fluctuations, including hourly current 

readings collected from the power system from 2018 to 2023. Historical data helps the model capture 

seasonal variations and long-term trends in current fluctuations[1]. 

New Energy Generation Data: With the widespread adoption of new energy technologies, solar 

and wind power generation significantly impact the grid. This study collects hourly new energy 

generation data for the same period, reflecting current variations due to renewable energy 

integration[2]. 

Meteorological Data: Meteorological conditions directly affect the efficiency of new energy 

generation and power load demand. This study includes hourly meteorological indicators such as 

temperature, humidity, and wind speed. 

2.2. Data Preprocessing 

Data preprocessing is a critical step in data analysis as it directly impacts the performance and 

accuracy of the prediction model. It includes two main stages: data cleaning and normalization. 

Data Cleaning: [3]The collected data undergoes quality checks to eliminate errors or anomalies. 

For example, outliers are identified and handled using statistical analysis methods such as box plots 

and the 3σ principle. Missing data points are filled using linear interpolation or time series forecasting 

methods based on adjacent data. Duplicate records are also removed to ensure the uniqueness and 

consistency of the dataset.[4] 

Normalization: Current data, new energy generation data, and meteorological data differ in units 

and dimensions. Directly using these data can lead to bias in the model training process. 

Normalization is applied to scale all numerical features to a common range, typically between 0 and 

1. The normalization formula is as follows: 

𝑥' =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑛(𝑥)−𝑚𝑖𝑛(𝑥)
𝑥' =

𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑛(𝑥)−𝑚𝑖𝑛(𝑥)
 

Here, x is the original data point, min(x) and max(x) are the minimum and maximum values in the 

dataset. This ensures balanced contributions of different features to the model, improving training 

efficiency and prediction accuracy.[5] 

3. Feature Selection and Extraction 

3.1. Feature Selection Methods 

Feature selection is a key step in constructing a prediction model. Proper feature selection improves 

prediction accuracy while significantly reducing the computational resources required for model 

training. This study uses the Pearson correlation coefficient method, a statistical approach, for initial 

feature screening. 

The Pearson correlation coefficient measures the linear correlation between two variables, with 

values ranging from -1 to 1. A coefficient of 1 indicates a perfect positive correlation, -1 indicates a 

perfect negative correlation, and 0 indicates no linear correlation. The study calculates the Pearson 

correlation coefficients between historical current fluctuation data and other potential predictors (e.g., 

new energy generation data and various meteorological parameters). This analysis quickly identifies 

variables with significant linear relationships to current fluctuations. The formula for the Pearson 

correlation coefficient is: 
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𝑟𝑥𝑦 =
∑(𝑥𝑖−𝑥̄)(𝑦𝑖−𝑦̄)

∑(𝑥𝑖−𝑥̄)
2∑(𝑦𝑖−𝑦̄)

2 

Here, 𝑥𝑖 and 𝑦𝑖 are the values of variables, X and Y at the i-th sample point, 𝑥̄ and 𝑦̄ are the 

sample means of the respective variables. 

Through this calculation, highly correlated features, such as new energy generation under specific 

meteorological conditions and power load demand at particular time points, are identified. 

3.2. Implementation of Feature Engineering 

After the initial feature selection, machine learning algorithms are further applied to optimize the 

feature selection and extraction process. Machine learning is particularly effective in identifying and 

leveraging information in complex patterns, especially when dealing with nonlinear relationships and 

interaction effects. 

Principal Component Analysis (PCA): PCA is a commonly used feature extraction method that 

reduces redundant information in the dataset through dimensionality reduction while retaining the 

most critical variables. In this study, PCA is used to further compress and optimize the selected feature 

set, particularly for high-dimensional meteorological and power load data. By transforming multiple 

correlated variables into a few independent principal components, PCA explains most of the data 

variability while retaining the most important information for the prediction model. 

4. Model Construction and Training 

4.1. Model Selection and Construction 

To accurately predict current fluctuations, this study selects the Long Short-Term Memory (LSTM) 

network as the prediction model. LSTM is particularly suitable for handling time-series-related 

problems due to its ability to effectively manage long-term dependencies, which is critical for 

predicting current fluctuations. 

The reasons for selecting LSTM are as follows: 

(1)Handling Long-Term Dependencies: Traditional Recurrent Neural Networks (RNNs) struggle 

to capture dependencies in long time series, while LSTM's gating mechanism effectively solves this 

problem. 

(2)Adapting to Complex Variability: Power system data typically exhibit high nonlinearity and 

complexity. LSTM, with its internal state update mechanism, adapts to such complexities and 

provides stable and accurate predictions. 

The model structure consists of the following components: 

(1)Input Layer: Receives specific input variables based on feature selection results, such as 

historical current data, new energy generation outputs, and critical meteorological parameters. 

(2)LSTM Layer: Multiple LSTM layers are constructed to enhance the model's ability to capture 

data features. Each LSTM unit consists of a forget gate, input gate, and output gate, which collectively 

determine the flow and retention of information. 

(3)Fully Connected Layer: Outputs from multiple LSTM layers are connected to a fully connected 

layer, which integrates learned features and maps them to the final output. 

(4)Output Layer: Produces the final prediction output, usually adjusted with an activation function 

to match the actual range of the predicted values. 

4.2. Model Training 

Model training is a key step in achieving efficient predictions. This study adopts a series of strategies 

to optimize the training process. Firstly, the historical dataset is divided into training, validation, and 
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test sets. The training set is used for model training, the validation set for tuning parameters and 

preventing overfitting, and the test set for evaluating the model's final performance. 

To quantify prediction error, the Mean Squared Error (MSE) is selected as the loss function. MSE, 

the mean of the squared differences between predicted and actual values, is suitable for regression 

problems and effectively reflects prediction accuracy in current fluctuation prediction: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛
𝑖=1  

Where,𝑌𝑖is the actual value, 𝑌̂𝑖is the predicted value, and n is the total number of samples. 

For optimization, the Adam optimizer is employed, an adaptive learning rate algorithm combining 

the advantages of AdaGrad and RMSProp. Adam automatically adjusts the learning rate based on the 

problem's characteristics, making it suitable for handling large-scale and complex datasets. 

During the training process, network parameters are iteratively adjusted to minimize the loss 

function. Early stopping is used to monitor performance on the validation set, preventing overfitting 

and ensuring good generalization ability. 

5. Real-Time Prediction and Decision Support 

5.1. Implementation of Real-Time Prediction System 

The real-time prediction system deployed in this study is based on the advanced LSTM network. This 

system not only processes real-time incoming data but also outputs prediction results instantly, 

supporting power grid operation and maintenance. 

The core of the system is a real-time data processing and prediction module, which continuously 

receives current data, new energy generation data, and meteorological data from the power system. 

These data are transmitted in real time through predefined APIs, ensuring timeliness and 

completeness. The received data first undergo a preprocessing phase, including cleaning and 

normalization, to ensure input data quality meets the model's requirements. 

The preprocessed data are then input into the trained LSTM model for real-time prediction. The 

optimized real-time performance of the LSTM model enables the system to complete complex 

prediction calculations within seconds, ensuring rapid response. 

5.2. Application of Prediction Results and Decision Support 

The real-time prediction results generated by the system must not only be accurate but also provide 

practical value for grid management and maintenance decisions. The comparison between predicted 

and actual current fluctuation values at specific time points in a power system is shown in Table 1: 

Table 1: Comparison of Predicted and Actual Current Fluctuation Values at Specific Time Points in 

a Power System 

Time Point 
Predicted Current 

Fluctuation (A) 

Actual Current 

Fluctuation (A) 
Prediction Error (A) 

2023-12-01 00:00 3.5 A 3.6 A 0.1 A 

2023-12-01 01:00 2.8 A 2.7 A 0.1 A 

2023-12-01 02:00 4.2 A 4.1 A 0.1 A 

2023-12-01 03:00 5.0 A 4.8 A 0.2 A 

2023-12-01 04:00 3.3 A 3.3 A 0.0 A 

The accuracy of the prediction results directly affects the effectiveness of decision support. In 

practical applications, the predicted data can be used for various decision support activities: 
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Risk Assessment: The system evaluates the risk level of current fluctuations in real time based on 

preset safety thresholds and issues automatic warnings when the predicted values exceed these 

thresholds, allowing maintenance personnel to adjust grid operations or troubleshoot faults promptly. 

Load Distribution Optimization: By predicting current fluctuations, grid dispatchers can adjust 

load distribution in advance, optimize power resource utilization, and reduce energy waste. 

Maintenance Planning: Long-term current fluctuation prediction data helps grid companies 

develop more effective maintenance plans and budget allocations. 

By deploying and operating the real-time prediction system, the safety and economic efficiency of 

grid operations are significantly enhanced, ensuring stable and reliable power supply. 

6. Conclusion 

By integrating multivariate analysis and Long Short-Term Memory (LSTM) networks, this study 

develops a model capable of effectively predicting current fluctuations, providing strong technical 

support for real-time monitoring and intelligent management of power systems. The successful 

deployment of the real-time prediction system optimizes grid operation strategies, enhances the 

accuracy and timeliness of warnings, and further ensures the stability of power supply and economic 

grid operation. Moreover, the model demonstrates high efficiency and adaptability in handling large-

scale and complex datasets, proving the potential of deep learning technologies in solving traditional 

industry challenges. The outcomes of this study not only advance power system analysis techniques 

but also provide a reference model for other industries, showcasing how machine learning can address 

and predict complex variable relationships in big data environments. 
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