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Abstract: Image style transfer has gained significant attention in the computer vision fields 

in recent years, especially with the emergence of generative models. While numerous style 

transfer tasks have been handled by various models, image-to-pixel-art translations were not 

extensively explored, which is seemingly trivial yet requires delicacy in practice. To this end, 

this paper introduces the Pixel-Landscape-CycleGAN (PL-CycleGAN), which is a 

CycleGAN model that addresses the translation from, but not limited to, real-world landscape 

images to pixel art. The model is quantitatively evaluated using Frechet Inception Distance 

(FID) and Kernel Inception Distance (KID) scores, and got 85.472 for FID and 0.0366 for 

KID. These scores achieved a 52.46% and 64.98% reduction in comparison to the scores from 

interpolation. Further visual analysis also proved the model’s efficacy at translating to pixel 

art while maintaining the initial content of landscape images, as well as its constant 

performance when encountering non-scenery objects within images. 
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1. Introduction 

Image style transfer is a computer vision task that fuses the artistic style of one image with the content 

of another, “re-drawing” artworks using particular styles without the need of experienced artists [1]. 

Although earlier algorithms or frameworks, such as non-photorealistic rendering and image analogies 

developed around the 2000s, had decent performances, they were often limited by their ability to 

generalize or capture image structures effectively [1-3]. Within the past decade, neural-network-based 

algorithms emerged with the progressions in deep learning. Early attempts in the field included neural 

style transfer developed by Gatys et al., which employed convolutional neural networks (CNNs) for 

extracting and combining features from content and style images [4]. This method’s success proved 

the efficacy of neural network methods and paved the way for further research.  

With further advancements in the field, researchers designed and implemented numerous 

algorithms with greater power and flexibility, in particular the generative models. Some prevalent 

models include: Pix2Pix, a conditional GAN (cGAN) that performs image-to-image translation on 

paired datasets; Cycle-Consistent Adversarial Network (CycleGAN), an image-to-image translation 

GAN model on unpaired sets of images; StarGAN, a GAN for translation across multiple image sets, 

and Palette, a diffusion-based model utilizing a U-Net architecture for the translation tasks [5-8]. 

These models differ from neural style transfer in that rather than re-styling one content image with 

one style image using a pre-trained convolutional neural network, they learn higher-level features in 
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sets of images. The translated images are thereby more generalizable and structural similar to the 

target image set. 

Amongst the generative models, CycleGAN stood out as the most representative method with its 

crucial and innovative characteristic, unpaired image-to-image translation where the two sets of 

images for training do not need to be in correspondent pairs. Such feature provides convenience in 

data collection and flexibility in the choice of tasks. Furthermore, GAN models, including CycleGAN, 

are more preferable than diffusion models, such as Palette, due to their lower memory consumption, 

fewer data sample necessity, and faster inference speeds. 

CycleGAN has been extensively applied and tested on numerous translation tasks that ranges from 

various art forms to medical imaging, such as Object transfiguration, painting-to-photo translation, 

Chinese font translation, dance style transfer, and MRI image translation [6, 9-11]. However, its 

translation to pixel art style was rather overlooked. Pixel art was initially introduced due to limited 

screen resolutions and colors for gaming consoles and computers, but it remains a common choice of 

art style for various media due to its uniqueness and accessibility [12]. While creating pixel art seems 

to be trivial, pixel artists need adequate techniques to place pixels and represent items in a pixelized 

canvas [12]. Similarly, translating an image to pixel style could not be done by simply down-scaling 

it to a lower resolution, but requires specific alternations in shapes and colors. Therefore, a model 

that converts images to pixel art can simplify the translation process and assist pixel artists’ creations. 

It can further be a tool for non-artists to create pixel art with ease. 

This paper introduces a CycleGAN model named Pixel-Landscape-CycleGAN (PL-CycleGAN) 

that addresses the particular problem of translating real-world landscape images to pixel art. The 

model produces pixelized landscape images that could be used in various settings of diverse styles, 

such as background images for pixel-style games or artworks. The model was trained on two sets of 

images, the real-world landscape dataset and the pixel art dataset, and the model performance was 

evaluated quantitatively and qualitatively. Quantitative metrics of Frechet Inception Distance (FID) 

and Kernel Inception Distance (KID) were applied to generated samples along with qualitative 

observations. 

2. Methods 

2.1. Revisiting GANs 

Generative Adversarial Network (GAN) is a type of neural network framework initially proposed by 

Goodfellow et al. in 2014, and is now widely used in textual, image, and audio processing [13]. GANs 

stood out from other frameworks due to its unique adversarial structure, which consists of two models, 

a generator and a discriminator, that are trained simultaneously with the adversarial loss. The 

generator is an implicit density model that learns the data distribution without any explicit hypothesis 

or parameter fitting procedures [14, 15]. Taking samples from random noise variables with defined 

distribution as input, the generator aims to map them from the noise space to the data space using a 

differentiable function. On the contrary, the discriminator is trained as a binary classification model, 

which learns to discriminate the generated data from the true data.  

The adversariality of the model is introduced by its objective function, also known as the 

adversarial loss, where a minimax game is played between the generator and the discriminator. The 

value of the game is defined as the formulation (1): 

 min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝔼𝑍~𝑃𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧))] (1) 

where 𝑧 is the noise input, 𝑥 is the true data, 𝐺 is the mapping from noise space to data space, and 𝐷 

is the discriminator that outputs whether the given data is true or fake. 
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During the training process, the generator and the discriminator alternate between fixing and 

updating parameters. The generator first fixes its parameters after generating a batch of fake data, 

while the discriminator trains to minimize the following expectation: 

 𝒥(𝐷) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[− log 𝐷(𝑥)] + 𝔼𝑍~𝑃𝑧(𝑧)[− log(1 − 𝐷(𝐺(𝑧))] (2) 

where − log 𝐷(𝑥) calculates the cross-entropy loss between 1, the label for real data, and 𝐷(𝑥), the 

discriminator’s output for real data 𝑥.  Similarly, − log(1 − 𝐷(𝐺(𝑧)) calculates the cross-entropy 

loss between 0, the label for fake data, and 𝐷(𝐺(𝑧)), the discriminator’s output for generated fake 

data 𝐺(𝑧). Essentially, the discriminator aims to improve its ability of assigning correct labels to the 

real or fake data, thereby distinguishing the generated from the true. Then, the discriminator fixes its 

parameters while the generator trains to maximize the generation loss, as:  

 𝒥(𝐺) = 𝔼𝑍~𝑃𝑧(𝑧)[− log(1 − 𝐷(𝐺(𝑧))] (3) 

Contrary to the discriminator’s objective, the generator trains itself to generate fake data that 

confuses the discriminator, hence improving the quality of the generated data. 

2.2. CycleGAN 

CycleGAN was designed by Zhu et al. as a representative variant of the vanilla GANs framework, 

which addressed the unpaired image-to-image translation task [5]. In contrast to vanilla GAN, which 

learns a mapping from noise space to data space, CycleGAN learns to map between two different 

data spaces. For the two domains 𝑋 and 𝑌, CycleGAN trains two generators for mappings 𝐺: 𝑋 → 𝑌 

and 𝐹: 𝑌 → 𝑋. To evaluate the two sets of generated data, 𝐹(𝑌) and 𝐺(𝑋), the model further uses two 

discriminators, 𝐷𝑋 and 𝐷𝑌, that aims to distinguish 𝑥 from 𝐹(𝑦) and 𝑦 from 𝐺(𝑥), respectively.  

Similar to the vanilla GAN, CycleGAN’s objective function includes the adversarial loss. With 

two distinct discriminators and mappings, two separate adversarial losses are introduced for each 

generator-discriminator pair. For the mapping 𝐺  and discriminator 𝐷𝑌 , the adversarial loss is 

expressed as: 

 ℒGAN
(𝐺, 𝐷𝑌 , 𝑋, 𝑌) = 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦)[log 𝐷𝑌(𝑦)] + 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log(1 − 𝐷𝑌(𝐺(𝑥))] (4) 

The loss for mapping 𝐹 and discriminator 𝐷𝑋 is defined in a similar manner by: 

 ℒGAN
(𝐹, 𝐷𝑋, 𝑌, 𝑋) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷𝑋(𝑥)] + 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦)[log(1 − 𝐷𝑋(𝐹(𝑦))] (5) 

While using solely the adversarial loss can theoretically learn the two mappings, the generators 

can map an input sample to an arbitrary sample in the target data space, which does not guarantee the 

preservation of input sample’s content in the generated data. To get a more meaningful generated 

data, the model adds another crucial property known as cycle consistency, or that for each sample 

mapped from its original data domain to the target domain, mapping it back to its original domain 

should produce something similar to, if not the same as, the original sample. For a sample 𝑥 from the 

domain 𝑋, for instance, 𝐹(𝐺(𝑥)) should be approximately equal to 𝑥, and similarly, 𝐺(𝐹(𝑦)) should 

be approximately equal to 𝑦 for all 𝑦 in domain 𝑌. Based on the above property, cycle consistency 

loss is introduced to minimize the difference between the original data and the cyclically-mapped 

data, defined as: 

 ℒcyc
(𝐺, 𝐹) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [‖𝐹(𝐺(𝑥)) − 𝑥‖

1
] + 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) [‖𝐺(𝐹(𝑦)) − 𝑦‖

1
] (6) 

A final component of the model’s objective function tackles the situation where the input sample 

is already in the target domain. The transformed data should ideally remain unchanged, or that 
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𝐹(𝑥) ≈ 𝑥 for all 𝑥 in 𝑋 and 𝐺(𝑦) ≈ 𝑦 for all 𝑦 in 𝑌. Such identity mapping is driven by the identity 

mapping loss, defined as: 

 ℒidentity
(𝐺, 𝐹) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [‖𝐹(𝑥) − 𝑥‖

1] + 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) [‖𝐺(𝑦) − 𝑦‖
1] (7) 

Although the identity mapping loss was not included in the initial implementation from Zhu et 

al.’s paper, they discovered that this additional loss helped to preserve the color of the input after 

mapping to the target domain.  

The loss functions add up to the full objective of CycleGAN, as: 

ℒcyc
(𝐺, 𝐹, 𝐷𝑋, 𝐷𝑌) = ℒGAN

(𝐺, 𝐷𝑌 , 𝑋, 𝑌) +  ℒGAN
(𝐹, 𝐷𝑋, 𝑌, 𝑋) 

 +𝜆1ℒcyc
(𝐺, 𝐹) + 𝜆2ℒidentity

(𝐺, 𝐹) (8) 

where 𝜆1 and 𝜆2 controls the importance balance between losses. Again, a minimax game is played 

between the generators and the discriminators, aiming to solve: 

 𝐺∗, 𝐹∗ = arg min
𝐺,𝐹

max
𝐷𝑋 ,𝐷𝑌

ℒ(𝐺, 𝐹, 𝐷𝑋, 𝐷𝑌) (9) 

2.3. Data selection and preprocessing 

The PA-CycleGAN model was trained on two sets of image data from Kaggle: the Curated Pixel Art 

dataset with approximately 1000 pixel art images, and the Landscape Pictures dataset with over 4000 

real-world landscape images of higher resolution then the pixel art dataset [16, 17]. The landscape 

dataset was chosen based on an empirical comparison between higher-resolution and lower-resolution 

datasets regarding the quality and generalizability of translated images. Due to the relatively small 

sample size of the pixel art dataset, data augmentation of horizontal flipping was applied, which 

expanded the size by two.  

3. Results 

3.1. Quantitative Evaluation 

The model’s performance was quantitatively evaluated by two evaluation metrics: Frechet Inception 

Distance (FID) and Kernel Inception Distance (KID), and the results for PL-CycleGAN vs simple 

interpolation are shown in Table 1. The comparison between the two methods aims to demonstrate 

the efficacy of the generative model in pixel art translation. 

Table 1: Frechet Inception Distance (FID), Kernel Inception Distance (KID) scores and KID standard 

deviation of generated samples by the PL-CycleGAN model vs interpolated images 

Methods FID KID KID-SD 

PL-CycleGAN 85.472 0.0366 0.0060 

Interpolation 179.775 0.1045 0.0133 

 

FID measures the Wasserstein-2 distance between the multi-dimensional Gaussian distributions 

fitted to extracted features of the true and the generated datasets [18]. A smaller FID score indicates 

better performance of a model. The FID score of the generated pixel landscapes was 85.472, which 

was about 52.46% less than the FID of interpolated landscape images, which was 179.775. The 

significantly lower score indicated that the model successfully learned a mapping that translates real-

world images closer to pixel style. It is also worth noting that FID can be highly biased against smaller 
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sample size, or that the FID score from a small dataset is an overestimation of the true dataset [19]. 

While 50k is the reasonable minimum [19], the size of the pixel art dataset was only about 1k, which 

indicated that the true FID was smaller than presented and that the model was effectively generating 

pixel landscape images. 

Similar to FID, KID also measures the distance between the two feature distributions. But rather 

than fitting a Gaussian distribution, KID measures maximum mean discrepancy (MMD) over multiple 

subsets of features, and then calculate their mean and standard deviation [20]. The mean is known as 

the KID score, which was 0.0366 for PL-CycleGAN model. Comparing to the KID score of 

interpolation, which was 0.1045, PL-CycleGAN model had a more significant improvement in KID 

score by 64.98%, proving the model’s pixelization ability. On the other hand, the standard deviation 

of feature subsets’ MMDs reveals consistency of generated images. The standard deviation score of 

0.060 suggested the model’s ability of generating consistent images. 

3.2. Qualitative Evaluation 

The generalized pixel-style landscapes were also evaluated qualitatively by a comparative 

observation of the original versus generated landscape images, with examples shown in figure 1. The 

generated images successfully kept the real-world images’ content while showing evident 

characteristics of pixel art, such as fewer and more vibrant colors, pixelized edges with defined 

boundaries, and removal of unnecessary details. These observations further proved the model’s 

efficacy of translating landscape images from real-world to pixel-style.  

Furthermore, the pixelization was not limited to pure scenery images. As shown in figure 2, the 

model continued to produce promising results with the existence of non-landscape objects, whether 

they were animal creatures or human beings. These objects also remained recognizable after 

transforming into pixel style, indicating the model’s ability of distinguishing meaningful and 

negligible information, as well as its generalizability beyond solely landscape images. 

 

Figure 1: Examples of real-world landscape images (top) and pixelized images (bottom) 
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Figure 2: Examples of real-world images (top) and pixelized images (bottom) with non-landscape 

components 

Despite the overall favorable results, the model exhibited occasional inconsistencies. In Figure 3a, 

for instance, while the model successfully pixelized the mountain and grassland of the original image, 

it created horizontal artifacts along the water body and the sky, as well as unnatural colors within the 

cloud, which resulted in a less-than-ideal visual effect. Further, grassland in Figure 3b was recognized 

as and pixelized in a rocky texture due to shades from roadside trees. One may also notice that the 

parasol in Figure 3c was rather realistic, indicating deficient pixelization. Potential causes of these 

noise may be insufficiency in data samples and content variations within each image dataset. Since 

the pixel art dataset was not exclusively consisted of landscape images, but rather included non-

realistic scenes, fantasy creatures, and cartoon characters, the mapping between the two datasets may 

be of higher complexity than the model could learn given the limited data samples.  

 

Figure 3: Examples of real-world images (top) and pixelized images (bottom) with noise 
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4. Discussion 

Although PL-CycleGAN showed favorable results, further work could be done to improve the 

model’s performance. One major limitation of this model was the datasets it was trained on, which 

were both small in sample sizes and variegated in content. Further training and testing could be done 

on datasets with considerably more samples. Regarding image content, one modification would be to 

collect more data of similar content, which in this case is landscape. To train a more generalizable 

model, a different approach could be to use the progressive growing method, where a model is trained 

on simpler tasks at the start and increases the complexity progressively [21]. Thereby, the model can 

learn more complex tasks with stabilized results. Applying this method to the pixel art translation 

task may lead to more consistent outputs. 

Besides image quality, another room for improvement was variations in style. While it was ideal 

that the model consistently produced pixelized landscapes, the generated images were of similar, 

realistic style, which may fail to satisfy the needs of certain users. One potential direction is to explore 

the feasibility of combining conditional GAN (cGAN) with CycleGAN, leveraging the strengths of 

cGAN for condition input to control the level of realness of generated pixel art. 

5. Conclusion 

This paper presents a CycleGAN model named Pixel-Landscape-CycleGAN (PL-CycleGAN) that 

aimes to address the task of translating real-world landscape images to pixel art. Through quantitative 

analysis of the translated images, the model gained FID and KID scores that were both over 50% less 

than the scores of applying interpolation method, which suggested the model’s efficacy in translating 

the original image to pixel art. Furthermore, one can tell from qualitative observations that the model 

successfully captured characteristics of pixel art, regarding both color choices and boundary styles. 

However, the model’s dataset was limited in sample size and varied in image content, which led to 

noise in certain samples, including vertical artifacts, unnatural color and texture alternations, or lack 

of pixelization. Nonetheless, the model proved its ability of pixel art translation and potential of 

generating more flawless samples, and further work on the data and the model structure could be done 

for future improvements. 
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