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Abstract: The notion of black holes has changed mightily over the past couple of centuries, 

especially in conjunction with Einstein's theory of general relativity, offering a scaffold for 

understanding its extreme gravitational properties. This paper will provide an overview of the 

theoretical principles underlying black holes, with particular emphasis on two important 

answers to Einstein’s field equations: the Schwarzschild solution, which outlines uncharged 

and non-rotating black holes, and the Kerr solution, which characterizes rotating black holes. 

We are focusing our conversation on Sagittarius A* (Sgr A*), the enormous black hole 

situated at the heart of the Milky Way galaxy. This work will demonstrate that, based on 

observational data—especially gravitational waves and dual collimated outflows—there is 

substantial justification for considering Sgr A* modelled as a Kerr black hole, which indicates 

significant angular momentum. This carries more general implications for understanding 

black hole dynamics and what they mean for galaxy formation. More detailed measurements, 

such as those taken via radio velocity observations and future gravitational wave detectors. 

Keywords: Black hole, Sagittarius A* (Sgr A*), general relativity, Schwarzschild radius, Kerr 

black hole. 

1. Introduction 

Black holes are of enormous mass and gravity and thus serve an essential function in understanding 

the construction and evolution of the universe. According to general relativity, space and time are so 

curved by black holes that nothing can escape their gravitational pull, not even light, hence it has no 

color [1]. The concept started to take shape in the 18th century, drawing inspiration from the writings 

of some physicists, but it was Albert Einstein's theory that established the foundation for modern 

black hole physics [2].  

In 1916, Karl Schwarzschild discovered the solution to Einstein's field equations pertaining to a 

static, spherically symmetric black hole, which is currently known as the Schwarzschild solution. 

These black holes, known as Schwarzschild black holes, possess mass but lack both spin and charge. 

In 1963 Roy Kerr gave an extension to his work by putting up a solution for rotating black holes: the 

Kerr black holes, which allowed angular momentum—the kind of characteristic that one expects for 

most astrophysical black holes [3]. 

Another important black hole under investigation by researchers is Sgr A*, a supermassive black 

hole founded at the center of the Milky Way galaxy [4]. Due to its significant influence on 

surrounding stars, Sgr A* serves as the optimal black hole for studying its properties and testing 
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general relativity. Important insights into the structure of Sgr A* were derived from more recent Event 

Horizon Telescope (EHT) observations [5]. 

The central question that this paper tries to answer is whether or not Sgr A* should be considered 

to mimic more closely a Schwarzschild or a Kerr black hole. The author states that by computing its 

Schwarzschild radius and through other evidence—the topic of gravitational wave detections and 

outflow emissions—it can be established whether Sgr A* shows significant spin. This study enhances 

our comprehension the significance of black holes in the formation of the universe. 

2. Literature Review 

2.1. The Classification and Formation of Black Holes 

2.1.1. Classification of Black Holes 

Black holes are typically categorized based on their mass, spin, and charge. Among the common 

types are Schwarzschild black holes, which have neither charge nor spin [6]; Reissner-Nordström 

black holes, which are charged [7]; Kerr black holes, which possess spin but lack charge [8]; and 

Kerr-Newman black holes, which exhibit both spin and charge [9]. The Schwarzschild black hole is 

often viewed as an idealized model, while the Kerr black hole is considered more realistic, as most 

stars retain angular momentum prior to their collapse [10]. 

2.1.2. Formation of Black Holes 

Black holes can arise through various mechanisms, primarily influenced by their mass. The most 

common way that stellar black holes are formed is at the conclusion of the life cycle of massive stars 

[11]. When a star exceeds 20 solar masses and exhausts its nuclear fuel, it loses the thermal pressure 

necessary to counteract gravitational collapse. As a result, the core of the star succumbs to 

gravitational force, and if the center's mass surpasses the limit [12] (approximately 2-3 solar masses), 

it will continue to collapse, ultimately resulting in the formation of a black hole. 

The phases of this procedure typically include: 

 Supernova Explosion: The star's outer layers are expelled as the core collapses inward. 

 Formation of Neutron Stars or Black Holes: If the remnant core is massive enough, gravitational 

attraction triumphs over all other forces, resulting in black hole formation. 

Exactly how supermassive black holes like those in quasars are actually formed is largely an area 

for active research today. A number of hypotheses have been put forward to describe their formation: 

 Direct Collapse: Huge gas clouds in the early universe just fell into black holes without first 

forming stars.  

 Accretion Growth: Formed from stellar implosions, small black holes could increase in size 

through time by merging with others and accreting gas.  

 Primordial Black Holes: According to some ideas, the gigantic mass black holes originated from 

variabilities in density within the rush minutes after creation with supermasses developing rapidly 

shortly after the Big Bang. Some theories suggest that supermassive black holes may have formed 

in the early universe, shortly after the Big Bang, as a result of density fluctuations in the primordial 

cosmic plasma.  

2.2. General Relativity and Space-Time 

In Einstein's general theory of relativity, gravity differs from the distant force that Newton 

conceptualized. Rather, it arises from the bending of space-time due to mass and energy. In this 
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framework, the collapsed star exerts a pull on space-time itself. The event horizon, which marks the 

boundary for any matter that falls in, is not a tangible surface but rather the point beyond which no 

return is possible [13]. 

A fundamental concept of relativity is that light travels at a constant speed in a vacuum, which 

signifies the ultimate speed limit of the universe. This concept plays a crucial role in comprehending 

black holes. At the event horizon of a black hole, the speed required to escape exceeds that of light, 

indicating that nothing can break free, not even light. 

2.2.1. Conservation of Light Speed and the Maximum Speed of Light 

The core idea of Einstein's special theory of relativity was to address the discrepancies between 

Newtonian mechanics and Maxwell's electromagnetic theory, which asserted that the velocity of light 

stays the same. The well-known Michelson-Morley experiment [14] demonstrated this principle, 

revealing that light maintains a consistent speed irrespective of the observer's velocity. Illustrated in 

the light cone diagram below, it is determined that no signal or object can surpass the speed of light; 

at the heart of the idea of the event horizon lies the principle of a limit beyond which nothing can 

escape.  

2.2.2. Equivalence Principle 

The principle of equivalence indicates that the impacts of gravity cannot be differentiated from those 

caused by acceleration [15]. For instance, an observer in a closed box on earth would experience the 

same force as an observer in a box accelerating in gravity-free space. It is this principle that is crucial 

to the understanding of how objects behave near black holes: the very intense gravity that makes 

acceleration seem to mimic it. 

It is this principle that allows the laws of special relativity to be applied in small regions of curved 

space-time. And this is essential in the black hole scenarios for solving Einstein’s field equations. 

2.2.3. Curvature of Space-Time 

The allocation of mass and energy is connected to the curvature of spacetime through the equations 

of Einstein field [16]. Near black holes, this curvature reaches extreme levels, resulting in effects like 

time dilation and gravitational lensing. There are three varieties of curvature: positive curvature, 

negative curvature, and zero curvature. 

 Positive curvature: Space-time curves, which is equivalent to the surface of a sphere. 

 Negative curvature: Space-time curves like a saddle. 

 Zero curvature: Space-time is flat; that is, space-time has no intrinsic curvature. 

At the singularity of black holes, space-time curvature reaches infinity, while the event horizon 

serves as the boundary where even light cannot escape. The Schwarzschild and Kerr metrics provide 

the geometric descriptions for static and spinning black holes, respectively. 

2.3. Einstein Field Equations and Special Solutions 

2.3.1. Equations of Einstein Field 

The space-time curvature, represented by the Einstein tensor 𝐺𝜇𝜈, is connected to the allocation of 

mass and energy, which is conveyed through the stress-energy tensor 𝑇𝜇𝜈, according to the equations 

of Einstein field [17]. The general form of the field equation can be stated as: 
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 𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 =

8𝜋𝐺

𝑐4 𝑇𝜇𝜈 (1) 

The curvature produced by the arrangement of mass-energy within space-time is represented by 

𝐺𝜇𝜈 , while 𝑇𝜇𝜈  illustrates the elements of this distribution, including the energy and momentum 

associated with matter. The gravitational constant is denoted by G, and c is the light speed.  

These equations imply that space-time bends when influenced by massive objects, and this 

curvature prescribes the paths along which other objects travel. In the absence of matter (in a vacuum), 

then 𝑇𝜇𝜈 = 0, the field equations reduce to much simpler forms allowing exact solutions to be found, 

such as the Schwarzschild and Kerr metrics. 

2.3.2. Schwarzschild Solution 

The Schwarzschild solution represents the easiest form of equations of Einstein's field, illustrating a 

static, uncharged black hole [18]. It is spherically symmetric and one of them represents a black hole 

whose only defining characteristic is mass. The final solution of Schwarzschild metric is indicated in 

the below equation: 

 𝑑𝑠2 = − (1 −
2𝐺𝑀

𝑟
) 𝑑𝑡2 +

1

1−
2𝐺𝑀

𝑟

𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2) (2) 

A key takeaway from the Schwarzschild solution is the Schwarzschild radius, defining the event 

horizon, marking the boundary beyond which no escape is feasible. The Schwarzschild radius, 

denoted as 𝑟𝑠, is expressed by: 

 𝑟𝑠 =
2𝐺𝑀

𝑐2  (3) 

In this context, 𝑀  represents the black hole mass, 𝐺  denotes the gravitational constant, and 𝑐 

stands for the light speed. Anything that falls within the Schwarzschild radius will become a black 

hole.  

2.3.3. Kerr Solution 

The Kerr solution builds upon the Schwarzschild solution by taking into account rotating black holes 

[19]. This solution characterizes a black hole that possesses both mass and angular momentum, while 

excluding any charge or unusual attributes. The presence of an ergosphere complicates the metric for 

a Kerr black hole; this region exists beyond the event horizon, where the black hole's rotation pulls 

space-time along with it, a phenomenon also referred to as frame-dragging. The Kerr metric is 

explicitly expressed in relation to the spin: 

 𝑎 =
𝐽

𝑀𝑐
 (4) 

where 𝐽  represents the angular momentum, 𝑀  is the mass, and 𝑐  is the speed of light. The Kerr 

solution is a more authentic representation for real astrophysical black holes since by virtue of the 

angular momentum from collapsing stars, most black holes are expected to spin. The final Kerr 

solution is: 

 ds2 =
r2−2Mr+a2

ρ2 (dt − a sin2θ dφ)2 −
ρ2

r2−2Mr+a2 dr2 − ρ2 dθ2 −
(r2+a2)2 sin2θ

ρ2 (dφ −
a

r2+a2 dt)2 (5) 

The key differences between Schwarzschild and Kerr black holes are: 

 Event Horizon: In a Kerr black hole, the event horizon shrinks with increasing spin. 

 Ergosphere: Unique to Kerr black holes, the ergosphere facilitates the retrieval of energy through 

the Penrose process. 
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3. Discussion 

The properties of Sgr A* are detailed in the following subsection. Based on the observational data 

currently available, evidence suggests that Sgr A* is more probably a Kerr black hole rather than a 

Schwarzschild black hole. Additionally, this paper explores the alternative theory that Sgr A* might 

be considered an ideal Schwarzschild black hole—characterized by the absence of spin or charge—

and examines how this model falls short in accounting for the observational data. 

3.1. Observations of Sgr A* 

Sgr A* was first recognized as a dense radio emitter in 1974 [20], several methods have since been 

developed to observe and analyze Sgr A*: infrared radiation, X-ray emissions, and most recently, 

gravitational wave detections [21]. 

In 2017, the Sgr A* obtained a photograph captured by the EHT, which was made public in the 

following years [22]. The image, shown in Figure 1, is of the accretion disk that surrounds the black 

hole horizon event. The Schwarzschild radius of Sgr A* defines the boundary beyond which nothing 

can escape, including information in the form of light. Matter crossing this event horizon is not 

observable to distant observers since signals from it would take an infinite time to reach them. 

Some researchers at UCLA reported observing Sgr A* to be relatively stationary while surrounded 

by high-velocity orbiting stars, as shown in Figure 2 [23]. Prime ingredients for such estimates are 

observations of the type we have just described. It was determined from observational data that the 

mass of Sgr A* is estimated to be 4.1 × 106 M⊙. The mass was determined, in particular, from 

measurements of the velocities of orbiting stars. 

 

Figure 1: Image of Sgr A* captured by the EHT in 2017 [22]. 

 

Figure 2: The position of Sgr A* [23]. 
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3.2. Properties of Sgr A* as an Ideal Schwarzschild Black Hole 

3.2.1. Measuring the Galactic Centre Mass by Stellar Orbitals 

Whether Sgr A* can be entitled to represent an ideal Schwarzschild black hole or not, its mass should 

first be known. The most accurate way to measure Sgr A*’s mass is by investigating the orbits of 

stars located near the galactic center, in particular, S0-2 (or S2) because its orbit is well characterized. 

The paths of various stars orbiting Sgr A* are shown in Figures 3 and 4; these were data as collected 

by Ghez et al. [24]. 

 

Figure 3: Orbits of stars near Sgr A* [25]. 

 

Figure 4: Stellar orbits in coordinate system diagram [26]. 

The Sgr A*’s mass can be calculated by applying the third law of Kepler [27]. The timeframe of 

S0-2’s orbit is approximately 15.6 years, with a periapse distance of around 120 AU. The eccentricity 

of the orbit is about 0.88. See Table 1.  
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Table 1: Parameters for S0-2 [24]. 

Parameter Vz = 0 Case Vz Unconstrained Case 

Distance (R0) (kpc) 8.36 ±0.44
0.30 7.96 ±0.70

0.57 

Period (P) (yr) 15.78 ± 0.35 15.86 ±0.45
0.10 

Semimajor axis (a) (mas) 124.4 ±3.3
2.4 126.5 ±5.0

1.8 

Eccentricity (e) 0.8866 ± 0.0059 0.8904 ±0.0075
0.0051 

Time of closest approach (T0) (yr) 2002.3358 ±0.0093
0.0065 2002.342 ± 0.010 

Inclination (I) (deg) 135.3 ± 1.3 134.6 ± 1.3 

Position angle of the ascending node (Ω) (deg) 225.9 ± 1.3 226.44 ±1.4
0.71 

Angle to periapse (ω) (deg) 65.18 ± 1.2 66.0 ±1.7
1.1 

X dynamical center (X0-XSgr A*-radio) (mas) 0.95 ±1.4
0.46 1.49 ±0.87

1.1  

Y dynamical center (Y0-YSgr A*-radio) (mas) −4.8 ±1.6
2.2 -5.4 ± 2.0 

X velocity (Vx) (mas yr-1) -0.40 ± 0.25 −0.47±0.33
0.12 

Y velocity (*Vy*) (mas yr-1) 0.39 ±0.18
0.09 0.36 ± 0.12 

Z velocity (Vz) (km s-1) ... −20 ±37
29 

Mass (Mbh) (106 M☉) 4.53 ±0.55
0.34 4.07 ±0.78

0.52 

Density (ρ) (1015 M☉ pc-3) 5.83 ±0.97
0.28 6.3 ±1.4

0.56 

Periapse distance (Rmin) (mpc) 0.570 ± 0.037 0.535 ±0.071
0.0049 

Based on the third law of Kepler, the calculation of semi-major axes can be performed as follows: 

 a =
120

1−0.88
= 1000 AU (6) 

The mass of Sgr A* (𝑀𝑆𝑔𝑟 𝐴∗) is then determined using the equation: 

 𝑀𝑆𝑔𝑟 𝐴∗ =
10003

15.62 = 4.109 × 106 𝑀⨀ ≈ 4.1 × 106 𝑀⨀ (7) 

This mass value aligns with previous estimates and allows the calculation of Sgr A*’s 

Schwarzschild radius. 

3.2.2. The Sgr A* Schwarzschild Radius 

Once the Sgr A*’s mass is determined, its Schwarzschild radius can be computed using this equation: 

 𝑟𝑠 =
2𝐺𝑀𝑆𝑔𝑟 𝐴∗

𝑐2  (8) 

Substituting the Sgr A*’s mass (𝑀𝑆𝑔𝑟 𝐴∗= 4.1 × 10⁶ M⊙ = 8.2 × 10³⁶ kg) into this equation yields: 

 𝑟𝑠 =
2×6.67×10−11×8.2×1036

(3×108)2  (9) 

This leads to a Schwarzschild radius of: 

rs = 1.22 × 1010 

The boundary of the event horizon is characterized by the Schwarzschild radius. Within this 

surface, neither matter nor light can escape. A spacetime diagram illustrates the light cones both 

within and beyond the event horizon of Sgr A* (refer to Figure 5). As matter approaches the event 

horizon, the black hole's powerful gravitational field causes the light cones to bend inward. Its result 

is trapping light and matter within the horizon. 
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Figure 5: Spacetime diagram showing light cones outside and inside the event horizon surrounding 

Sgr A* [28]. 

While these calculations are useful for viewing Sgr A* as a Schwarzschild black hole and can be 

pedagogically very illustrative, they are based on assumptions of ideal conditions (e.g., no spin or 

charge). Observationally, it seems likely that Sgr A* actually has quite a lot of spin, so the Kerr model 

is somewhat more appropriate. 

3.3. The Potential of Sgr A* as a Kerr Black Hole 

The astrophysical evidence indicates that Sgr A* is probably not a Schwarzschild black hole. If spin 

can be evidenced through detections of gravitational waves or outflows, then maybe Sgr A* would 

belong to the family of spinning Kerr black holes. Angular momentum is a property of Kerr black 

holes, which makes them entirely dependent on their rotation status, drastically changing their 

behavior and configuration by, for example, establishing an ergosphere and the frame-dragging effect. 

3.3.1. Evidence of Spin from Gravitational Wave Detection 

Kerr model for Sgr A* is one of the cases receiving stronger support from evidence, and this proves 

the detections of gravitational waves (GWs). An event reported by Vázquez-Aceves et al., the 

gravitational waves coming from a Brown dwarf inspiraling into the massive black hole Sgr A* [29]. 

The extreme mass-ratio inspirals (EMRIs) system will provide an accurate method for determining 

the mass and spin of Sgr A* [30]. 

The spin parameter of Sgr A* had been estimated from GWs data to lie within the interval 0.1–

0.9, as summarized in Table 2. We reiterate that the range of spin values indicates that Sgr A* behaves 

significantly different from a stationary black hole of Schwarzschild. The observation of gravitational 

waves, particularly through EMRIs, allows for the inference of Sgr A*'s angular momentum. The 

spin parameter is crucial in determining whether Sgr A* is classified as a Kerr black hole. 

Table 2: Data showing the range of possible spin parameters for Sgr A* based on gravitational wave 

detections [29]. 

Sgr A* Spin �̅�I �̅�II �̅�𝑅𝑄I
 �̅�𝑅𝑄II

 

0.1 0 8−3
+9 0 9−4

+10 

0.9 1 12−4
+6 1 11−3

+5 
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3.3.2. Deduction of Spin from GWs 

Gravitational waves, by their very nature, are spatial disturbances caused through the rapid movement 

of large celestial bodies, like black holes or neutron stars. The GWs detected from the matter around 

Sgr A* imply that the black hole is spinning. The formula derived from the Kerr solution for spinning 

black holes allows for the determination of energy radiation within these waves. Consequently, the 

rotational energy of a spinning black hole can be articulated as: 

 𝐸𝑠𝑝𝑖𝑛 =
1

2
𝛺𝐻

2 𝐼𝑓𝑠
2 (10) 

where 𝛺𝐻 and 𝐼 are the angular velocity and moment of inertia, respectively. As illustrated by the 

waveform breakdown related to the rotating black hole (refer to Figure 6), a portion of the hole's 

energy stemming from its spin is being radiated away via time-dependent gravitational waves, further 

facilitating the process of spin-down for the black hole [31]. 

These gravitational wave signals themselves, together with what we infer from them based on 

observation, offer compelling arguments indicating that Sgr A* is truly a Kerr black hole exhibiting 

significant spin. 

 

Figure 6: Gravitational waveforms generated by a black hole of Kerr influenced by surrounding 

matter [31]. 

3.4. Comparison and Evaluation 

The answers of Schwarzschild and Kerr to equations of Einstein’s field represent two black hole 

models, each with different sets of assumptions and consequent implications. Of the Schwarzschild 

models, the nonrotation, uncharged hole is just the simplest. While useful pedagogically and quite 

adequate for many idealized situations, it is becoming more and more evident that it falls far short of 

explaining fully the observed Sgr A*’s properties. 

The Schwarzschild model assumes no angular momentum. This is a significant limitation because 

in astrophysical reality, it is anticipated that the majority of black holes possess a certain degree of 

spin. In truth, nearly all black holes are left-over products resulting from the large stars’ gravitational 

collapse, and in such process, spin is an invariable quantity of gravitational attraction, provided that 

the ideal initial condition should be absolutely symmetric and without rotation—which is actually an 

extremely rare case in the universe from statistical viewpoints. Considering that black hole formation 
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processes are highly dynamical and often involve violent events for supermassive black holes, it is 

quite expected that Sgr A* would show considerable rotational properties. 

On the other hand, the Kerr solution that characterizes a spinning black hole provides a more 

realistic framework in studying astrophysical black holes. The Kerr metric incorporates angular 

momentum and is distinguished by the existence of an ergosphere, a zone beyond the event horizon 

where spacetime is pulled along by the rotating black hole. Such effect of frame pulling is one of the 

principal discriminating features between Kerr black holes and others; and it has profound 

consequences for how matter behaves in the vicinity of a black hole along with for the generation of 

phenomena like relativistic jets. 

4. Conclusion 

This study has probed the properties of Sgr A* and assessed whether it acts more like a Kerr or 

Schwarzschild black hole. It shows that the properties of Sgr A* are best explained if we assume it to 

be a Kerr black hole, which is supported by evidence from gravitational wave detections and dual 

collimated outflows. The large angular momentum gives Sgr A* a physical motivation to be as a 

black hole of Kerr. 

Such implications for the future research on black holes. If indeed Sgr A* is a Kerr black hole, 

then this may be a near confirmation that many supermassive black holes located in distant galaxies 

are also endowed with significant spins, possibly affecting interactions with the surroundings. 

Essential to model improvement in particular is also the spin property of such black holes as Sgr A* 

in particular. 

The astrophysical interest of this study is wider. Having obtained that Sgr A* imitates known 

rotational features, we can be more certain in our expectations related to the influence of supermassive 

black holes on the galaxies they inhabit. Processes that can be driven in a galactic core relate to spins 

of black holes, including jet- and outflow-formation mechanisms, and they eventually contribute to 

the fine-tuning of regimes for star formation and matter distribution within galaxies. The better we 

know about the spin of black holes, the more our notions about galaxy formation and evolution will 

advance along with our models. 

In conclusion, while Schwarzschild modeling of Sgr A* may be a useful simplification, 

increasingly the evidence is suggesting that it is a rotating Kerr black hole. Further progress in 

observational technology will lead to better refinement of these findings and further consideration 

regarding the influence of black holes. 
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