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Abstract: Mathematical optimization methods have seen substantial advancements and 

applications in diverse fields, including industry, agriculture, commerce, and scientific 

research, due to advances in computer science and artificial intelligence. These methods 

improve production efficiency, resource allocation, and structural optimization. This paper 

reviews key optimization techniques such as gradient descent, Newton’s method, and 

heuristic algorithms, discussing their advantages, limitations, and applicability. Although 

optimization methods offer powerful tools for solving complex equations and optimizing 

solutions, real-world scenarios often introduce challenges such as computational errors and 

model idealizations. The future of mathematical optimization lies in improving algorithm 

speed, usability, and accuracy, allowing broader accessibility and aligning solutions with 

practical realities. This exploration highlights both the current utility and the evolving 

potential of optimization techniques in addressing global challenges. 
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1. Introduction 

With the increase in the world's population and the pollution of the environment, resources such as 

production resources, natural resources, etc., are becoming more and more limited. Under this 

circumstance, it is particularly important to find the optimal allocation of resources and use methods. 

Mathematical optimization methods are an important tool to solve such problems [1]. Mathematical 

Optimization is a branch of applied mathematics which is useful in many different fields, such as 

Manufacturing Production Inventory control, and so on [2]. With the development of technology, 

there are now many optimized methods. According to the objective function, optimization methods 

can be classified into linear and nonlinear optimization. When the objective function and all 

constraints are linear, the problem is classified as linear optimization. If the objective function or any 

constraint is nonlinear, the problem belongs to nonlinear optimization [3]. According to the domain 

of variables, optimization problems can be classified into discrete optimization and continuous 

optimization. In discrete optimization, the values of variables are finite or countable, such as in integer 

optimization problems. In continuous optimization, variables can take any value within a certain 

interval. According to the categories of parameters, optimization problems can be divided into 

deterministic and stochastic optimization. In deterministic optimization problems, all parameters are 
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known and fixed, while in stochastic optimization (or stochastic programming), some parameters are 

random variables. According to the objective classification of optimization problems, we can divide 

them into single objective and multi-objective optimization. A problem that requires optimization of 

one objective function is called single objective optimization, while if there are multiple objective 

functions, it is called multi-objective optimization [4]. While many studies address these methods, 

limited work focuses on their comparative performance in real-world scenarios. In this paper, we will 

introduce several of the most widely used mathematical optimization methods based on optimization 

objects, optimization speed, optimization accuracy, etc., and analyze the advantages, disadvantages, 

and applicability of each method [5-7].  

2. Gradient Optimization Methods 

2.1. Gradient descent method 

Gradient descent is one of the simplest and most widely used optimization method [8]. Its principles 

are easy to understand, making it widely applicable in various fields. However, the speed of gradient 

descent method is not the fastest. The method optimizes a function by iteratively moving in the 

direction of the steepest descent, defined as the negative gradient of the function at the current point. 

This property has earned it the alternate name of the “steepest descent method.” As shown in Figure 

1, the closer the gradient descent method is to the target value, the smaller the step size becomes, 

leading to slower progress [9].  

 

Figure 1: Diagram of Gradient Descent Method. 

The gradient descent method has three disadvantages. First, the value of the step size will have a 

significant impact on the results. If the step size is too small, it will fall into local optimal and cannot 

find the global optimum. If the step size is too large, it will miss the global optimum. Second, the 

convergence speed of this method slows down when approaching the minimum value. Third, in the 

optimization process, it may decrease in a "Z-shaped" manner because the direction predicted by the 

gradient descent method is only the direction in which the function f decreases the fastest, not the 

direction towards the global optimal solution. This can cause the gradient descent method to fluctuate 

and decrease in a "Z-shaped" manner. 

2.2. Batch Gradient Descent (BGD) method 

The operation of batch gradient descent is to select S data points from the dataset as the training set. 

However, if the value of S is too small, it will result in large errors in the results and unsatisfactory 
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optimization results. If the value of S is too large, it will result in calculating all S samples during 

each iteration, which will increase the computational workload and slow down the iteration speed. 

For cases where the sample size is not too large, the effect will be better, but for large-scale sample 

problems, the efficiency will be low. So, this introduces another method - stochastic gradient descent 

[10]. 

2.3. Stochastic gradient descent (SGD) method 

The stochastic gradient descent method involves randomly selecting samples from a dataset for 

gradient descent analysis. This approach may result in lower accuracy compared to other methods 

and an increase in the number of iterations. However, when analyzing large-scale sample problems, 

the number of iterations added will be much smaller than the number of samples, leading to a 

significant improvement in overall optimization efficiency. 

The results obtained by stochastic gradient descent are usually near the optimal solution. Overall, 

the overall idea of stochastic gradient descent is to sacrifice some accuracy in exchange for greater 

efficiency improvement. For large-scale sample analysis, this method will have a considerable effect 

[11].  

2.4. Conjugate Gradient Method 

In linear cases, the conjugate gradient method is applied to solve problems of the form Ax=b. When 

solving such problems, the best method is x = A-1b. However, when calculating in this way, it is 

inevitable to calculate the inverse of the matrix, which can be quite complex. Therefore, in the 

conjugate gradient method, we use an iterative method to solve it, which can simplify the calculation 

process. People have extended this method to nonlinear situations, which is called the nonlinear 

conjugate gradient method. Essentially, the idea of conjugate gradient method is to separately 

calculate the extremum of the objective function in different directions, and then combine them to 

obtain the extremum of the function. The conjugate gradient method accelerates convergence speed 

compared to gradient descent method by analyzing in different directions and avoids large-scale 

calculations of Newton's method. However, the conjugate gradient method only has superior 

performance in solving quadratic problems but performs poorly in other situations [12]. 

3. Newton's methods 

3.1. Classical Newton's method 

Newton's method is a method of approximating equations in both the real and complex domains. The 

general method uses the first few terms of the Taylor series of function f (x) to find the roots of 

equation f (x)=0. The biggest feature of Newton's method is its fast convergence speed. 

The basic idea of Newton's method is to start from a point on the function f (x) that is closer to the 

solution, and find the intersection point between its tangent and the x-axis. The function value 

corresponding to the x-value at this point will be closer to the solution, and this process is repeated 

to find the solution of the function. Because Newton's method uses tangents to gradually approximate 

the solution of a function, it is also known as the tangent method. 

Compared to the first-order convergence of gradient descent, Newton's method is a second-order 

convergence, second-order convergence, second order convergence will be such that each subsequent 

iteration will result in a factor of 2 reduction in the error between the optima and the current location 

[13]. So, it will have a faster speed in finding solutions. And Newton's method considers the global 

optimal solution, without the Z-shaped fluctuations of gradient descent, and the descent path will be 

more in line with the true optimal descent path. 

Proceedings of  the 4th International  Conference on Computing Innovation and Applied Physics 
DOI:  10.54254/2753-8818/79/2025.20116 

121 



 

 

However, Newton's method also has some drawbacks, such as the Strict requirements for functions 

(second-order continuous differentiability, reversible Hessian matrix), and in each iteration, it 

requires solving the inverse matrix of the Hessian matrix of the function, resulting in a considerable 

amount of computation. For the sake of simplicity in calculation, we have introduced the next method 

- the quasi-Newton method. 

3.2. Quasi Newton method 

The essential idea of the quasi-Newton method is to improve the defect of Newton's method which 

requires solving the inverse matrix of a complex Hessian matrix every time. It uses a positive definite 

matrix to approximate the inverse of the Hessian matrix, thereby simplifying the complexity of the 

operation [14]. 

4. Lagrange multiplier method 

In some cases, instead of the objective function f(x) in equation (1), several functions, such as f1(x), 

f2(x), ..., fn(x), must be minimized simultaneously when solving the problem in the equation. This 

type of problem is called a multi-objective optimization problem [15], multi-objective optimization 

is common in everyday life [16]. and The Lagrange multiplier method is one of the main methods for 

solving constraint problems. 

The basic Lagrange multiplier method with one constraint is a method of finding the extremum of 

function f under the constraint of g = 0. The basic operation is: if an extremum is taken at x0, the 

function must be tangent to the constraint condition, that is, there is only one intersection point, 

because if there are more than one intersection point, then that point is not an extremum point. If the 

function is tangent to the constraint condition, their normal vectors will be on the same line but in 

opposite directions. Represented by gradient vectors as Δ f (x0, y0) =λ Δ g (x0, y0), combined with 

the constraint of g (x0, y0) = 0, we can solve this system of equations, the process can be seen in 

figure 2 and obtain the solutions of the variables and the value of λ for the extremum of the original 

function. Where λ is the Lagrange multiplier [17]. For the general case, if we have n variables and k 

constraints, we can convert such an optimization problem into a solution to a system of equations 

with n + k variables by using the Lagrange multiplier method. The advantage of the Lagrange 

multiplier method is that it can transform conditional extremum problems into unconditional 

extremum problems and handle some multivariate problems. However, the extremum points found 

by the Lagrange multiplier method are not absolute and require further verification and judgment [18]. 

 

Figure 2: The diagram of Lagrange multiplier method. 
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5. Heuristic methods 

It is obtained by simulating the development laws and working principles of things in nature, mainly 

including simulated annealing, ant colony algorithm, neural network and other algorithms.  

Among the heuristic algorithms, one of the most representative and widely used is neural networks, 

A neural network is a program, or model, that makes decisions in a manner similar to the human brain, 

by using processes that mimic the way biological neurons work together to identify phenomena, 

weigh options and arrive at conclusions [19]. Neural networks are ideally suited to help people solve 

complex real-life problems, and have a significant impact in autonomous vehicles, voice-activated 

virtual assistants, medical imaging, and more [20]. 

The 2024 Nobel Prize in Physics was awarded to John J. Hopfield and Geoffrey Hinton for their 

foundational discoveries and inventions of machine learning for artificial neural networks, which are 

a testament to the importance of neural networks. 

Usually, The Heuristic algorithms can use some information to predict and respond to calculations, 

making them an excellent heuristic method. And when searching for the optimal solution, there is a 

purpose rather than blindly searching for the optimal solution like other methods, which can quickly 

find the optimal solution. However, the design difficulty of heuristic algorithms can also be high, and 

the results of heuristic algorithms are random and difficult to predict. 

6. Discussion 

The gradient descent method is valued for its simplicity in both operation and principle. However, its 

major drawback lies in its slow convergence speed, and it may suffer from fluctuations during the 

descent process, leading to inefficiencies. The batch gradient descent method is more effective for 

problems involving smaller sample sizes, but it becomes inefficient when applied to large-scale 

datasets due to its computational complexity. 

The stochastic gradient descent method (SGD), while less accurate and requiring a greater number 

of iterations compared to other methods, excels in handling large-scale problems. The added number 

of iterations in SGD is significantly smaller than the total number of samples, resulting in notable 

improvements in optimization efficiency for large datasets. 

The Newton method offers the advantage of second-order convergence, faster processing speeds, 

and global optimization capabilities by considering the curvature of the solution space. However, its 

reliance on matrix calculations makes it computationally intensive, especially for high-dimensional 

problems. In contrast, the quasi-Newton method simplifies these calculations, reducing the 

computational burden while maintaining much of the efficiency of Newton’s method. 

The Lagrange multiplier method is particularly useful for handling multivariate problems, making 

it suitable for constrained optimization scenarios. However, its results often require further 

verification to ensure accuracy and reliability. 

The conjugate gradient method, compared to gradient descent, accelerates convergence while 

avoiding the computational intensity associated with Newton’s method. However, its effectiveness is 

primarily limited to solving quadratic problems, where it performs well, but it is less effective for 

non-quadratic problems. 

Heuristic algorithms provide a different approach, excelling at quickly identifying optimal 

solutions even in complex optimization landscapes. Nevertheless, they are associated with high 

design complexity, and the resulting solutions may exhibit randomness and unpredictability, making 

them less reliable in certain scenarios. 

Each mathematical optimization method has its unique strengths, limitations, and areas of 

applicability. The choice of the most suitable method depends on the specific problem context, 
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balancing computational efficiency, accuracy, and complexity. Selecting the appropriate optimization 

method is crucial to achieving robust and efficient results. 

7. Conclusion 

Mathematical optimization methods are foundational tools with significant applications across a wide 

range of disciplines. In engineering, they contribute to enhancing product quality, conserving energy, 

reducing costs, and improving efficiency. In mathematics and computer science, optimization 

algorithms are essential for solving practical problems, while in fields such as machine learning, 

operations research, and economic forecasting, they enable robust decision-making and predictive 

modeling. Despite their extensive applicability, mathematical optimization methods are not without 

limitations. Real-world scenarios often deviate from the assumptions of idealized models, and 

computational errors can compromise the accuracy of the final results. These challenges underscore 

the need for continuous advancements to bridge the gap between theoretical models and practical 

applications [21] [22]. 

As Dr. Robert Bixby observed, the increasing availability and quality of data in recent decades 

have amplified the demand for mathematical optimization to support better decision-making. Among 

computational technologies, mathematical optimization stands out for its unparalleled robustness and 

ability to generate high-quality solutions [23]. 

Looking ahead, the development of mathematical optimization methods will focus on addressing 

current shortcomings in three key areas. First, enhancing the speed and functionality of solvers will 

accelerate optimization processes and expand their capacity to handle complex models. Second, 

improving the usability of optimization tools will make them accessible to non-specialists, enabling 

broader adoption and customization of models. Finally, increasing the accuracy of optimization 

results will ensure that solutions are more precise and better aligned with real-world conditions. 

In conclusion, mathematical optimization methods will remain critical to tackling complex challenges 

in science, engineering, and beyond. By advancing solver performance, usability, and accuracy, the 

field can continue to drive innovation and support informed decision-making in an increasingly data-

driven world. 
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