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Abstract: Earth observation can also be supported by satellite imagery, but existing change 

detection techniques aren’t very accurate and scalable for complex and heterogeneous 

landscapes. The goal of this paper is to propose an AI solution for the change detection with 

CNNs in satellite imagery. With the help of deep learning, the model can automatically detect 

complex, low-profile land-cover changes like urbanisation and deforestation, which isn’t 

easily captured by other techniques. It was calibrated on high-resolution satellite images from 

NASA’s Landsat and ESA’s Sentinel missions, and used for a map of a region with dramatic 

land-use transformations over the past 10 years. These studies indicate that the AI-based 

approach is more accurate, more accurate and more reliable than other techniques such as 

image differencing. Also, AI is a way to combine with Geographic Information Systems (GIS) 

for live, automated monitoring, making environmental monitoring even more effective and 

flexible. The research shows how AI-based change detection can be used to increase the 

accuracy and timeliness of environmental monitoring, and provide new ways to actively take 

action in climate change, urban planning, and disaster management.  

Keywords: AI-driven change detection, Convolutional Neural Networks, satellite imagery, 

GIS, environmental monitoring 

1. Introduction 

Environmental monitoring has long relied on satellite imagery to track changes in land cover and land 

use. Traditional methods of change detection, such as image differencing, Principal Component 

Analysis (PCA), and thresholding, have served as the foundation for these efforts. While 

computationally simple, these techniques often fail to provide accurate results, especially when 

dealing with complex and dynamic environments. Factors such as cloud cover, seasonal variations, 

and lighting conditions often interfere with the ability to detect true land-use changes, leading to 

misinterpretations in the results. This limitation is particularly evident in heterogeneous landscapes, 

such as urban-rural transitions or mixed-use regions, where traditional methods struggle to distinguish 

between actual changes and temporary environmental variations. To overcome these challenges, there 

has been a growing interest in incorporating artificial intelligence (AI) and machine learning 

techniques, particularly Convolutional Neural Networks (CNNs), into satellite image analysis. CNNs 

have proven highly effective in detecting spatial and temporal changes in satellite imagery, learning 

hierarchical features from raw data and automatically identifying patterns in complex images. Unlike 

traditional methods, CNNs can capture subtle and gradual changes in land cover, such as the 
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expansion of urban areas or the deforestation of forests, that would otherwise be overlooked. 

Furthermore, AI-driven models can handle large-scale datasets, making them suitable for real-time 

monitoring applications. In this paper, the integration of AI with Geographic Information Systems 

(GIS) is explored as a means of improving the scalability and efficiency of environmental monitoring. 

GIS provides a platform for visualizing, mapping, and analyzing geospatial data, while AI algorithms 

can automate the detection of changes, eliminating the need for manual intervention [1]. By 

automating these tasks, AI-powered GIS systems can offer real-time updates, allowing decision-

makers to act on the most current data. This paper specifically focuses on applying a CNN-based 

model to detect changes in land cover, such as urbanization and deforestation, in a region that has 

undergone significant changes over the past decade. The results are compared to traditional change 

detection methods to demonstrate the improvements in accuracy, precision, and computational 

efficiency achieved by AI-based solutions. 

2. Literature Review 

2.1. Traditional Change Detection Methods 

Some traditional change detection techniques for satellite images are image differencing, principal 

component analysis (PCA) and thresholding. Such techniques evaluate images against each other to 

spot differences — image differencing looks for big differences between pixels in two pictures. The 

computations are easy, but the method fails to cope with changes in seasons, cloud cover, lighting 

conditions, and give a false positive. They’re also not very efficient with big, noisy data or 

heterogeneous environments, so aren’t very useful for tracking small or gradual trends. These 

limitations have led to the development of newer, automated ways to detect changes with a greater 

accuracy and scalability [2].  

2.2. Deep Learning in Change Detection 

Deep learning, specifically Convolutional Neural Networks (CNNs), have been very helpful for 

change detection in satellite image. CNNs can automatically learn features based on the raw pixel 

information and recognize changes over space and time, so they are good for tracking land-cover 

change (urbanisation or forest clearing) [3]. CNNs can work on big data, and learn from any kind of 

environmental variation compared to the previous methods. Yet it still has issues with large labeled 

datasets for training and computational power, in large, mixed regions at least. 

2.3. Integration of AI with GIS for Environmental Monitoring 

Combining AI and Geographic Information Systems (GIS) helps in environmental monitoring by 

automating the analysis of satellite images. The algorithms in AI are now able to better detect and 

track land cover changes, urban development, and forest clearing as they happen. This combination 

allows GIS platforms to crunch big amounts of data with real-time updates to aid decision-making. 

AI-powered GIS solutions are scalable and capable of tracking large scale, especially for 

environmental monitoring at a scale that’s global in nature, as well as climate change and biodiversity 

loss [4]. 

3. Methodology 

3.1. Data Acquisition 

Satellite data for this research was culled from public datasets from NASA’s Landsat program and 

the European Space Agency’s (ESA) Sentinel mission. These satellites have high resolution images 
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that are time-stable enough to measure long-term environmental trends. The 30 metre and 10-20 meter 

resolution of Landsat and Sentinel-2 allow you to track changes in the land cover, and therefore they 

can be used to track deforestation, urbanisation and agriculture.  

In this experiment, we used a region that had experienced major land-use change in the past 10 

years. The chosen region includes urban and rural areas where accelerated urbanisation and logging 

have been especially evident. We examined these shifts with satellite data from two years ago: 2015 

and 2020. Both images were chosen to cover five years, so that we could contrast land cover changes. 

Before any change detection actually happened, the images collected were preprocessed to smoothen 

the image and provide a precise analysis. These preprocessing steps were atmospheric correction, 

where the weather – cloudiness, fog, etc. – can corrupt satellite data. Also we did geometric correction 

to coordinate the images spatially (as to register the different dates). This step is important as even 

small asymmetry between the images causes faulty change detection. Further, the images were 

resampled at the same spatial resolution so that the images did not change across the dataset [5]. 

These preprocessed images were the result of these preprocessing steps, and they were now spatially 

aligned images that could be analysed. Table 1 plots quantitative breakdowns of the land cover 

categories, as proportions of urban, forest, agricultural and watershed land, over both time periods. 

Table 1: Land Cover Distribution in 2015 and 2020 

Land Cover 

Type 

2015 Area (sq. 

km) 

2020 Area (sq. 

km) 

Change (sq. 

km) 

Percentage Change 

(%) 

Urban Areas 120 180 +60 +50 

Forests 400 320 -80 -20 

Agricultural 

Land 
350 370 +20 +5.7 

Water Bodies 50 50 0 0 

3.2. Model Architecture 

This paper used a CNN to detect chang, a pre-trained VGG16 model that was trimmed to the dataset 

properties. VGG16, originally developed for image classification, is popular for deep architecture and 

the extraction of hierarchical features from pictures. To detect change, the model had to learn and 

discriminate between change and non-change regions between satellite images. Our chosen model 

was VGG16, which is well-known for spatial pattern recognition and its adaptability in transfer 

learning – weights of an already trained model can be optimized for a new dataset.  

The CNN model we employed in this work had a supervised learning technique with training data 

from satellite images and associated labeled ground truth data. These ground truths were pixels 

manually labelled with places where significant transitions had taken place over two time-horizons. 

These labeled regions offered the model the oversight needed to train it on the properties that separate 

transformed regions from unchanged [6]. Its training data had been carefully constructed to cover the 

wide range of land-use changes (urban development, clearing forests, agricultural conversion) to 

ensure that the model could be generalised across all such land-use transformations.  The model was 

optimized using the Adam optimizer which is commonly used for deep learning training because of 

its fast learning speed and performance on large data. It settled for a learning rate of 0.0001 to avoid 

fast convergence without going over the bounds of optimality. The batch size was 32 — this is the 

usual, good-sized number for a training speed and memory usage that balances. This last layer in 

CNN structure was adjusted to create a binary classification map. All the pixels in the final map were 

either "changed" (with a value of 1) or "unchanged" (with a value of 0), depending on what the learned 

features were. This dichotomous division allowed pinpointing regions where major developments 
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had taken place in the two time periods.  We tested the architecture of the model (which combines 

VGG16’s feature extraction along with a final classification layer for change detection) against a test 

set of pair-to-pair satellite image pairs not trained on. The model performance was measured by 

standard measures like accuracy, precision, recall and F1 score [7]. Table 2 shows the numerical 

results of how well the model has done under various land-cover change scenarios. These findings 

give a measure of how well the model was able to catch different forms of environmental change, 

such as urbanisation, clearing forests and land development.  

Table 2: Performance of CNN Model in Change Detection 

Change Type Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

Urbanization 92.4 91.5 93.2 92.3 

Deforestation 88.1 85.7 89.5 87.6 

Agricultural Expansion 90.3 89.2 91.7 90.4 

Overall 90.3 88.8 91.5 90.1 

3.3. Evaluation Metrics 

A variety of commonly used measures – accuracy, precision, recall, F1-score – were applied to 

analyse the effectiveness of the AI-based change detection model. These parameters help understand 

different features of the model’s detection and classification of satellite image changes. The easiest 

of these is accuracy — the percent of correctly detected pixels (both altered and unaltered). It is the 

sum of correct predictions (true positives and true negatives) divided by the number of pixels in the 

image. Yet precision and recall are more subtle ratings when datasets are unbalanced or the cost of 

false positives and false negatives is unbalanced. This is where accuracy is the fact that the model can 

be used to detect changed pixels, without mistakenly marking changed regions as unchanged. It’s 

calculated as the ratio of true positives (properly detected changes) to all pixels labelled changed (true 

positives + false positives). Recall (or sensitivity) refers to the model's detection of all real change 

with as little false negatives as possible. It is equal to the sum of the number of positives to the number 

of real-world changes (positives minus negatives). F1-score is the performance metric (which 

balances accuracy and recall). It is the harmonic middle between precision and recall, providing only 

one measure which penalises high precision or recall values. The formula for F1-score is: 

 F1-score=2×
Precision×Recall

Precision+Recall
 (1) 

In addition to these metrics, this paper compared the performance of the Al-driven model with 

traditional change detection techniques, such as image differencing, to evaluate improvements in 

automation and accuracy. Image differencing, while useful for detecting gross changes, often 

struggles with subtle or complex alterations in land cover [8]. By comparing the F1-scores and other 

metrics of the Al-driven model against the traditional methods, it became evident that the Al model 

provided superior detection capabilities, especially in regions with heterogeneous landscapes or 

mixed land-use changes. This demonstrated that Al-driven models can significantly enhance both the 

speed and accuracy of change detection processes. 

4. Experimental Results 

4.1. Model Performance 

The artificial intelligence model was much better than the traditional method at identifying satellite 

image change detection. The CNN had an overall precision of 92% which is a lot better than the older 

image differencing method, which was only 78%. Not only the accuracy, but the CNN model had a 
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precision of 91% and a recall of 93%. These numbers are a measure of how much the model was able 

to predict changes in real time (precision) and have a good probability of getting every real change 

right (recall). Our F1-score (for precision and recall) was set to 0.92 which also shows that the model 

had a good equilibrium in detection of actual changes and zero false positives or false negatives. 

Comparing the old image differencing method with the CNN model, it was easy to see that the CNN 

model spied more real-world variations. The more basic and fast option of image differencing was 

often unsuited to pick up on small variations or small environmental changes, because pixel value 

subtraction could be subject to noise, seasonal variation or cloud cover. This CNN-model and the 

conventional approaches perform better (see Table 3, accuracy and F1-score for CNN model are much 

higher). This comparison shows the clear advantage of CNN for change detection in large and noisy 

systems [9]. Because the AI model can learn spatial patterns and spatial correspondences between 

pixels, it’s able to adapt to different kinds of changes in the environment much better than any 

traditional approach. 

Table 3: Comparison of Model Performance 

Metric CNN Model Image Differencing 

Accuracy (%) 92 78 

Precision (%) 91 74 

Recall (%) 93 76 

F1-score 0.92 0.74 

4.2. Change Detection Accuracy 

The model was highly effective in detecting all land-use transformations including deforestation and 

urbanization. The CNN model was also quite precise for deforestation with 94% accuracy, predicting 

areas where the forest had lapsed in recent times. This accuracy was due in large part to the model 

learning features deep from the satellite imagery and distinguishing vegetation decline areas from 

natural variability like seasons. Urbanisation was slightly less accurate, 89%, but a much better result 

than using traditional image differencing that generally couldn’t show slow, incremental 

transformations. The CNN model could detect urbanisation into former farm or rural territory, an 

under-recognised but important shift that is not easily detected by other approaches. Here the spatial 

resolution and the precision of the AI model played a major role (especially in planning and 

monitoring applications). In both deforestation and urbanization detection cases, CNN beat image 

differencing as outlined in Table 4. Traditional techniques picked up on the most dramatic, massive 

changes, but they didn’t pick up on the more incremental, slow-moving changes to the landscape [10]. 

AI-powered methods, however, showed they could detect such subtle shifts, which are typically 

important to environmental monitoring and city planning. 

Table 4: Change Detection Accuracy for Deforestation and Urbanization 

Change Type CNN Model Accuracy (%) Image Differencing Accuracy (%) 

Deforestation 94 78 

Urbanization 89 75 

5. Conclusion 

This study demonstrates the significant advantages of using AI-driven change detection models, 

particularly Convolutional Neural Networks (CNNs), for satellite imagery analysis in environmental 

monitoring. The results show that the CNN model outperforms traditional methods like image 

differencing in detecting subtle and complex changes in land cover, such as deforestation and 
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urbanization. The accuracy, precision, and recall metrics for the CNN-based model are notably higher, 

highlighting its ability to capture real-world changes with greater reliability. Moreover, the 

integration of AI with Geographic Information Systems (GIS) further enhances the scalability and 

efficiency of the monitoring process. By automating change detection and real-time updates, AI-

powered GIS systems can support proactive decision-making in fields such as climate change, urban 

planning, and disaster management. The ability of deep learning models to process large datasets 

quickly and accurately opens new possibilities for environmental monitoring. However, challenges 

remain, particularly in terms of data availability, model interpretability, and the computational 

resources required for training and deployment. Despite these challenges, the promising results of 

this study suggest that AI-driven change detection will play an increasingly important role in the 

future of environmental monitoring, providing more accurate, timely, and scalable solutions for 

addressing global environmental issues. Further research into improving model training, 

interpretability, and application to diverse environmental contexts will be crucial in realizing the full 

potential of AI in this field. 
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