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Abstract: This literature review aims to discuss the application of graph theory in analyzing 

social and information networks. We first introduce some key network properties, such as 

clustering coefficient (transitivity), centrality, and diameter, which are crucial for 

understanding the dynamics of information dissemination within networks. Then, we talk 

about, based on these properties, how graph theory can be utilized to analyze social and 

information networks. Lastly, we provide an overview of various fundamental social and 

information models including the SIR model and the Linear Threshold model. For the SIR 

model, we go over the definition of the SIR model, explore the mathematical methods applied 

to analyze the SIR model, provide one example of how the SIR model reflects the nodes’ 

status in the network, and discuss the application of the SIR model in Covid-19 epidemic. For 

the Linear Threshold model, we review its basic properties and explain how it can be used to 

calculate the maximum influence in a network. 

Keywords: Graph Theory, Social and Information Networks, SIR model, and Linear 

Threshold model. 

1. Introduction 

In modern society, the rapid development of the internet and online platforms has transformed the 

way information is exchanged and disseminated. Understanding the structure, dynamics, and 

mechanisms behind information spreading within society has become increasingly important. Under 

such circumstances, social and information networks, serving as reflections of exchanges of 

information, social influences, and ideas between people, organizations, and groups, are crucial for 

exploring the information spreading. These networks offer valuable insights into how information 

propagates and how it can be shaped by various factors. In order to quantitatively analyze the 

information spreading in these networks and find out the factors influencing the spreading of 

information, statistical methods are indispensable for an effective and quick analysis. By employing 

graph theory and related techniques, researchers can gain deeper insights into the fundamental 

characteristics of social and information networks. For example, the classical sociological theories 

always believe the configuration of the network and the connections between nodes can reveal the 

relationship between personal health and community resilience, which is important in fields like 

economics, public health, and criminology [1] [2]. Usually, researchers use quantitative or qualitative 

statistical methods to analyze and collect information, which allows them to understand key terms of 

data like density and strength. However, due to the complexity of the real-world example and the 
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huge workload of the statistical methods, it is hard for researchers to realize some properties of the 

information, such as the clustering effects, and analyze a large amount of information in an efficient 

way [3]. On the other hand, by creating suitable and desired graphs, researchers can use the 

characteristics of the networks to learn about the spreading of the information and the overall 

distribution of the nodes like clustering coefficient and centrality. Under such circumstances, 

scientists can analyze the behaviors of information in social structures and facilitate the creation and 

application of computation models [4]. In this review, we will learn about some important graph 

theory parameters that are useful in the analysis of social and information networks and review some 

fundamental social and information models. 

2. Crucial Parameters of Networks in Graph Theory 

Networks usually refer to a graph consisting of multiple nodes or vertices connected by edges. In 

social and information networks, the whole graph can be considered an ensemble of information such 

that nodes represent the sources and edges represent the connection between these sources. In graph 

theory, multiple properties of networks can facilitate researchers in analyzing and learning the details 

and distribution of the whole network. Hence, researchers can use the properties of networks to 

understand the structures and dynamics of information and try to control them. In this chapter, we 

will clarify the definition and meaning of transitivity (clustering coefficient), centrality, and diameter. 

2.1. Clustering Coefficient (Transitivity) 

The clustering coefficient is defined as the degree that the nodes in a graph tend to cluster together 

and on the other hand, it represents the fraction of triangles in the network. To be more specific, there 

are two types of clustering coefficients: local clustering coefficient and global clustering coefficient. 

The local clustering coefficient measures the connection of a node’s neighborhood, while the global 

clustering coefficient represents the ratio of existing edges and the possible connections between 

nodes, so the global clustering coefficient can demonstrate the overall clustering in the whole network 

[5]. The concepts of these two clustering coefficients allow researchers to understand the 

interconnected subgroups of the entire network and help to identify the structure of the networks, 

helping improve the understanding of some structural properties of complex networks, such as social 

networks, biological networks, and technological networks [6]. 

2.2. Centrality 

Centrality measures the ranking of nodes, so it can be used to determine the most important and 

influential node in a network [6]. Based on the definitions of importance or type of influence of the 

network, there are various types of centralities, including betweenness centrality and closeness 

centrality. Betweenness Centrality refers to the fraction of the shortest path passing through a node, 

it enumerates the number of times a special node passes by the shortest paths between two other nodes. 

Hence, the node with high betweenness centrality is crucial for highlighting the information flow in 

the network [7]. On the other hand, Closeness centrality is defined as the inverse of the average 

distance of a node to all other nodes in the network. Therefore, the closeness centralities of a network 

indicate the overall distribution of a graph, especially the compactness of a network. However, 

closeness centrality might be indispensable when the degree distribution is known, since researchers 

have demonstrated that the inverse of the closeness centrality is relatively proportional to the 

logarithm of the degree number [8]. 
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2.3. Diameter 

Diameter in the graph theory refers to the largest distance between two connected nodes. The diameter 

is the key to depicting the overall structure and connectivity of a network, so it has been applied in a 

large number of social and information networks. One of the most influential ideas related to 

diameters is the six-degree separation. This theory proposes that in the real world, any two arbitrary 

people can be connected in a social chain with a length of at most six. Past research revealed that for 

a random generalized network, the typical separation between two nodes in a graph is close to the 

fraction between the logarithm of the total number of nodes in the network and the logarithm of 

average edges per node [5]. If we consider the whole society as a social network, the total number of 

nodes is approximately 7,000,000,000, and the average edges per node are approximately 50. Based 

on this data, the calculated typical node distance is 5.79, which is less than 6. This result indicates 

that the world can be considered a “small world” network. Even though the network size is large 

enough, the diameter of the network is still small. 

3. Social and Information Network Models 

The properties of social and information networks reveal that they can be used effectively in many 

real-life examples. For example, a social and information network can be applied in epidemiology 

while it is regarded as a virus propagation information assembling like the propagation of Covid-19 

[9]. In this case, nodes represent individuals in the network and information spreading represents the 

infection of the individual or recovery of an individual. However, in real life, many factors can affect 

information propagation. As a result, it is impossible to design a precise social and information 

network that is able to deal with such imponderable information. So, developing a specific social and 

information model to simulate the instance in real life is necessary. Researchers have divided the 

social and information into two different parts based on the information diffusion process, methods, 

and influence, and created two models accordingly: the explanatory model and the predictive model. 

Explanatory models describe how information propagation within a network, can also be divided into 

two types of models: epidemic models and influence models. Epidemic models as the name says 

always are used to simulate the propagation of an epidemic. Influence models on the other hand focus 

on the influence of some specific nodes in the network. Predictive models describe the prediction of 

information propagation in a network, and they include the independent cascade model (ICM), linear 

threshold model (LTM), and game theory model (GTM). The ICM model focuses on activating 

inactive nodes in social networks and the node can only be active once while the nodes can be active 

multiple times only if the influence on that node exceeds a certain level. The GTM model is used to 

consider the methods that maximize the profits of spreading information [9]. In this review, we will 

mainly discuss an epidemic model SIR and a linear threshold model. 

3.1. SIR model 

SIR model stands for susceptible (S), infectious (I), and recovered (R). These three terms refer to 

three stages in viral spreading: susceptible means the node in the network has no awareness of the 

information, infectious means the node does know the information and is spreading the information 

right now, and recovered means the node no longer spreads the information anymore. In a fully 

connected network, mathematical methods are required to analyze the SIR model. We use β to 

represent the average contact rate of the nodes in a network which means the average possibility that 

a person is in contact per unit time. γ is defined as the recovery rate which is the probability that an 

infectious node becomes recovered in the next unit of time. To find out the overall distribution of the 

network, s(t) is defined as the fraction of susceptible nodes at time t, x(t) is defined as the fraction of 
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infected nodes at time t, and r(t) is defined as the fraction of recovered time t in the network. In such 

case, we can use parameters to estimate the rate of change of SIR states: 

ds

dt
= −βṡẋ 

dx

dt
= βṡẋ − xγ̇ 

dr

dt
= xγ̇ 

(1) 

The solutions to these equations are: 

s = s0e
−

β
γ
r
 

dr

dt
= γ(1 − r − s0e

−
β
γ
r
) 

s + x + r = 1 

(2) 

By solving the problem numerically, we can finally get the solution of s, x, and r. Therefore, 

scientists are able to analyze the fraction of the population as a function of time t [10]. Figure 1 is an 

example of application of SIR model in estimating the fraction of susceptible, infected, and recovered 

people in a network as the increase of time. Under a certain initial condition, the results of the 

susceptible, infected, and recovered rate are also fit with the corresponding solutions of s, x, and r. 

 

Figure 1: Population of susceptible, infected and recovered individuals relative to time t in a standard 

SIR model. x-axis represents time and y-axis represents population fraction. 

Due to the characteristics of the node’s representations, the SIR model is usually applied in the 

field of virus spreading and it is one of the most commonly used models in epidemiology. During the 

pandemic of Covid-19, researchers have applied the SIR models to estimate the progression of the 

pandemic using the existing Covid-19 data and they realized that compared to many more 

complicated models, the SIR model can effectively and simply predict the epidemic dynamics using 

fewer requirements [11]. However, the SIR model is a simple model with several limitations. It cannot 

handle the problem with more restrictions or account complex interaction between nodes and 

connections. Hence, the exploration of new models and more complicated models is inevitable. 
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3.2. Linear Threshold Model (LTM) 

In the Linear Threshold Model, the nodes have two states: active and inactive, and each node has a 

threshold 𝝉 such that the node can only be active if and only if the number of active neighbor node m 

and the number of total neighbor nodes k satisfy the condition  
𝒎

𝒌
≥ 𝝉  [12]. Once the node is activated, 

the node is no longer be able to deactivate, so, the nodes that have potential to be activated will 

eventually become active if there is no time limit and there is a possibility that a spreading event in 

linear threshold model evolves into a global cascade like contagious epidemic. To learn about the 

threshold of global cascade, researchers define the probability that a node with degree k which means 

k neighbors turns active with one active connection be 𝑝𝑘 = Ρ(𝜏 ≤
1

𝑘
). Under such condition, the 

threshold for global cascade will be: 

 T =
〈p
k
(k2−k)〉

〈k〉
 (3) 

The equation 3.3, to be more specific, represents the expected number of new activations that a 

node which just turn active will generate. If this value is large than 1, there will be global cascades 

while if the value is less than or equal to 1, there will be small cascades. Therefore, for situations 

under the linear threshold model, scientists can calculate the maximization influence in large 

networks [13].  

4. Discussion 

In this literature review, we discuss a comprehensive foundation of key terms graph theory and their 

applications in social and information networks. They have multiple advantages in the analysis of the 

information propagation, but they also have some limitations in their practical use. 

The review of some important parameters in graph theory including clustering coefficient 

(transitivity), centrality, and diameter uses some references that introduce the definition of these 

parameters and the insights into how these parameters reflect the network structure, node connections, 

and the influence of some specific nodes.  These references always present a well-defined definition 

of the parameter and reveal part of the application of these parameters. However, these references 

always focus on static models and ignore their application in temporal dynamics, in which the 

network will evolve with time. Some recent theories have been incorporated into the fields of 

temporal or dynamics networks, and this extends the scope of the network application and enhances 

the development of some new network theories. For example, researchers have developed a dynamic-

sensitive centrality measure that can locate the local influential nodes in temporal networks, which 

captures the dynamic change of the network over time. This approach enables researchers to 

effectively identify the key influencers in networks and outperforms traditional centralities in 

accuracy in temporal networks [14]. 

The SIR model can be applied to many real-life situations and offers a practical framework for 

understanding the spread of infections in social networks [10]. During the COVID-19 epidemic, 

researchers have shown that the SIR model can estimate the spreading of COVID-19 effectively even 

if it is simply [11]. Hence, the simplicity and effectiveness of the model make it a valuable tool for 

epidemiological analysis, allowing for rapid assessments of disease spread. However, the SIR 

model’s limitations lie in its assumptions of homogeneity among nodes, as it does not capture 

complex interactions such as super-spreader events or varied recovery rates among populations. 

Enhancing the model with features like multi-layer structures or time-varying connections could 

extend the situations in that it can be used, but the structure of the model still makes it unable to 

handle cases in which researchers pay attention to behaviors spreading. 
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The Linear Threshold and Independent Cascade models unlike the SIR model mainly stimulate 

the changes of behaviors or propagation of actions. These models are important in exploring how 

initial influences spread across the networks, especially because they illustrate how thresholds and 

probabilistic interactions can drive large-scale behavior change. The improvement of the multi-layer 

network model can increase the application of the model in real life and handle more complicated 

situations. However, these models have limitations, since they assume static influence thresholds and 

do not account for complex social interactions, feedback loops, or adaptive behaviors among nodes, 

which can reduce their accuracy in dynamic networks. 

5. Conclusion 

In this review, we study the importance of graph theory in social and information networks, discussing 

how key parameters in graph theory and models help to understand the network structure and predict 

the information propagation within the network. To be more specific, we talk about the fundamental 

network properties like clustering coefficient, centrality, and diameter and how they can be applied 

in estimating nodes' influence in the network, connectivity of the nodes, and the overall structure of 

the network. In addition, we explore the SIR model and the Linear Threshold model and how they 

can be applied in networks. The SIR model can be used as a tool for understanding the spreading of 

infected virus while the Linear Threshold model can be used to capture the behavioral changes or 

influence cascade within the network. Even though, for each parameter and model, there are 

underlying limitations, there are still many aspects that we can apply in the social and information 

networks. Furthermore, these limitations indicate the potential for the field to be explored and created. 

There has been research focusing on how multi-layer models or temporal networks reflect real-life 

networks. For example, there is research modeling the SIR in multi-layer networks and showing the 

impact of the epidemic in multi-layer systems [15]. Overall, graph theory provides a powerful tool 

for scientists to analyze social and information networks, and the sinuousness of real-life cases makes 

it possible for researchers to design more complicated and elaborate models that can be applied in 

reality. 
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