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Abstract: The efficient numerical method of Maxwell’s equation needs to satisfy the 

interface condition of electromagnetic field, so the finite element method of the 

electromagnetic field problem generally uses the edge finite element space. Compared with 

the traditional nodal element, the disadvantage of the edge element is that it has many 

degrees of freedom and the condition number of the linear system is poor. In this paper, a 

method based on Hodge decomposition is used to convert Maxwell’s equation into a 

standard elliptic boundary value problem, then use node element to solve the ellipse 

problem and then get the numerical solution of Maxwell’s equation. Because Hodge 

decomposition is used, non-physical numerical solutions are avoided in numerical solutions. 

This paper uses Superior Capsular Reconstruction (SCR) and Polynomial Preserving 

Recovery (PPR) techniques to post-process the finite element numerical solution, which 

effectively improves the accuracy of the numerical solution, and establishes a reliable 

posterior error indicator and adaptive finite element method. Finally, four examples are 

given to verify the effectiveness and accuracy of the method. 

Keywords: Hodge decomposition, Node finite element method, SCR, PPR, Adap-tive finite 

element method 

1. Introduction 

The Maxwell’s equations are a set of partial differential equations that describe the interrelationship 

between electric and magnetic fields. Discretization methods for solving Maxwell’s equations 

include finite difference methods , finite volume methods [1-3], spectral methods [4], and finite 

element methods [5-13]. In 2014, Brenner, Gedicke, and Sung extended the Hodge decomposition 

method to two-dimensional time-harmonic Maxwell’s equations with anisotropic permittivity and 

impedance boundary conditions [14]. They derived error estimates for the P1 finite element method 

based on Hodge decomposition and presented numerical experimental results for metamaterials and 

electromagnetic cloaking. The main idea of this thesis originates from Brenner, Gedicke, and 

Sung’s proposal to convert Maxwell’s equations into standard second-order elliptic boundary value 

problems based on Hodge decomposition, and then to solve them using standard nodal finite 

element discretization methods. Therefore, after obtaining the numerical solution in this paper, it is 

post-processed using conventional techniques, specifically the Superconvergent Patch Recovery 

(SPR) and Polynomial Preserving Recovery (PPR) methods, to improve the approximation accuracy 

of the curl and bcurl of the numerical solution. 
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2. Statement of the result 

This paper employs a node adaptive finite element method based on Hodge decomposition to solve 

the two-dimensional Maxwell’s equations. The advantages of using this approach are: 1. It 

transforms the solution of Maxwell’s equations into the solution of standard elliptic boundary value 

problems, for which there are very mature algorithms. 2. Compared to edge element basis functions, 

the computation involving node basis functions is more cumbersome and computationally intensive; 

hence, this method simplifies the computation. 

The essence of solving the two-dimensional Maxwell’s equations in this paper is to address a 

standard second-order scalar elliptic boundary value problem. Therefore, after converting 

Maxwell’s equations into a standard second-order scalar elliptic boundary value problem using the 

Hodge decomposition method, a nodal finite element method is applied to find the solution. The 

numerical solution obtained for the elliptic boundary value problem, ϕℎ, φj,ℎ, cj,ℎ, is then used to 

derive the numerical solution for Maxwell’s equations uℎ = ∇ × ϕℎ + ∑ ci,ℎ
m
i=1 φi,ℎ.The numerical 

solution uℎ  is piecewise constant, thus finite element gradient reconstruction techniques such as 

SCR (Superconvergent Patch Recovery) and PPR (Polynomial Preserving Recovery) are utilized to 

effectively enhance the precision of the numerical solution. Based on the research presented, this 

paper establishes a reliable a posteriori error indicator and an adaptive finite element method. For 

simplicity, the dielectric constant and permeability in the numerical experiments are set to 1, and 

the boundary conditions are assumed to be perfectly conducting, which, as demonstrated by the 

results of the examples, improves the rate of convergence. 

In this paper, the dielectric constant and permeability are taken as 1, and Maxwell’s’s equations 

are considered with perfectly conducting boundaries. Future research can continue to explore the 

node adaptive finite element analysis based on Hodge decomposition for Maxwell’s’s equations 

with general dielectric and magnetic properties. Moreover, since this paper addresses the two-

dimensional Maxwell’s equations, it is also feasible to consider applying the node adaptive finite 

element method based on Hodge decomposition to investigate the three-dimensional Maxwell’s 

equations in the future. 

3. Preliminaries 

3.1. Maxwell’s equations 

 ∇ × E = −
∂B

∂t
, (2.1) 

 ∇ × H = J+
∂D

∂t
, (2.2) 

 ∇ ⋅ D = q, (2.3) 

 ∇ ⋅ B = 0, (2.4) 

The Maxwell’s equations comprehensively and specifically describe the three fundamental laws of 

electromagnetism: Gauss’s law, Ampère’s law, and Faraday’s law. Here, E represents the electric 

field, H the magnetic field, Dthe electric flux density, B the magnetic flux density, and J the current 

density; all are functions of time t  and space x . q  is the charge density, a scalar quantity. By 

definition, moving charges generate currents, and the continuity equation can explain the 

relationship between Jand q. 

 ∇ ⋅ J = −
∂q

∂t
. (2.5) 
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The solution of Maxwell’s equations also requires the following interface conditions: 

 n × E = 0, (2.6) 

 n × H = Js, (2.7) 

 n ⋅ D = qs, (2.8) 

 n ⋅ B = 0, (2.9) 

Here, qs is the external surface charge density on the boundary surface, and Js is the external 

surface current density on the boundary surface. When it is an insulating medium, qs = 0 and Js =
0. 

To avoid using two unknowns, one can eliminate E(orD) or H(orB) from Maxwell’s equations 

to obtain the main research model of this paper. The derivation process of this model is referenced 

in [15]. The model studied in this paper has only one unknown E and the model is given below: 

 ∇ × μ−1∇ × E − κ2(ϵE) = f, in Ω, (2.10) 

 n × E = 0, on ∂Ω, (2.11) 

where E ∈ H0(curl;Ω) ∩ H(div0;Ω; ϵ), and f is the current density. 

3.2. Two-dimensional hodge decomposition 

3.2.1. Properties of two-dimensional divergence-free and curl-free vector fields 

A vector field v ∈ [L2(Ω)]2 satisfies ∇ ⋅ v = 0, ⟨v ⋅ n, 1⟩Γj = 0,0 ≤ j ≤ n,if and only if there exists a 

function ϕ ∈ H1(Ω)  such that v = ∇ × ϕ, where ∇ × ϕ = (
∂ϕ

∂x2
, −

∂ϕ

∂x1
)  [16]. Moreover, the 

uniqueness of ϕ is determined by a constant. 

Note 1 If the region Ω is simply connected then v = ∇ × ϕ if and only if ∇ ⋅ v = 0. 
A vector field v ∈ [L2(Ω)]2  satisfies ∇ × v = 0, ⟨v ⋅ t, 1⟩Γj = 0,0 ≤ j ≤ n, if and only if there 

exists a function ϕ ∈ H1(Ω) such that v = ∇ϕ,where t is a unit tangent vector [16]. In addition, the 

uniqueness of ϕ is determined by a constant. 

3.2.2. Hodge decomposition 

The following introduces the Hodge decomposition. The decomposition of H(div0; Ω; ϵ)  is as 

follows: 

 H (div0; Ω; ϵ) = K+ H, (2.12) 

Where 

K = ϵ−1∇ × H1(Ω) = {ϵ−1∇ × ϕ: ϕ ∈ H1(Ω)}, 

H = ∇ × ℋ(Ω; ϵ) = {∇ × ϕ:ϕ ∈ ℋ(Ω; ϵ)}. 

3.3. Finite element gradient recovery 

Finite element recovery technology is a post-processing method, mainly to obtain an improved 

solution, which is obtained by reconstructing the finite element solution. Finite element recovery 

can not only obtain better gradient approximation but also perform error estimation. SCR Recovery 
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and PPR Recovery are Gradient Recovery which employ post-processing methods based on the 

least squares approach. 

SCR Recovery The SCR method involves reconstructing the gradient of the finite element 

solution by fitting a linear polynomial to the solution values at nodes surrounding a particular node 

of interest, using the least squares technique. This method is advantageous because it provides a 

Superconvergent gradient approximation, which can be used for error estimation and mesh 

refinement in adaptive finite element methods. 

PPR Recovery The PPR method, on the other hand, fits a quadratic polynomial to the solution 

values at nodes in the vicinity of a node of interest. This process requires at least six nodes to 

perform the fitting. The PPR method is known for preserving the polynomial nature of the solution, 

which means that if the true solution is a polynomial of a certain degree, the PPR method will 

exactly reproduce this polynomial within the patch. This property makes PPR particularly useful for 

maintaining the accuracy of the solution in regions where the solution behaves polynomially. 

Comparing the definitions of SCR and PPR reveals their main differences. 

SCR selects sample points that are symmetrically distributed around the point of reconstruction, 

with at least four points required. It fits a linear polynomial to the function values at these nodes 

using the least squares method and then uses the derivatives of this polynomial to obtain the 

recovered gradient. This method is relatively simple in terms of computation and implementation. 

PPR, in contrast, requires the selection of no fewer than six nodes that do not lie on a single 

quadratic curve. It involves fitting a quadratic polynomial p2 to the nodes and their function values 

through a local least squares approach. The gradient of this polynomial is then used to recover the 

numerical solution’s gradient at the point of interest, (Gℎuℎ)(z) = ∇p2(z), and it maintains the 

polynomial nature of the solution [17]. Due to the higher degree of the polynomial and the larger 

number of nodes involved, PPR involves more computational work and has a more complex 

procedure compared to SCR. 

4. Numerical Examples 

This chapter presents various analytical solutions for different domains. Error figures are provided 

to assess the accuracy of the method. The parameters are set as μ, κ, ϵ = 1 for simplicity and to 

facilitate the comparison of results.  

The computational domain is taken as Ω = (0,4)2\[1,3]2,  The right-hand side term is a 

discontinuous function: 

f(x) = {
[1 + x, 0], x<y,3<x<4,

[0,1 + y], else.
 

Utilizing Hodge decomposition for the discrete solution of the equation yields graphical results. 

  

Figure 1: Adaptive mesh refinement 2 times Figure 2: Adaptive mesh refinement 3 23times 
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Figure 3: Adaptive mesh refinement 4 times Figure 4: The recovery indicator times 

Figures 1 to 3 are the diagrams obtained from the adaptive mesh refinement performed 2, 3, and 

4 times, respectively. Figure 4 is the error convergence order of the recovery indicator. Since the 

right-hand side term f  is known in this example, but the true solution is unknown, the error 

convergence order between the true solution and the numerical solution cannot be determined. The 

region is a non-simply connected domain, and during adaptive refinement, it is evident that the 

mesh is refined at the four inner corners, with an error convergence order of O(ℎ). 

5. Conclusion 

This paper presents a novel approach to solving two-dimensional Maxwell's equations by 

transforming them into standard elliptic boundary value problems using the Hodge decomposition 

method. By employing a node finite element method, the proposed approach circumvents the 

typical issues associated with edge elements, such as a high number of degrees of freedom and poor 

condition numbers in the resulting linear systems. The incorporation of Superconvergent Patch 

Recovery (SCR) and Polynomial Preserving Recovery (PPR) post-processing techniques further 

enhances the accuracy of the numerical solutions, yielding reliable results that are validated by four 

representative examples. The significance of this study lies in its potential to streamline and 

improve numerical solutions to Maxwell's equations, especially in cases with perfectly conducting 

boundaries. By relying on well-established methods for elliptic boundary value problems, this 

approach contributes a computationally viable alternative to traditional edge finite elements, 

broadening the scope for numerical applications in electromagnetic field modeling. However, this 

work also has certain limitations. The analysis is confined to two-dimensional Maxwell's equations 

and assumes a dielectric constant and permeability of one, with perfectly conducting boundaries. 

Future research could extend this approach to three-dimensional problems and explore scenarios 

with variable dielectric and magnetic properties. Additionally, further refinement of the adaptive 

strategy could be pursued to optimize computational efficiency, particularly in more complex 

boundary conditions and material configurations. 
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