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Abstract: This thesis provides an introductory exploration of the Weil conjectures, focusing 

on the deep connections between the zeta functions of smooth projective varieties over finite 

fields and the concept of Weil cohomology. Building on André Weil’s foundational 

conjectures, we delve into how these conjectures led to the development of cohomology 

theories capable of capturing arithmetic information about varieties over finite fields. A key 

result discussed is the Lefschetz trace formula, a powerful tool in cohomology that allows for 

the computation of point counts of varieties in terms of the traces of an endomorphism on 

cohomology groups. Through this study, we aim to outline the theoretical framework behind 

Weil cohomology and its impact on algebraic geometry. 
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1. Introduction 

The Weil conjectures, proposed by André Weil in 1949, revolutionized algebraic geometry by linking 

the arithmetic properties of varieties over finite fields with topological concepts through cohomology 

theories. For a smooth projective variety X over a finite field Fq , Weil conjectured that the zeta 

function of X , which encodes information about the number of rational points on X over finite 

extensions of Fq , is a rational function. The conjectures further predict functional properties of this 

zeta function, analogous to the classical Riemann Hypothesis, and inspired the development of 

cohomology theories in characteristic zero. These cohomology theories, referred to collectively as 

“Weil cohomology,” adhere to certain axioms that allow the application of the Lefschetz trace 

formula, which expresses the count of fixed points of an endomorphism as an alternating sum of 

traces of the induced maps on cohomology groups. This formulation was pivotal, as it enabled Pierre 

Deligne’s eventual proof of the Riemann Hypothesis for varieties over finite fields. This thesis 

provides nothing new but an detailed introduction to the concepts underlying the Weil conjectures 

and the proof of Lefschetz trace formula, with some refinements in technical proofs. 

2. Weil conjectures 

In this paper, we shall now primarily consider X as a smooth projective variety, unless stated 

otherwise. While some definitions or results could be generalized to schemes, we omit these 

generalizations for simplicity. Also, from now on, we fix an algebraic closure Fq; thus, there exists a 

unique finite extension with degree r of Fq contained in Fq, namely Fqr. 
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To begin, we define rational points of the algebraic variety over a perfect field. We follow the 

definition given by Silverman in his [1, Chapter I]. 

Definition 1. For a perfect field k with a fixed algebraic closure k¯, an affine space over k, namely 

An, is defined as the set of n-tuples 

. 

The K-rational points of An is the set An(K) := {(x1,...,xn) ∈ An | xi ∈ K} if the field extension k ⊂ 

K ⊂ k  ̄is an algebraic extension. An affine variety X = V(I) ⊂ An is defined over k if the defining ideal 

I ⊆ k¯[x1,...,xn] is prime and could be generated by polynomials in k[x1,...,xn]. The K-rational points 

of X are then defined by X(K) := X ∩ An(K). 

In a similar manner, the projective space over k is defined as 

, 

where (x0,...,xn) ∼ (y0,...,yn) if and only if there exists some λ ∈ k ×̄ such that yi = λxi. The K-rational 

points of Pn is the set Pn(K) := {[x0,...,xn] ∈ Pn | xi ∈ K}. A projective variety X = V(I) ⊂ Pn is said 

defined over k if the defining homogeneous ideal I ⊂ k¯[x0,...,xn] is prime and could be generated by 

homogenous polynomials in k[x0,...,xn]. Furthermore, we define the K-rational points of X as the set 

X(K) := X ∩ Pn(K). 

Definition 2 ([2, Section 26]). Let X be an algebraic variety over finite field Fq, denote X(Fqr) as 

the Fqr-rational points of X. The zeta function of X is a generating function involving the number of 

these rational points: 

. 

Note that Z(X,t) is a formal power series in Q[[t]]. 

Remark. Since X could be covered by finitely many affine open subsets, we can only describe 

X(Fqr) in affine case which is more explicit: If  is defined by the ideal (f1,...,fd) ⊆ 

Fq[x1,...,xn], then  

Example 3. Here we give an easy but concrete example to help us have an intuitive feeling about 

the zeta function. Suppose , it’s clear from the remark above, that #X(Fqr) is just the number 

of points in . We conclude that  

. 

In general, for the projective case , we can obtain 

 

via identifying . 

As illustrated in the above example, zeta functions exhibit rationality for affine and projective 

spaces. More generally, Weil’s conjectures reveal that rationality is a property satisfied by a broad 

class of varieties. 

Theorem 4 (Weil conjectures [3, Section 2.4]). Suppose X is a smooth projective variety over Fq 

with dim(X) = n, then it has the following properties 

(i) (Rationality): Z(X,t) ∈ Q(t), i.e., the zeta function of X is a rational function. 

(ii) (Functional equation): if E = (∆2) is the self-intersection number of the diagonal ∆ ⊆ X × X, then 

. 
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Here, E is also known as the Euler-Poincaré characteristic and denoted as χ in some references. 

(iii) (Analogue of Riemann hypothesis): We can rewrite Z(X,t) as 

 

where P0(t) = 1 − t, P2n(t) = 1 − qnt. Moreover, for all 1 ≤ i ≤ 2n − 1, there exists algebraic integers 

αi,j with absolute value qi/2 such that Pi(t) = Qj(1 − αi,jt) 

(iv) (Betti number): Define the ith Betti number of X as bi(X) := deg(Pi(t)). Then we have 

 is a reduction of a variety Y defined over the ring of integers of a 

number field K (so its ring of integers denoted as OK) modulo a prime ideal, then bi(X) is equal 

to ith Betti number of the analytification of Y ×spec(OK) spec(C). 

The proof of the Weil conjectures was achieved through a series of developments, ultimately 

culminating in Pierre Deligne’s proof in 1974. Initially, Weil himself established rationality for 

specific cases such as curves and abelian varieties [4]. Dwork successfully proved both rationality 

(general case) and functional equation in 1960 using p-adic analysis method, see [5]. Inspired by 

algebraic topology and the Lefschetz fixed point theorem, Weil proposed that the conjectures may 

follow from an appropriate cohomology theory for varieties over finite fields, with coefficients in 

characteristic-zero field. However, the proof for other two statements was still open until around 1965, 

Grothendieck and Artin introduced ℓ-adic cohomology (a variant of étale cohomology) based on the 

initial ideals of Serre, in order to tackle with rationality, functional equation and Betti number. The 

general property of étale cohomology allowed Grothendieck to give a Lefschetz fixed-point formula 

for ℓ-adic cohomology. Finally, building on these developments, Deligne gave the proof for the 

analogue of Riemann hypothesis in 1974 [6]. As we have seen, the effort to prove these conjectures 

led to the development of new areas in mathematics, including étale cohomology and ℓ-adic 

cohomology. Although these topics go beyond the scope of this thesis, interested readers may refer 

to [7] (SGA) by Grothendieck for a comprehensive introduction. 

3. Weil cohomology 

Although we will not delve into the details of étale cohomology, this section will present a broader 

perspective on cohomology theories. The Weil cohomology theory is a general concept of 

cohomology like ℓ-adic one, it’s a certain class of cohomology theories that satisfy some axioms 

(resembling from singular cohomology over C). One of the most crucial properties of it is the 

existence of the Lefschetz trace formula (let’s use this name to replace "Lefschetz fixed-point 

theorem" to emphasize trace). We’ll also see how the rationality followed easily after applying the 

Lefschetz trace formula. First, let’s state the definition of Weil cohomology, which can be found in 

[8], [9] or [3] modulo some simplifications. 

Definition 5. A Weil cohomology theory is a family of contravariant functors 

 Hi : {smooth projective variety over k} −→ {K − vector space}, i ∈ Z 

where k, K are fixed fields such that k is algebraically closed and char(K) = 0. Also, we denote H∗(X) 

as the graded K-vector space Li≥0 H
i(X), denote f∗ as the induced (grad-preserving) morphism given by 

f. Moreover, there are some given data (For the smooth projective varieties X, Y appear below, 

assume dim(X) = n, dim(Y ) = m.) 

(D1) (Cup product) There exists a map ⌣: Hi(X)×Hj(X) → Hi+j(X) for any i,j makes H∗(X) a graded-

commutative K-algebra, i.e., a ⌣ b = (−1)ijb ⌣ a if a ∈ Hi(X),b ∈ Hj(X). (By an abuse of the notation, 

we write ⌣ (a,b) as a ⌣ b.) 
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(D2) (Trace map) There exists a linear trace map TrX : H
2n(X) → K. 

(D3) (Cohomology class of cycles) For any closed subvariety Z ⊂ X of codimension c, there is a 

cohomology class cl(Z) ∈ H2c(X) given to Z. 

Furthermore, these data should satisfy a sequence of axioms 

(A1) (Finiteness) Any Hi(X) is finite-dimensional as a K-vector space. In addition, Hj(X) = 0 if j /

∈ [0,2n]. 

(A2) (Poincaré duality) The trace map TrX is an isomorphism. For 0 ≤ i ≤ 2n, the composition 

 TrX◦ ⌣: Hi(X) × H2n−i(X) −→ K, (a,b) 7−→ TrX(a ⌣ b) 

is K-bilinear and a perfect pairing. 

(A3) (Künneth formula) Let pX,pY be the projective map from X × Y to X,Y respectively. The cup 

product then induces a K-algebra homomorphism 

 

which is required to be an isomorphism. 

(A4) (Case of a point) For P = spec(k), then cl(P) = 1 and TrP (1) = 1. 

(A5) (Compatibility of trace map and cup product) For any a ∈ H2n(X),b ∈ H2m(Y ), 

TrX×Y (p
∗
Xa ⌣ p∗Y b) = TrX(a) · TrY (b). 

This indicates that the trace map is multiplicative with respect to cup product. 

(A6) (Exterior product of cohomology classes) If Z ⊂ X,W ⊂ Y are closed subvarieties, then 

cl(Z × W) = p∗X(cl(Z)) ⌣ p∗Y (cl(W)). 

Here,  is obtained from cl(Z)⊗ cl(W) via the map defined in (A3). 

So, (A6) actually says the class map should be compatible with the Künneth formula. 

(A7) (Push-forward of cohomology classes) Let f : X → Y be a morphism between X and Y . If Z 

⊂ X is a closed subvariety, then for any class ω ∈ H2m(Y ) one has 

TrX(cl(Z) ⌣ f∗(ω)) = deg(Z/f(Z))TrY (cl(f(Z)) ⌣ ω). 

(A8) (Pull-back of cohomology classes) If morphism f : X → Y and closed subvariety W ⊂ Y 

satisfying : 

(i) f−1(W) has pure dimension dim(W)+n−m, i.e., all irreducible components Z1,...,Zr of f−1(W) 

have dimension dim(W) + n − m 

(ii) Either f is flat in an open neighbourhood of W, or W is generically transverse to f, i.e., f−1(W) is 

generically reduced. 

Also, assume [f−1(W)]1 = Pr
i=1 miZi as a cycle of codimension m − dim(W), then 

r 

f∗(cl(W)) = Xmicl(Zi). 

i=1 

 
1 The bracket means the class of Z in the Chow group of codimension-(m−dim(W)) cycles on X. Recall the Chow group of 

codimension-i cycles Ai(X) is defined as the quotient group of Zi(X) by the subgroup of cycles rationally equivalent to zero, where 

Zi(X) is the group of codimension i-cycles, i.e., the free abelian group generated by codimension-i irreducible subvarieties of X. 

We call A∗(X) := ⊕iAi(X) the Chow group of X. For a detailed definition and description, please see [10, A.1] 
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Remark. From the definition of Weil cohomology, we know f∗ acts as a pull-back map on the 

cohomology group when f is a morphism between smooth projective varieties X,Y with dimension 

n,m respectively. We can also define a push-forward map for f using Poincaré duality. For ω ∈ 

Hi(X), we define f∗ω ∈ H2m−2n+i(Y ) such that 

TrY (f∗ω ⌣ µ) = TrX(ω ⌣ f∗µ) 

for any µ ∈ H2n−i(Y ). Note this definition is well-defined due to the Poincaré duality. Indeed, as TrX(ω 

⌣ f∗(·)) ∈ Hom(H2n−i(Y ),K), uniqueness of f∗ω is given by the isomorphism H2m−2n+i(Y ) ∼= 

Hom(H2n−i(Y ),K). 

Those familiar with differential topology may notice several parallels between Weil cohomology 

and classical de Rham cohomology on compact manifolds. For instance, [ω] ⌣ [µ] = [ω ∧ µ] for 

[ω] ∈ HdR
i (M),[µ] ∈ HdR

j (M) for ω,µ on a compact smooth manifold M. The trace map could be 

interpreted as the integration map: ω 7→ RM ω. It is remarkable that if X is a smooth projective variety 

over some field k embedded in C, then X(C) could be regarded as a compact complex manifold [11]. 

Next we give some famous examples of Weil cohomology. 

Example 6. The first basic example of Weil cohomology is the singular cohomology over C. 

Moreover, one may expect an analogy of de Rham theorem, if k = C, then the algebraic de 

Rham cohomology  is isomorphic to singular cohomology of analytification of X, we refer 

this to Grothendieck’s work [12]. In general, if char(X) = 0, the algebraic de Rham cohomology of X 

is always a Weil cohomology [13]. Later, we’ll define what’s an algebraic de Rham cohomology for 

smooth affine varieties and see how it fails to be a well-behaved 2cohomology when char(k) > 0. 

Example 7 ([14]). For the case char(k) > 0, one classical Weil cohomology is the ℓ-adic 

cohomology, where ℓ is a prime different with char(k) and K = Qℓ. 

3.1. Lefschetz trace formula 

Now, it’s time to present our Lefschetz trace formula, which is a key result in Weil cohomology 

theory. Roughly speaking, it states that the number of fixed points of an endomorphism on X could 

be represented as the alternating sum of the traces of induced linear map on cohomology groups. 

Theorem 8 (Lefschetz trace formula). Let X be a smooth projective variety of dimension n and 

let f : X → X be an endomorphism, then for any Weil cohomology H∗, we have 

 , 

where ∆ = {(x,y) ∈ X × X | x = y} denote the diagonal, Γf = {(x,f(x)) ∈ X × X | x ∈ X} denote the graph 

of f. 

Remark. Here Γf · ∆ represents the intersection number (counted with multiplicities) of the graph 

and the diagonal. In particular, if they intersect transversely, this number is euqal to |{x ∈ X | f(x) = 

x}|, the count of fixed points by f. 

While the proof of the trace formula is somewhat tedious and involved, it is worthwhile to go 

through it as it provides a deeper understanding of Weil cohomology. We will divide the proof into 

several steps. First, establish some useful lemmas derived from the definition of Weil cohomology. 

These can also be found in de Jong’s note [9]. 

 
2 The term ‘well-behaved’ is not rigorous; we use it here to refer to a type of cohomology that may satisfy some properties of Weil 

cohomology and admit a Lefschetz formula. 
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Lemma 9. Assume X,Y are smooth projective varieties over k with dimension n,m respectively 

and f : X → Y is an arbitrary morphism. H∗ is any Weil cohomology over a field K. Then the following 

properties valid. 

(i) The K-algebra homomorphism K → H0(X) given by K-algebra structure is an isomorphism. 

Hence, if α ∈ H0(X),β ∈ Hi(X), α ⌣ β = α · β by regarding α as an element in K. 

(ii) cl(X) = 1 ∈ H0(X). 

(iii) f∗(α ⌣ f∗γ) = f∗α ⌣ γ for any α ∈ Hi(X),γ ∈ Hj(Y ). It’s also called the projection formula. 

(iv) For any closed subvariety Z ⊂ X, f∗(cl(Z)) = deg(Z/f(Z)) · cl(f(Z)). 

(v) For , and equal to 0 otherwise. 

(vi) For α ∈ Hi(X), one has 

 

where p1,p2 are the projections from X ×X to the first and the second coordinate, respectively. 

Proof. (i). Using (A2) (Poincaré duality) for i = 0, we obtain H0(X) ∼= (H2n(X))∗. Since TrX is an 

isomorphism, we get dimK(H2n(X)) = dimK(K) = 1. Hence, the dimension of H0(X) is also 1. Moreover, 

the map K → H0(X) is injective since K is a field, hence bijective. (ii). Applying (A8) to the obvious 

map p : X → spec(k), we obtain cl(X) = p∗(cl(spec(k))) = 1 as cl(spec(k)) = 1 by (A4). 

(iii). First, by the definition of push-forward of f, we know TrY (f∗(α ⌣ f∗γ) ⌣ β) = TrX((α ⌣ f∗γ) 

⌣ f∗β) for any β ∈ H2n−(i+j)(Y ). Using the associativity and the definition of pushforward again, we 

have 

TrX((α ⌣ f∗γ) ⌣ f∗β) = TrX(α ⌣ (f∗γ ⌣ f∗β)) = TrY (f∗α ⌣ (γ ⌣ β)) = TrY ((f∗α ⌣ γ) ⌣ β). 

Therefore, for any β ∈ H2n−(i+j)(Y ), TrY (f∗(α ⌣ f∗γ) ⌣ β) = TrY ((f∗α ⌣ γ) ⌣ β). We conclude f∗(α 

⌣ f∗γ) = f∗α ⌣ γ via (A2). 

(iv) The proof is almost the same as (iii) and use (A7) for the middle step. 

(v). Note pX∗(p
∗
Y β) ∈ Hj−2m(X). So, (A1) tells us that pX∗(p

∗
Y β) = 0 automatically once j ̸= 2m. 

Indeed, if j < 2m, Hj−2m(X) = 0; if j > 2m, Hj(Y ) = 0 and then β = 0. For the case j = 2m, pX∗(p
∗
Y β) ∈ 

H0(X) ∼= K. Therefore, for any α ∈ H2n(X), one has pX∗(p∗Y β) · TrX(α) = TrX(pX∗(p∗Y β) ⌣ α) = TrX×Y 

(p∗Y β ⌣ p∗Xα) = TrY (β) · TrX(α). 

The first equality follows by the linearity of trace map and (i); the second one comes from the 

definition of push-forward of pX∗; the last one just by (A5). It follows that pX∗(p
∗
Y β) = TrY (β). (vi). 

Define φ : X ,→ X × X,x 7→ (x,f(x)) as the embedding of the graph of f. Clearly p1 ◦ φ = idX,p2 ◦ φ = f. 

Moreover, as φ is an isomorphism between X,Γf, deg(X/φ(X)) = 1. 

It follows that φ∗(cl(X)) = cl(Γf) by (iv). Therefore, 

 

Note the second equality given by (iii) and the last two just follow from the functoriality of H∗ and 

cl(X) = 1.  

With these properties of Weil cohomology, we can now proceed with linear algebra manipulations. 

Proposition 10 (Lemma 4.10, [3]). Following the setting in Theorem 8. Let {wj
2n−r}j=1,...,kr be a 

basis for H2n−r(X), ∀r. Thanks to Poincaré duality (A2), we know Hr(X) ∼= (H2n−r(X))∗ via the map ω 

7→ TrX((·) ⌣ ω). Therefore, there exists a dual basis {vi
r}i=1,...,kr for Hr(X) such that TrX(wj

2n−r ⌣ vi
r) 

= δi,j. Under these assumptions, we have 

cl . 
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Proof. Using the Künneth formula (A3), it allows us to write cl(Γf) in the following way: 

cl  

for some unique µt
j ∈ Ht(X). Indeed, as cl(Γf) ∈ H2n(X × X), (A3) shows each term of cl(Γf) comes 

from µ ⊗ ω ∈ Ht(X) ⊗ H2n−t(X),∀t. As we already fix a basis {wj
2n−t} for H2n−t(X), each µt

j is unique 

clearly. On the other hand, using Lemma 9 (iii), (vi) and substitute cl(Γf), we obtain 

 

for any fixed r and i. One remarkable is that in order to use (iii), we should commute the terms for 

both sides of the third equality. Now, using Lemma 9 (v), we know  

if t ̸= r and . Hence, f∗vi
r = Pj δij(µ

r
j) = µr

i , we’re 

done.  

Before moving to the final proof of the Lefschetz trace formula, we need one last piece from 

algebraic geometry. We’ll just state and use it without proof. 

Lemma 11 (Corollary 4.6, [3]). Let X be a smooth projective variety, if αi ∈ Ani(X) for i = 

1,...,k such that = dim(X). Then, the intersection number of αi 

α1 · ... · αk = TrX(cc(α1) ⌣ ... ⌣ cc(αk)) 

where cc is the cycle class map3. 

Finally, we conclude the proof of the Lefschetz trace formula with these elements. 

Proof. (of Theorem 8) Recall the Proposition 10, for any t, if we replace the basis of Ht(X) by 

{wj
t}j=1,...,kt, then the corresponding dual basis in H2n−t(X) should be  due to the 

graded-commutativity of H∗(X). It follows a similar result with Proposition 10, apply it to f = idX we 

obtain cl  . 

Using Lemma 11 and substitute cl(∆), cl(Γf) we have 

Γf · ∆ = TrX×X(cl(Γf) ⌣ cl(∆)) 

= TrX×X X (−1)t+t(2n−r)p∗1(f∗vir ⌣ wjt) ⌣ p∗2(wi2n−r ⌣ vj2n−t)  

r,t,i,j 

= X TrX(f∗vir ⌣ wi2n−r) · TrX(wi2n−r ⌣ vir) = X TrX(f∗vir ⌣ wi2n−r). 

 r,i r,i 

The third equality holds by observing that the terms with t ̸= 2n−r,j ̸= i are vanishing via (A1) and 

TrX(wj
2n−r ⌣ vi

r) = δi,j. Fix r, assume  for some λi,s ∈ K, then 

 
3 We actually have a well-defined (i-th) cycle class map cci : Ai(X) → H2i(X),Pmj[Vj] 7→Pmjcl(Vj) between the Chow group of 

codimensional-i cycles and the double graded Weil cohomology group. Moreover, if we equip the Chow group A∗(X) with an 

intersection product [10, A.1] to render it a Chow ring, then we derive a ring homomorphism cc : A∗(X) → H2∗(X) by putting cci 

together. It is called the cycle class map. 
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, 

where the second equation follows from Tr . We’re done! 

This leads us to an immediate application of the Lefschetz trace formula in proving the rationality 

aspect of the Weil conjecture. 

Theorem 12. Assume φ : X → X is the q-power Frobenius endomorphism of smooth projective 

variety X with dimension n over Fq, then 

. 

where Pi(t) = det(1 − tHi(φ))−1. (Hi(φ) is an abbreviation for (φ∗ | Hi(X)).) 

Proof. Some simple field theories tell us that Fqr could be described as the subfield of Fq that 

fixed by r many q-power Frobenius automorphism, i.e., Fqr = {x ∈ Fq | xqr = x}. Therefore, 

#X(Fqr) = |{x ∈ X | φr(x) = x}| = Γφr · ∆, 

the second equality is given by the fact that the graph of φr intersects transversely with the diagonal, 

see [3, Prop. 2.4]. Apply Lefschetz trace formula and substitute into the zeta function, one may expect 

. 

To conclude, we need a lemma from linear algebra: Let F be a linear endomorphism over a finite 

dimensional K-vector space V for some field K, then . 

To see this, we induct on dim(V ). The case dim(V ) = 1 is trivial. For the general case, note we 

can always assume K is algebraically closed since the lemma doesn’t depend on the ground field. 

Therefore, we can assume F has an eigenvector v ∈ V and then rewrite the matrix of F as a block 

matrix M1 ⊕ M2, where M1 is the matrix for F|span(v) and M2 is the one for F|V/span(v). By the inductive 

hypothesis, 

 

the lemma is proved. Finally, substitute F with Hi(φ), the theorem then follows by our lemma. 

4. Conclusion 

In this thesis, we explored the Weil conjecture and its profound implications for algebraic geometry, 

particularly through the application of Weil cohomology theories and the Lefschetz trace formula. By 

bridging the arithmetic properties of varieties over finite fields with topological concepts, the Weil 

conjecture has reshaped our understanding of cohomology, zeta functions, and their interconnections. 

The Lefschetz trace formula, in particular, provides a powerful mechanism for point-counting, 

revealing the intricate structure of rational points on varieties. This foundational framework not only 

contributed to Pierre Deligne’s proof of the Riemann Hypothesis for varieties over finite fields but 

also catalyzed the development of new cohomological techniques that continue to influence research 

in number theory and algebraic geometry. 
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