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Abstract: By employing a specific class of smooth functions to study a space, Morse theory 

establishes deep connections between analysis and topology. It is a classical subject of pure 

mathematics, originally pioneered by Marston Morse in the 1920s. In this article, we use 

Morse theory to present a proof of an interesting result on the knots, known as the Fáry-

Milnor theorem. We also discuss discrete Morse theory, a subject of applied mathematics 

developed by Robin Forman in the 1990s, and its application. We focus on elucidating 

especially the inherent similarity between classical Morse theory and discrete Morse theory. 
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1. Introduction 

Consider a knot, which is a one-dimensional object in the space, twisted in an arbitrary way to form 

a closed loop, like a shoelace, but with both ends connected. Mathematically, a knot can be 

understood as a continuous and injective map 𝛾: 𝑆1 → 𝐑3 . Since 𝑆1  is compact, 𝛾(𝑆1)  has the 

homeomorphism type of 𝑆1 itself. So the intrinsic topological structure of a knot 𝐾 is always merely 

a circle, but the complexity of the way 𝐾 wraps around is encoded in the map 𝛾. The simplest example 

of 𝛾 is just a plain embedding, e.g. it (denoted as 𝛾0) embeds 𝑆1 as 

 {(𝑥, 𝑦, 𝑧) ∈ 𝐑3|𝑥2 + 𝑦2 = 1, 𝑧 = 0} (1) 

Such a knot is completely without entanglement. When 𝛾 as a map becomes complicated, the knot 

𝐾 might be entangled "in an essential way". The following formal definition of the isotopy relation 

between knots captures the intuitive process of deforming a knot. 

Definition 1.1.  An isotopy from a knot (𝐾1; 𝛾1)  to another knot (𝐾2; 𝛾2)  is a homotopy 

𝑓: 𝑆1 × [0,1] → 𝐑3 from 𝛾1 to 𝛾2 (meaning a continuous map with 𝑓(−,0) = 𝛾1, 𝑓(−,1) = 𝛾2), such 

that ∀𝑡 ∈ [0,1], 𝑓(−, 𝑡) is always a knot, in the sense mentioned above. If such an 𝑓 exists, we say 

that 𝐾1 and 𝐾2 are isotopic, or equivalent. 

Definition 1.2. Any knot equivalent to 𝛾0  defined by 1.1 is said to be an unknot, or can be 

unknotted. 

Sometimes in practice, additional structure needs to be put on a knot to study it, namely the smooth 

structure. So we view 𝛾 as a smooth map between the smooth manifolds 𝑆1 and 𝐑3, hence we can 

speak of the tangent map 𝛾 ′. Since the shape of the knot is determined only by the image of 𝛾, we can 

choose any reparameterization. We can always choose one that satisfies the uniformization 
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convention: the tangent vectors are unit vectors everywhere (called the arc length reparameterization). 

To summarize, we now revise our definition of knots as follows. 

Definition 1.3. A knot 𝐾 is a smooth embedding 𝛾 from the quotient manifold 𝐑/𝐿 ≅ 𝑆1 to 𝐑3 

(i.e. a smooth map 𝛾 = (𝛾1, 𝛾2, 𝛾3): 𝐑 → 𝐑3  with 𝛾(𝑡) = 𝛾(𝑡 + 𝐿)), such that |𝛾 ′(𝑡)| = 1, ∀𝑡 ∈ 𝐑. 

The number 𝐿 is the length of 𝐾. 

Definition 1.4. The local curvature of 𝐾 is a function defined as 

 𝜅(𝑡) = |𝛾 ′′(𝑡)|,  ∀𝑡 ∈ 𝐑. (2) 

The total curvature of 𝐾 is a number that is the integration of local curvatures: 

 𝑇𝐾 : = ∫ 𝜅
𝐿

0
(𝑡)𝑑𝑡. (3) 

The local curvature reflects how curved the knot is locally at a point 𝛾(𝑡): 𝜅(𝑡) is large when 

bending very sharply, small when barely bending (and 0 when it is locally just a flat line). Imagine 

the knot as the trajectory of a uniform motion, then the curvature represents the magnitude of 

acceleration. The larger it is, the faster the point deviates. If we integrate all the local curvatures 

together, we obtain a quantity that measures the overall twistedness of the knot. The following result 

(to be proved) is a quantitative way of saying that for a knot to be linked head-to-tail, it has to be 

"sufficiently curved". 

Theorem 1.5.  𝑇𝐾 ≥ 2𝜋, for any knot 𝐾. 

The next result, originally proved by Fáry [1] and Milnor [2] and reviewed in [3], is a central 

problem that we are going to address in this article. Intuitively, it says that if a knot is not "curved 

enough", then it can be unknotted. 

Theorem 1.6.  If 𝑇𝐾 < 4𝜋, then 𝐾 is an unknot. 

Example.  Take the trefoil knot for example. It can be wrapped around a torus as below: 

 

Figure 1: Picture taken from https://mathoverflow.net/questions/91444. 

It is essentially entangled (can not be unknotted, see [4]). The torus surface can be defined by the 

equation in terms of (𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃, 𝑧): 

 (𝑟 − 2)
2
+ 𝑧2 = 1. (4) 

Observing how the trefoil knot is wrapped on that surface, we can give it a parameterization: 

 𝛾(𝑡) = ((2 + 𝑐𝑜𝑠3𝑡)𝑐𝑜𝑠2𝑡, (2 + 𝑐𝑜𝑠3𝑡)𝑠𝑖𝑛2𝑡, 𝑠𝑖𝑛3𝑡) ,  𝑡 ∈ [0,2𝜋]. (5) 

It is not an arc length parameterization. Nevertheless there is still a formula computing the 

curvature ([5] theorem 7.15): 
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 𝜅 =
|𝛾′×𝛾′′|

|𝛾′|
3

 (6) 

where × is the cross product. Plugging in the formula of 𝛾, a software computation reveals that 

 𝑇 = ∫ 𝜅
2𝜋

0
(𝑡)𝑑𝑡 > 4𝜋. (7) 

This does not violate the Fáry-Milnor theorem. Note that the theorem states that 𝑇𝐾 < 4𝜋 implies 

unknot, but does not say anything when 𝑇𝐾 ≥ 4𝜋. In fact, no matter how we deform the trefoil knot, 

the total curvature can not be less than 4𝜋. 

Remark 1.7.  We emphasize that whether a knot is an unknot or not is a topological statement. It 

is a well-defined property that does not depend on which specific smooth structure / parameterization 

is given to the knot. So in the Fáry-Milnor theorem, we are studying this topological property of a 

knot through the lens of smooth data on it, i.e. the curvatures. 

The method that we are going to employ to prove the theorem, besides basic vector calculus, is the 

Morse theory, which does not show up explicitly in the original papers of Fáry-Milnor. It is a rich 

and beautiful theory in its own right. We will give a quick review of its basics in section 2. In section 

3 we illustrate this theory with a simple and non trivial example 𝐑𝐏𝑛. We find this example very 

much exhibits the essence of Morse theory. After these preparatory works, we present in detail a proof 

of the Fáry-Milnor theorem in section 4. In the last section we study the discrete Morse theory. The 

key is to elucidate how the concepts in classical Morse theory are parallelly borrowed in the setting 

of discrete world. Then as an application, we discuss how the discrete Morse theory is related to the 

computation of simplicial homology. 

2. Review of Morse theory 

We state the basic results in classical Morse theory. The standard reference is [6] or [7]. First we need 

some definitions. Throughout, 𝑀 is a compact smooth manifold of dimension 𝑛, and 𝑓 ∈ 𝒞∞(𝑀) is a 

smooth function on it. 

Definition 2.1  For 𝑥 ∈ 𝑀, let ∇𝑥𝑓 denote the induced linear map on the tangent spaces 

 ∇𝑥𝑓: 𝑇𝑥𝑀 → 𝑇𝑓(𝑥)𝐑 = 𝐑. (8) 

In a local coordinate, we can represent the map as a 1 × 𝑛 matrix: 

 ∇𝑥𝑓 = (
∂𝑓

∂𝑥
1

(𝑥),⋯ ,
∂𝑓

∂𝑥𝑛
(𝑥)). (9) 

This is called the gradient of 𝑓 at 𝑥. 

Fix an embedding into Euclidean space of 𝑀 (which is always possible by Whitney’s theorem, see 

[8] theorem 6.15). Often by abus of notation, we understand ∇𝑥𝑓 as an element in 𝑇𝑥𝑀 (i.e. a tangent 

vector): 

 ∇𝑥𝑓 = ∑
∂𝑓

∂𝑥𝑖

𝑛
𝑖=1

(𝑥) ⋅
∂

∂𝑥𝑖
 (10) 

where {
∂

∂𝑥𝑖
} is chosen to be an orthonormal basis of 𝑇𝑥𝑀. This is well-defined (does not depend on 

the choice of the basis {
∂

∂𝑥𝑖
}), and represents the vector of steepest ascent of 𝑓 at 𝑥. 

Definition 2.2 A critical point of 𝑓 is a point 𝑝 ∈ 𝑀 such that ∇𝑝𝑓 = 0. 

Concretely, this means that 𝑓 has 0 rate of change along any direction at 𝑝. 
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Morse lemma. At a critical point 𝑝, there is a local coordinate chart (𝑥𝑖) (called a standard 

coordinate chart) centered at 𝑝 (meaning 𝑝 = (0,⋯ ,0)) in which 𝑓 can be locally expressed as 

 𝑓(𝑥) = −𝑥
1

2
− ⋯− 𝑥𝜆

2
+ 𝑥

𝜆+1

2
+ ⋯+ 𝑥𝜇

2
. (11) 

Moreover, the numbers 0 ≤ 𝜆 ≤ 𝜇 ≤ 𝑛 are uniquely determined by 𝑓 and the point 𝑝. We say that 

𝜆 is the index of 𝑝. 

As a consequence, critical points are isolated hence finitely many (since 𝑀 is compact). 

Definition 2.3.  A critical point is said to be non degenerate if 𝜇 = 𝑛, and 𝑓 is said to be a Morse 

function if all critical points of 𝑓 are non degenerate. 

As a smooth vector field, ∇𝑓 determines a flow called the gradient flow 𝑋(𝑡) (a smooth curve on 

𝑀) in the sense that 

 𝑋′(𝑡) = ∇𝑋(𝑡)𝑓. (12) 

Such a curve / flow always exists locally due to the theorem of existence and uniqueness of 

solutions of ordinary differential equations (known as the Picard-Lindelöf theorem, [9] theorem 2.2). 

If we consider the gradient flow determined by −
∇𝑓

|∇𝑓|2
 (i.e. the same flow curve but with a 

reparameterization), then ([6] theorem 3.1) we have a uniform descent and it turns out that: 

The 1st fundamental theorem of Morse theory.  Denote 𝑀𝑐 : = 𝑓−1(−∞, 𝑐], 𝑐 ∈ 𝐑. If 𝑎 < 𝑏 

and 𝑓−1[𝑎, 𝑏] contains no critical point, then we have a diffeomorphism 𝑀𝑎 ≅ 𝑀𝑏. 

In the case of the presence of critical points, we have another result ( theorem 3.2): 

The 2nd fundamental theorem of Morse theory.  If 𝑓−1[𝑎, 𝑏] contains one critical point 𝑝 and 

it is non degenerate of index 𝜆, then 𝑀(𝑏) deformation retracts onto 𝑀(𝑎) with a 𝜆-dimensional cell 

𝑒𝜆 attached (at the boundary), so that we have a homotopy equivalence 𝑀(𝑏) ≃ 𝑀(𝑎) ∪ 𝑒𝜆. 

Put together, we conclude that if 𝑓 is a Morse function with 𝑘 critical points of indices 𝜆1 ≤ ⋯ ≤
𝜆𝑘 respectively, then 𝑀 has the homotopy type 𝑒𝜆1 ∪ ⋯∪ 𝑒𝜆𝑘 of a cell complex (see the appendix of 

[10]) of exactly 𝑘 cells, one for each critical point of 𝑓. 

Remark 2.4.  A subtle issue arises when two critical points happen to have the same value. But it 

turns out that one can always perturb 𝑓 slightly so that the values are distinct (while preserving the 

indices), then the conclusion follows from the two fundamental theorems of Morse theory. 

3. Morse theory on the real projective space 𝐑𝐏𝒏 

In this section we work out explicitly the Morse theory when applied to 𝐑𝐏𝑛, the real projective space. 

Though there is no logical dependence for the subsequent sections, we found this explicit example 

very helpful during the author’s studying process of Morse theory. 

3.1. 𝑹𝑷𝑛 as a manifold 

The space 𝐑𝐏𝑛 is defined as consisting of all lines in 𝐑𝑛+1 passing through the origin. As a quotient 

space, 

 𝐑𝐏𝑛 = {(𝑥0, 𝑥1,⋯ , 𝑥𝑛) ∈ 𝐑𝑛+1 − {0}|(𝑥0,⋯ , 𝑥𝑛) ∼ (𝜆𝑥0,⋯ , 𝜆𝑥𝑛),  𝜆 ∈ 𝐑 − {0}} (13) 

or equivalently 

 𝐑𝐏𝑛 = 𝑆𝑛/{±1} = {(𝑥0,⋯ , 𝑥𝑛) ∈ 𝐑𝑛+1| ∑ 𝑥𝑖
2𝑛

𝑖=0
= 1}/(𝑥0,⋯ , 𝑥𝑛) ∼ (−𝑥0,⋯ , −𝑥𝑛). (14) 

Proposition 3.1.  𝐑𝐏𝑛 is a compact smooth manifold of dimension 𝑛. 
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Proof: Since 𝑆𝑛 is compact, 𝐑𝐏𝑛 is compact as its quotient space. To show the smoothness, we 

construct a coordinate atlas as follows. In 3.1 we denote the equivalence class of (𝑥0,⋯ , 𝑥𝑛) as 
[𝑥0,⋯ , 𝑥𝑛] (the homogeneous coordinate). Notice that 𝐑𝐏𝑛 is covered by 𝑛 + 1 open subsets 

 𝑈𝑖 : = {[𝑥0, 𝑥1,⋯ , 𝑥𝑛]|𝑥𝑖 ≠ 0},  𝑖 = 0,1,⋯ , 𝑛. (15) 

On each 𝑈𝑖, we have a well-defined continuous map 𝜑𝑖: 𝑈𝑖 → 𝐑𝑛 as 

 𝜑𝑖([𝑥0, 𝑥1,⋯ , 𝑥𝑛]) = (
𝑥

0

𝑥𝑖
,⋯ ,

𝑥𝑖−1

𝑥𝑖
,
𝑥𝑖+1

𝑥𝑖
,⋯ ,

𝑥𝑛

𝑥𝑖
) (16) 

with a continuous inverse 

 𝜑𝑖
−1

(𝑎1,⋯ , 𝑎𝑛) = [𝑎1,⋯ , 𝑎𝑖 , 1, 𝑎𝑖+1, ⋯ , 𝑎𝑛]. (17) 

It follows that 𝜑𝑖 is a homeomorphism, hence defines a coordinate chart of 𝑈𝑖 . For 𝑖 < 𝑗, on 𝑈𝑖 ∩
𝑈𝑗 = {[𝑥0, 𝑥1,⋯ , 𝑥𝑛]|𝑥𝑖, 𝑥𝑗 ≠ 0}, the coordinate transformation 

 𝜑𝑗 ∘ 𝜑𝑖
−1

(𝑎1,⋯ , 𝑎𝑛) = (
𝑎

1

𝑎𝑗
, ⋯ ,

𝑎𝑖

𝑎𝑗
,

1

𝑎𝑗
, ⋯ ,

𝑎𝑗−1

𝑎𝑗
,
𝑎𝑗+1

𝑎𝑗
, ⋯ ,

𝑎𝑛

𝑎𝑗
) (18) 

is a smooth map. We conclude that {𝑈𝑖; 𝜑𝑖}𝑖=0,1,⋯,𝑛 is a smooth atlas, and 𝐑𝐏𝑛 is a smooth manifold 

of dimension 𝑛. ▫ 

3.2. A Morse function on 𝑹𝑷𝑛 

In this subsection we construct a function on 𝐑𝐏𝑛 and show that it is a Morse function. 

The construction of the function.  Take an arbitrary sequence of numbers 𝑐0 < 𝑐1 < ⋯ < 𝑐𝑛. 

Consider the smooth function 

 𝑓(𝑥0, 𝑥1,⋯ , 𝑥𝑛) = ∑  𝑛
𝑖=0

𝑐𝑖𝑥𝑖
2
 (19) 

on 𝐑𝑛+1 . It restricts to a smooth function 𝑓|𝑆𝑛  on the unit sphere 𝑆𝑛 , which then descends to a 

function 𝑓 on 𝐑𝐏𝑛 via the identification [sn]. That is, 

 𝑓|𝑆𝑛 = 𝑓∘𝑞 (20) 

where 𝑞 denotes the quotient map 𝑆𝑛 → 𝑆𝑛/{±1} = 𝐑𝐏𝑛. 

Proposition 3.2.  𝑓 is a well-defined smooth function. 

Proof: It is well-defined since 

 𝑓(𝑥0, 𝑥1,⋯ , 𝑥𝑛) = 𝑓(−𝑥0, −𝑥1,⋯ , −𝑥𝑛). (21) 

As a polynomial, it is clearly smooth. ▫ 

We can easily compute the gradient of 𝑓: 

 ∇𝑥𝑓 = (
∂𝑓

∂𝑥
0

(𝑥),⋯ ,
∂𝑓

∂𝑥𝑛
(𝑥)) = 2(𝑐0𝑥0,⋯ , 𝑐𝑛𝑥𝑛), 𝑥 = (𝑥0, ⋯ , 𝑥𝑛) ∈ 𝐑𝑛+1. (22) 

Since the tangent space of 𝑆𝑛 is included into that of 𝐑𝑛+1 as 

 𝑇𝑥𝑆
𝑛 = {(𝑦0,⋯ , 𝑦𝑛)|(𝑦0,⋯ , 𝑦𝑛) ⊥ (𝑥0,⋯ , 𝑥𝑛)} ↪ 𝑇𝑥𝐑

𝑛+1 = 𝐑𝑛+1 (23) 

the tangent map induced by 𝑓|𝑆𝑛 is 

 ∇𝑥𝑓 ∣𝑆𝑛⋅ 𝑇𝑥𝑆
𝑛 → 𝐑, (𝑦0, ⋯ , 𝑦𝑛) ↦ ∑  𝑛

𝑖=0
2𝑐𝑖𝑥𝑖𝑦𝑖 = 2(𝑐0𝑥0 ⋯ , 𝑐𝑛𝑥𝑛) ⋅ (𝑦0 ⋯ ,𝑦𝑛). (24) 
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By the chain rule and 3.8 we have 

 ∇𝑥𝑓|𝑆𝑛 = ∇𝑥𝑓
∘𝑞∗,𝑥 (25) 

where the tangent map 𝑞∗,𝑥: 𝑇𝑥𝑆
𝑛 → 𝑇𝑥𝐑𝐏𝑛 is an isomorphism. We deduce that 

 ∇𝑥𝑓 = 0 ⇔ ∇𝑥𝑓 ∣𝑆𝑛= 0 ⇔ (𝑐0𝑥0, ⋯ , 𝑐𝑛𝑥𝑛) ∈ (𝑇𝑥𝑆
𝑛)⊥ = 𝐑 ⋅ (𝑥0 ⋯ , 𝑥𝑛). (26) 

But the 𝑐𝑖’s are distinct to each other, we have (𝑐0𝑥0,⋯ , 𝑐𝑛𝑥𝑛) is colinear with (𝑥0,⋯ , 𝑥𝑛)  ⇔ all 

but one 𝑥𝑖 are zero. In conclusion, we have shown that 

Proposition 3.3.  The critical points of 𝑓 are 

 𝑝0 : = [1,0,⋯ ,0],  𝑝1 : = [0,1,0,⋯ ,0],  ⋯ ,  𝑝𝑛 : = [0,⋯ ,0,1] (27) 

To show that 𝑓 is a Morse function, it remains to show that each 𝑝𝑖 is non degenerate. In fact 

Proposition 3.4.  𝑝𝑖 is non degenerate with index 𝑖. 
Proof: Consider the open subset 𝑉𝑖 ⊂ 𝑆𝑛 defined by 

 𝑉𝑖 = {(𝑥0,⋯ , 𝑥𝑛) ∈ 𝑆𝑛|𝑥𝑖 > 0}. (28) 

Then the projection map 

 𝜓𝑖: 𝑉𝑖 → 𝐑𝑛 ,  (𝑥0,⋯ , 𝑥𝑛) ↦ (𝑥0,⋯ , 𝑥𝑖−1, 𝑥𝑖+1,⋯ , 𝑥𝑛) (29) 

is a homeomorphism onto the image of 𝜓𝑖, thus makes 𝑉𝑖 into a local coordinate chart centered at 𝑝𝑖. 

On this chart we can write 𝑓 as 

 𝑓|𝑉𝑖
∘ 𝜓𝑖

−1
: (𝑥0,⋯ , 𝑥𝑖−1, 𝑥𝑖+1,⋯ , 𝑥𝑛) ↦ ∑ 𝑐𝑖

𝑛
𝑖=0

𝑥𝑖
2
= 𝑐𝑖 + ∑ (𝑐𝑗 − 𝑐𝑖)𝑗≠𝑖 𝑥𝑗

2
 (30) 

where we have used the relation 

 𝑥𝑖 = √1 − ∑ 𝑥𝑗

2
𝑗≠𝑖 . (31) 

Since 𝑐𝑗 − 𝑐𝑖 < 0  for 𝑗 < 𝑖 , and 𝑐𝑗 − 𝑐𝑖 > 0  for 𝑗 > 𝑖 , locally at 𝑝𝑖 , 𝑓  has exactly 𝑖  negative 

directions and 𝑛 − 𝑖 positive directions. A dilation transformation 

 (𝑥0,⋯ , 𝑥𝑖−1, 𝑥𝑖+1,⋯ , 𝑥𝑛) ↦ (
𝑥

0

√𝑐𝑖−𝑐
0

, ⋯ ,
𝑥𝑖−1

√𝑐𝑖−𝑐𝑖−1

,
𝑥𝑖+1

√𝑐𝑖+1
−𝑐𝑖

,⋯ ,
𝑥𝑛

√𝑐𝑛−𝑐𝑖
) (32) 

takes 𝑓 into a standard form as in the Morse lemma. We thus conclude that 𝑝𝑖 is non degenerate with 

index 𝑖. ▫ 

3.3. Applying the Morse theory 

Now we can inspect what the Morse theory states for this particular Morse function 𝑓 on 𝐑𝐏𝑛. By 

applying the two fundamental theorems of Morse theory we arrive at: 

Proposition 3.5.  𝐑𝐏𝑛 has the homotopy type 𝑒0 ∪ 𝑒1 ∪ ⋯∪ 𝑒𝑛. 

In fact, we know that this is exactly the cell decomposition of 𝐑𝐏𝑛. Consider the equator 𝑆𝑛−1 in 

𝑆𝑛, then 

 𝐑𝐏𝑛−1 = 𝑆𝑛−1/{±1} ⊂ 𝐑𝐏𝑛 = 𝑆𝑛/{±1} (33) 
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and 𝐑𝐏𝑛 − 𝐑𝐏𝑛−1 can be identified with a hemisphere that is, an 𝑛-dimensional cell. The upshot is 

that the Morse function 𝑓, which is a smooth datum, indeed provides us with some useful topological 

information about 𝐑𝐏𝑛. 

4. Proving the Fáry-Milnor theorem 

We are now ready to prove theorem 1.5 and 1.6. To use Morse theory, we will employ height 

functions to supply Morse functions on 𝐾. Precisely, for any 𝑣 ∈ 𝑆2 the unit sphere of 𝐑3, consider 

the height function ℎ
𝑣
 on 𝐾 along 𝑣 

 ℎ
𝑣
(𝑥) := ⟨𝑥, 𝑣⟩ (34) 

where ⟨−, −⟩ is the inner product on 𝐑3. Denote by 𝜇(𝑣) the number of critical points of ℎ
𝑣
. The key 

in our proof is to show that the total curvature naturally emerges in the averaging process of the 

numbers 𝜇(𝑣): 

 
𝑇𝐾

𝜋
=

1

4𝜋
∫ 𝜇
𝑆2 (𝑣)𝑑𝑣. (35) 

Then we will subsequently show that 

Proposition 4.1.  If 𝑇𝐾 < 4𝜋, there exists an element 𝑣 ∈ 𝑆2 such that 𝜇(𝑣) = 2. 

Proposition 4.2.  If ℎ𝑣 has exactly two critical points, then 𝐾 can be unknotted. 

We start with deriving the equation 35. 

4.1. The Morse functions ℎ𝑣 

First of all, not all height functions ℎ
𝑣
 are Morse functions. We will characterize the condition on 𝑣 

such that ℎ
𝑣
 is not a Morse function. On such points 𝑣 ∈ 𝑆2, 𝜇(𝑣) is ill-defined. However, we will 

see that such points form a measure zero subset of 𝑆2, hence do not affect the integral in35. 

We first characterize the condition of 𝛾(𝑠) ∈ 𝐾 being a critical point of ℎ𝑣. In the local coordinate 
(𝑠) of 𝐾, since ℎ𝑣(𝑠) = ⟨𝛾(𝑠), 𝑣⟩, we have 

 ∇ℎ
𝑣

= ℎ
𝑣

′
(𝑠) = ⟨𝛾 ′(𝑠), 𝑣⟩. (36) 

The gradient at 𝛾(𝑠) vanishes if and only if 𝑣 ⊥ 𝛾 ′(𝑠). This motivates the following definition. 

Definition 4.3. Let 𝑆(𝐾) be a surface defined as 

 𝑆(𝐾) : = {(𝛾(𝑠), 𝑣) ∈ 𝐾 × 𝑆2|𝑣 ⊥ 𝛾 ′(𝑠), 𝑠 ∈ 𝐑}. (37) 

Proposition 4.4. 𝑆(𝐾) is a smooth manifold of dimension 2. 

Proof: Recall that 𝛾′(𝑠) is a unit vector. Consider the open submanifold of 𝐾 × 𝐑3 defined as 

 �̃�(𝐾):= {(𝛾(𝑠), 𝜈) ∈ 𝐾 × 𝐑3|visnotcolinearwith𝛾 ′(𝑠)}. (38) 

Let 𝑓: �̃�(𝐾) → 𝐑2 be a smooth map defined as 

 𝑓: (𝛾(𝑠), 𝑣) ↦ (𝑣 ⋅ 𝛾 ′(𝑠), 𝑣 ⋅ 𝑣) (39) 

where denotes the inner product. Since its Jacobian matrix 

𝐽(𝑓) = (𝑣 ⋅ 𝛾 ′′(𝑠) 𝛾 ′(𝑠)
0 2𝑣

) 
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is of full rank everywhere (2𝑣 is not colinear with 𝛾 ′(𝑠)), by the constant rank theorem ( theorem 

5.12), 𝑆(𝐾) = 𝑓−1(0,1) is a regular submanifold of �̃�(𝐾) of codimension 2. Thus 𝑆(𝐾) is a smooth 

manifold of dimension 2. ▫ 

Remark 4.5.  For a given 𝛾(𝑠) on the knot, the points 𝑣 such that 𝑣 ⊥ 𝛾′(𝑠) form a great circle of 

𝑆2. In formal language, we say that 𝑆(𝐾) is the normal circle bundle on 𝐾. Intuitively, we can think 

of 𝑆(𝐾) as the surface of a rope representing 𝐾 with thickness. This is justified by the following result. 

Proposition 4.6.  𝑆(𝐾) can be embedded into 𝐑3 via 

 𝑆(𝐾) ↪ 𝐑3,  (𝛾(𝑠), 𝑣) ↦ 𝛾(𝑠) + 𝜖𝑣 (40) 

for a sufficient small constant 𝜖 > 0. 

Proof: This directly follows from the tubular neighborhood theorem ( theorem 6.24). Alternatively, 

we can sketch a proof without invoking the theorem. By the compactness of 𝐾, let 𝑀 be the maximum 

of the local curvatures 𝜅(𝑠) = |𝛾′′(𝑠)|. We can choose 𝜖 ∈ (0,
1

2𝑀
) such that every ball of radius 𝜖 

intersects 𝐾  at a connected interval of length <
1

𝑀
 (again by the compactness). We show that 

∄𝛾(𝑠1) + 𝜖𝑣1 = 𝛾(𝑠2) + 𝜖𝑣2 for 𝑠1 < 𝑠2, so that 𝜖 satisfies the requirement. If such 𝑠1 and 𝑠2 exist, 

then 𝑠2 − 𝑠1 <
1

𝑀
. Thus 

 |𝛾 ′(𝑠) − 𝛾 ′(𝑠1)| ≤ (𝑠 − 𝑠1)𝑀 < 1,  ∀𝑠 ∈ [𝑠1, 𝑠2]. (41) 

That is, 𝛾 ′(𝑠), 𝛾 ′(𝑠1) ∈ 𝑆2 have central angle <
𝜋

3
. This implies that the distance from 𝛾(𝑠2) to the 

normal plane 𝒫1  at 𝛾(𝑠1) is at least (𝑠2 − 𝑠1)𝑐𝑜𝑠
𝜋

3
=

𝑠2−𝑠1

2
. Moreover, if 𝛼  is the dihedral angle 

between the normal plane 𝒫2  at 𝛾(𝑠2)  and 𝒫1 , then 𝑠𝑖𝑛𝛼 < (𝑠2 − 𝑠1)𝑀 . We conclude that the 

distance from 𝛾(𝑠2) to 𝒫1 ∩ 𝒫2 is at least 
𝑠2−𝑠1

2𝑠𝑖𝑛𝛼
>

1

2𝑀
> 𝜖, a contradiction. ▫ 

From now on, we will make no distinction between 𝑆(𝐾) and the embedded manifold, and 𝜖 will 

be suppressed. The embedding enables us to speak of 𝑇𝑥𝑆(𝐾) as an inner product space. Along the 

great circle, we have a tangent vector 
∂

∂𝜃
∈ 𝑇𝑥𝑆(𝐾). Perpendicular to it, we have 

∂

∂𝑠
 ("along the knot") 

so that {
∂

∂𝑠
,

∂

∂𝜃
} forms an orthonormal basis of 𝑇𝑥𝑆(𝐾). 

Remark 4.7. To motivate the notation 
∂

∂𝑠
, notice that the tangent plane 𝑇𝑥𝑆(𝐾) is parallel to 𝛾′(𝑠) 

(where 𝑥 = (𝛾(𝑠), 𝑣)), hence 
∂

∂𝑠
 can be viewed as the same vector as 𝛾′(𝑠). To see this, consider an 

arbitrary curve 𝛾(𝑠) + 𝑣(𝑠) on 𝑆(𝐾). We have 

 ⟨𝛾 ′(𝑠) + 𝑣′(𝑠), 𝑣(𝑠)⟩ = ⟨𝛾 ′(𝑠), 𝑣(𝑠)⟩ + ⟨𝑣′(𝑠), 𝑣(𝑠)⟩ = 0 (42) 

where ⟨𝛾 ′(𝑠), 𝑣(𝑠)⟩ = 0  follows from the definition of 𝑆(𝐾) , ⟨𝑣′(𝑠), 𝑣(𝑠)⟩ = 0  follows from 

|𝑣(𝑠)| ≡ 1. So all tangent vectors are perpendicular to 𝑣(𝑠), hence the tangent plane is parallel to 

𝛾 ′(𝑠). 

Consider the natural projection 

 𝑝: 𝑆(𝐾) → 𝑆2,  (𝛾(𝑠), 𝑣) ↦ 𝑣. (42) 

Proposition 4.8.  If ℎ𝑣 is not a Morse function, then 𝑣 is a critical value of 𝑝. 

Proof: If so, there is a degenerate critical point 𝛾(𝑠0). Recall that 𝛾(𝑠0) being a critical point means 

𝑥 : = (𝛾(𝑠0), 𝑣) ∈ 𝑆(𝐾). We show that 𝑝∗: 𝑇𝑥𝑆(𝐾) → 𝑇𝑣𝑆
2  is not surjective, hence 𝑣  is a critical 

value. The 𝛾(𝑠0) being degenerate means the Hessian matrix of ℎ𝑣 at it is singular ([6], section 1.2). 
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In our case, the Hessian matrix is just the 1 × 1 matrix ℎ𝑣
′′(𝑠0) = 𝛾′′(𝑠0) ⋅ 𝑣 so it is zero. For any 

curve (𝛾(𝑠), 𝑣(𝑠)) passing through 𝑥 on 𝑆(𝐾), since 𝛾′(𝑠) ⋅ 𝑣(𝑠) ≡ 0, taking derivative at 𝑠0 yields 

 0 = 𝛾 ′′(𝑠0) ⋅ 𝑣 + 𝛾 ′(𝑠0) ⋅ 𝑣 ′(𝑠0) = 𝛾 ′(𝑠0) ⋅ 𝑣 ′(𝑠0). (43) 

That is, 𝑣 ′(𝑠0) ∈ 𝛾 ′(𝑠0)
⊥ which is a 1-dimensional subspace of 𝑇𝑣𝑆

2. Hence 𝑝∗ is not surjective (in 

fact 𝑝∗ is of rank 1 with image generated by 𝑝∗ (
∂

∂𝜃
)). ▫ 

Corollary 4.9.  The points 𝑣 ∈ 𝑆2 such that ℎ𝑣 is not Morse form a measure zero subset. 

Proof: This follows from Sard’s theorem ([8] theorem 6.10). ▫ 

4.2. Evaluating the integral 

We just proved that the integral in 35  is well-defined, now we evaluate it. Recall that 𝜇(𝑣) as the 

number of critical points of ℎ
𝑣
 can be expressed as 

 𝜇(𝑣) = |{𝛾(𝑠) ∈ 𝐾|(𝛾(𝑠), 𝑣) ∈ 𝑆(𝐾)}|. (44) 

Hence 𝜇(𝑣) is exactly the cardinality of the preimage 𝑝−1(𝑣). 

Proposition 4.10.  At each point 𝑥 ∈ 𝑆(𝐾) we define 𝑥𝑠 : = 𝑝∗ (
∂

∂𝑠
), 𝑥𝜃 : = 𝑝∗ (

∂

∂𝜃
), and a matrix 

 𝐺(𝑥) : = (
⟨𝑥𝑠, 𝑥𝑠⟩ ⟨𝑥𝑠, 𝑥𝜃⟩
⟨𝑥𝜃, 𝑥𝑠⟩ ⟨𝑥𝜃, 𝑥𝜃⟩

). (45) 

Then we have 

 ∫ √𝑑𝑒𝑡(𝐺)
𝑆(𝐾)

𝑑𝑠𝑑𝜃 = ∫ 𝜇
𝑆2 (𝑣)𝑑𝑣. (46) 

Proof: This is the coarea formula ([11] theorem 3.11). However, we can sketch an informal 

heuristic argument. The matrix 𝐺(𝑥) is so defined that √𝑑𝑒𝑡(𝐺(𝑥)) is the local ratio induced by 𝑝 at 

𝑥 of infinitesimal areas. Explicitly, we can compute the determinant as 

 𝑑𝑒𝑡(𝐺(𝑥)) = |𝑥𝑠|
2|𝑥𝜃|

2 − (|𝑥𝑠||𝑥𝜃|𝑐𝑜𝑠𝛼)2 = |𝑥𝑠|
2|𝑥𝜃|

2𝑠𝑖𝑛2𝛼 (47) 

where 𝛼  is the angle between 𝑥𝑠  and 𝑥𝜃  in 𝑇𝑝(𝑥)𝑆
2 . This is exactly the squared area of the 

infinitesimal parallelogram spanned by 𝑥𝑠 , 𝑥𝜃 . Recall that {
∂

∂𝑠
,

∂

∂𝜃
}  is an orthonormal basis, we 

conclude that infinitesimally 𝑝  scales up the area element 𝑑𝑠𝑑𝜃  of 𝑆(𝐾)  into 𝑆2  by the scalar 

√𝑑𝑒𝑡(𝐺). Integrating √𝑑𝑒𝑡(𝐺)𝑑𝑠𝑑𝜃 on 𝑆(𝐾) is to integrate a weighted area element on 𝑆2, where 

𝑑𝑣 is weighted 𝜇(𝑣) = |𝑝−1(𝑣)| times since 𝑣 is covered such many times under 𝑝. ▫ 

To evaluate ∫ √𝑑𝑒𝑡(𝐺)
𝑆(𝐾)

𝑑𝑠𝑑𝜃, we first integrate along 𝜃 (i.e. along the great circles): 

Proposition 4.11.  For each 𝑠, 

 ∫ √𝑑𝑒𝑡(𝐺)
2𝜋

0
𝑑𝜃 = 4𝜅(𝑠). (48) 

This section will culminate at this central result. We will give two proofs, one is computational, 

and one is conceptual and informal. Note that equation 35 will be derived from this: 

 
𝑇𝐾

𝜋
=

1

𝜋
∫ 𝜅

𝐿

0
(𝑠)𝑑𝑠 =

1

4𝜋
∫ √𝑑𝑒𝑡(𝐺)
𝑆(𝐾)

𝑑𝑠𝑑𝜃 =
1

4𝜋
∫ 𝜇
𝑆2 (𝑣)𝑑𝑣. (49) 
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Proof: (Computational.) To compute, we choose a local orthonormal moving frame 

{𝛾 ′(𝑠), 𝑒1
(𝑠), 𝑒2

(𝑠)} along 𝐾 , where 𝑒1
(𝑠) is a flow curve on 𝑆(𝐾) generated by 

∂

∂𝑠
, and 𝑒2

(𝑠) =

𝛾 ′(𝑠) × 𝑒1
(𝑠). We can think of 𝑒1

(𝑠) / 𝑒2
(𝑠) as marking the curve 𝜃 = 0  / 𝜃 =

𝜋

2
. We can thus 

express the map 𝑝 in terms of local coordinate 

 𝑝(𝑠, 𝜃) = 𝑐𝑜𝑠𝜃𝑒1
(𝑠) + 𝑠𝑖𝑛𝜃𝑒2

(𝑠). (50) 

It then follows that 

 𝑥𝑠 = 𝑐𝑜𝑠𝜃𝑒
1

′ (𝑠) + 𝑠𝑖𝑛𝜃𝑒
2

′ (𝑠), 𝑥𝜃 = −𝑠𝑖𝑛𝜃𝑒1
(𝑠) + 𝑐𝑜𝑠𝜃𝑒2

(𝑠). (51) 

Recall that (remark4.7) 
∂

∂𝑠
= 𝛾 ′(𝑠) (as vectors in 𝐑3), there is a function 𝑎 in 𝑠 such that 

 𝑒
1

′
= 𝑎𝛾 ′. (52) 

Since 𝑒2
′ ⊥ 𝑒2, 𝑒1

′ ⊥ 𝑒2 and 

 0 = 0
′
= ⟨𝑒1, 𝑒2⟩

′ = ⟨𝑒
1

′
, 𝑒2⟩ + ⟨𝑒

2

′
, 𝑒1⟩ = ⟨𝑒

2

′
, 𝑒1⟩ (53) 

we similarly have a function 𝑏 in 𝑠 such that 

 𝑒
2

′
= 𝑏𝛾 ′. (54) 

Then we can compute the entries of 𝐺 as 

 ⟨𝑥𝜃, 𝑥𝜃⟩ = 𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃 = 1. (55) 

 ⟨𝑥𝑠, 𝑥𝜃⟩ = ⟨(𝑎𝑐𝑜𝑠𝜃 + 𝑏𝑠𝑖𝑛𝜃)𝛾 ′, −𝑠𝑖𝑛𝜃𝑒1 + 𝑐𝑜𝑠𝜃𝑒2⟩ = 0. (56) 

 ⟨𝑥𝑠, 𝑥𝑠⟩ = |(𝑎𝑐𝑜𝑠𝜃 + 𝑏𝑠𝑖𝑛𝜃)𝛾 ′|
2

= (𝑎𝑐𝑜𝑠𝜃 + 𝑏𝑠𝑖𝑛𝜃)2. (57) 

Thus 

 √𝑑𝑒𝑡(𝐺) = |𝑎𝑐𝑜𝑠𝜃 + 𝑏𝑠𝑖𝑛𝜃| = √𝑎2 + 𝑏2|𝑠𝑖𝑛(𝜃 + 𝜑)| (58) 

where 𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑎

𝑏
. Then 

 ∫ √𝑑𝑒𝑡(𝐺)
2𝜋

0
𝑑𝜃 = √𝑎2 + 𝑏2 ∫ |𝑠𝑖𝑛(𝜃 + 𝜑)|

2𝜋

0
𝑑𝜃 = 4√𝑎2 + 𝑏2 . (59) 

It remains to prove that √𝑎2 + 𝑏2 = |𝛾 ′′(𝑠)|. Since 

 0 = 0
′
= ⟨𝛾 ′, 𝑒1⟩

′ = ⟨𝛾 ′′, 𝑒1⟩ + ⟨𝛾 ′, 𝑒
1

′
⟩ = ⟨𝛾 ′′, 𝑒1⟩ + 𝑎 (60) 

 0 = 0
′
= ⟨𝛾 ′, 𝑒2⟩

′ = ⟨𝛾 ′′, 𝑒2⟩ + ⟨𝛾 ′, 𝑒
2

′
⟩ = ⟨𝛾 ′′, 𝑒2⟩ + 𝑏 (61) 

we conclude that 𝛾 ′′ = −𝑎𝑒1 − 𝑏𝑒2 hence |𝛾 ′′| = √𝑎2 + 𝑏2. ▫ 

Remark 4.12.  Actually there is a subtle point in the proof: to justify the local coordinate system 
(𝑠, 𝜃), we need to prove that once 𝑒1(𝑠) is chosen / the curve 𝜃 = 0 is marked, then for any constant 
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𝜑, the curve 𝜃 = 𝜑 is also a flow curve generated by 
∂

∂𝑠
. That is, the tangent vector of the curve 

𝑐𝑜𝑠𝜑𝑒1(𝑠) + 𝑠𝑖𝑛𝜑𝑒2(𝑠) is colinear with 
∂

∂𝑠
 / perpendicular to 

∂

∂𝜃
. To see this, we show that 

 ⟨𝑐𝑜𝑠𝜑𝑒
1

′ (𝑠) + 𝑠𝑖𝑛𝜑𝑒
2

′ (𝑠),
∂

∂𝜃
⟩ = 0. (62) 

Since 𝑒1(𝑠) is a flow curve of 
∂

∂𝑠
, ⟨𝑒1

′ (𝑠),
∂

∂𝜃
⟩ = 0. It remains to show that 

 ⟨𝑒
2

′ (𝑠),
∂

∂𝜃
⟩ = ⟨𝛾 ′′ × 𝑒1 + 𝛾 ′ × 𝑒

1

′
,

∂

∂𝜃
⟩ = 𝑑𝑒𝑡 (𝛾 ′′, 𝑒1,

∂

∂𝜃
) + 𝑑𝑒𝑡 (𝛾 ′, 𝑒

1

′
,

∂

∂𝜃
) = 0. (63) 

This follows from the facts that 𝛾 ′′, 𝑒1,
∂

∂𝜃
 are coplanar and 𝛾 ′, 𝑒1

′  are colinear. 

Proof: (Conceptual.) The formula essentially boils down to this elementary fact: on 𝑆2 the area of 

a pair of spherical lunes in a dihedral angle 𝛼 is 4𝜋 ×
𝛼

𝜋
= 4𝛼. Recall that √𝑑𝑒𝑡(𝐺) is the local area 

ratio. Consider the great circles 𝐶𝑠  and 𝐶𝑠+𝑑𝑠  perpendicular to 𝛾′(𝑠) and 𝛾′(𝑠 + 𝑑𝑠) respectively, 

and let 𝑑𝑠 → 0  so that their dihedral angle is |𝛾′′(𝑠)|𝑑𝑠 = 𝜅(𝑠)𝑑𝑠 . Then (∫ √𝑑𝑒𝑡(𝐺)
2𝜋

0
𝑑𝜃) 𝑑𝑠 

computes the sphere lunes area bounded by 𝐶𝑠  and 𝐶𝑠+𝑑𝑠 , which is 4𝜅(𝑠)𝑑𝑠 . It follows that 

∫ √𝑑𝑒𝑡(𝐺)
2𝜋

0
𝑑𝜃 = 4𝜅(𝑠).  

4.3. The unknotting process 

We will finally complete the proof. First notice a simple fact. 

Proposition 4.13.  𝜇(𝑣) is always an even number. 

Proof: Suppose that ℎ𝑣 has 𝑛0 critical points of index 0, 𝑛1 critical points of index 1, then 𝐾 ≅ 𝑆1 

has the homotopy type of a cell complex with 𝑛0 0-cells and 𝑛1 1-cells, thus its Euler number is 𝑛0 −
𝑛1. But 𝜒(𝑆1) = 0, so 𝑛0 = 𝑛1, hence 𝜇(𝑣) = 𝑛0 + 𝑛1 is even. 

Alternatively, we have a proof without invoking the Euler number. By the Morse lemma, at the 

index-0 (resp. index-1) critical points ℎ𝑣 has local standard form 𝑥2 (resp. −𝑥2), hence attains local 

minimum (resp. maximum). Conversely, a local extremum 𝛾(𝑠) of ℎ𝑣 must satisfy ℎ𝑣
′ (𝑠) = 0. Thus 

critical points are the same as local extrema. Since ℎ𝑣 is monotonic between two successive local 

extrema, the minima and the maxima must appear alternatively along the knot. We conclude that the 

number 𝜇(𝑣) of local extrema is even. ▫ 

Moreover, as 𝐾 is compact there is at least a global maximum and a global minimum, thus 𝜇(𝑣) ≥
2. Together with equation 35 we have immediate corollaries: 

Proof: (of theorem1.5.) Since 
𝑇𝐾

𝜋
 is the average number of critical points, and the numbers are at 

least 2, we deduce that 
𝑇𝐾

𝜋
≥ 2 so 𝑇𝑘 ≥ 2𝜋. ▫ 

Proof: (of proposition4.1.) If 𝑇𝐾 < 4𝜋, then the average number 
𝑇𝐾

𝜋
< 4 hence ∃𝑣 ∈ 𝑆2 such that 

𝜇(𝑣) < 4. Since 𝜇(𝑣) is a positive even number, 𝜇(𝑣) = 2. ▫ 

To prove theorem1.6, it remains to prove proposition 4.2. Now we have a given ℎ𝑣 with no local 

extrema except the global ones. Suppose ℎ𝑣(𝐾) = [𝑎, 𝑏] and ℎ𝑣(𝐴) = 𝑎, ℎ𝑣(𝐵) = 𝑏 (i.e. 𝐴 / 𝐵 is the 

global minimum / maximum on 𝐾). The complement of {𝐴, 𝐵} in 𝐾 has two components, which we 

denote as 𝐴 → 𝐵 and 𝐵 → 𝐴. In the rest of the section, we describe an unknotting process of 𝐾. 

Note now we are concerned with a purely topological statement as opposed to a smooth one. Recall 

that a topological knot is a continuous embedding 𝛾: 𝑆1 ↪ 𝐑3. To unknot 𝐾, our initial idea is as 

follows: ∀𝑐 ∈ (𝑎, 𝑏), consider the level plane ℎ𝑣
−1(𝑐) in 𝐑3 . Since ℎ𝑣  on 𝐾  between 𝐴  and 𝐵  is 

monotonic, the plane intersects 𝐴 → 𝐵  and 𝐵 → 𝐴  respectively at a unique point 𝑢1  and 𝑢2 
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(implicitly as functions in 𝑐). Take any standard circle 𝐾0 with diameter 𝐴𝐵, we want to show that 𝐾 

is isotopic to 𝐾0, hence is an unknot. The tentative idea is to again take the intersection of the plane 

ℎ𝑣
−1(𝑐) with 𝐴 → 𝐵 and 𝐵 → 𝐴 in 𝐾0, denoted as 𝑣1 and 𝑣2, and consider a linear homotopy 𝑢1 → 𝑣1, 

𝑢2 → 𝑣2  simultaneously in each level plane. However, the line segment 𝑢1𝑣1  and 𝑢2𝑣2  might 

intersect, which might then invalidate the isotopy. Explicitly, if 𝑢1𝑢2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝜆𝑣2𝑣1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ for some 𝜆 > 0, then 

at the moment 𝑡 =
𝜆

𝜆+1
 the two linear homotopies 𝑢1 → 𝑣1 and 𝑢2 → 𝑣2 crash each other. However, 

if instead 𝑢1𝑢2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝜆𝑣1𝑣2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ for some 𝜆 > 0, then 𝑢1𝑣1 will not intersect 𝑢2𝑣2. Note that the direction of 

𝑣1𝑣2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is constant. This motivates the following final proof to remedy the issue just discussed. 

Proof: (of theorem1.6.) Consider the continuous map 𝑓 from (𝑎, 𝑏) to 𝑆1 defined as 

 𝑓(𝑐) =
𝑢

1
𝑢

2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

|𝑢1
𝑢

2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |

. (64) 

Since (𝑎, 𝑏) is contractible, any map from (𝑎, 𝑏) is nullhomotopic. Take a homotopy 𝐹: (𝑎, 𝑏) ×

[0,1] → 𝑆1 from 𝑓 to the constant map 
𝑣1𝑣2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

|𝑣1𝑣2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |
. Then perform an isotopy of 𝐾 as follows: in each level 

plane, rotate 𝑢2 around 𝑢1 along the path determined by 𝐹(𝑐,−). At the end this process results in a 

knot 𝐾′ such that 𝑢1𝑢2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ has the same direction as 𝑣1𝑣2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ everywhere. Then a linear isotopy from 𝐾′ to 

𝐾0 as discussed above unknots 𝐾 as desired. ▫ 

Remark 4.14.  Intuitively, the map 𝑓 encodes the complexity of how 𝐾 is twining around, and the 

homotopy 𝐹 is a process that unwinds it. 

5. Discrete Morse theory 

In this section we set up the foundations of discrete Morse theory, as laid out in , and compare them 

with their counterparts in section 2. 

5.1. The analogies 

In the classical Morse theory the objects that we study are smooth manifolds. In the discrete setting, 

these are replaced by simplicial complexes ( section 2.1), which can be roughly viewed as 

combinatorial models of spaces. Particularly, a triangulation of a space makes it into a simplicial 

complex. By a function on a simplicial complex 𝐾, we mean a function on the set (still denoted as 𝐾 

by abuse of notation) of the simplexes of 𝐾, i.e. an assignment to each simplex in 𝐾 a real number. 

Throughout, assume 𝐾 to be finite. 

In section 2 we start with the definition of gradient, but now we no longer have calculus and 

derivatives at disposal. Instead, we will directly define the notions of gradient field and gradient flow 

in the following. 

Definition 5.1.  A vector field 𝑉 on a simplicial complex 𝐾, is a collection of mutually disjoint 

pairs {𝛼, 𝛽} where 𝛼 is a facet of 𝛽 (denoted as 𝛼 < 𝛽). A flow of 𝑉 is a sequence of simplexes 

 𝛼1, 𝛽1, 𝛼2, 𝛽2, ⋯ , 𝛽𝑛 , 𝛼𝑛+1 (65) 

such that ∀1 ≤ 𝑖 ≤ 𝑛, 𝛼𝑖 and 𝛼𝑖+1 are two distinct facets of 𝛽𝑖, and {𝛼𝑖 , 𝛽𝑖} is a pair in 𝑉. A flow is 

said to be closed if 𝛼𝑛+1 = 𝛼1. If 𝑉 has no closed flow, it is called a gradient field. 

We intuitively understand a pair as assigning an arrow from 𝛼 to 𝛽, so that the arrows form the 

analogy of vector fields and flows in the classical sense. Recall in section 2 that a gradient flow is 

always associated to a function 𝑓, and along it 𝑓 monotonically increases. A gradient flow there is 

clearly not a loop due to the monotonicity, which motivates the definition above. Moreover, we will 

soon see that gradient flows come from a certain class of functions on 𝐾. 
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Definition 5.2. A function 𝑓 on 𝐾 is called a discrete Morse function if 

1. ∀𝛽 ∈ 𝐾 a simplex, there is at most one facet 𝛼 of 𝛽 such that 𝑓(𝛼) ≥ 𝑓(𝛽), i.e. 

 |{𝛼 < 𝛽|𝑓(𝛼) ≥ 𝑓(𝛽)}| ≤ 1 (66) 

• for each fixed 𝛽. 

2. ∀𝛼 ∈ 𝐾 a simplex, there is at most one cofacet 𝛽 of 𝛼 such that 𝑓(𝛼) ≥ 𝑓(𝛽), i.e. 

 |{𝛼 < 𝛽|𝑓(𝛼) ≥ 𝑓(𝛽)}| ≤ 1 (67) 

• for each fixed 𝛼. 

This might look unenlightening at the first sight, but we will see that this is exactly the condition 

so that we can generate a gradient flow out of it. 

Proposition 5.3.  If 𝑓  is Morse, then ∀𝜏 ∈ 𝐾 , at least one of {𝛼 < 𝜏|𝑓(𝛼) ≥ 𝑓(𝜏)} and {𝜏 <
𝛽|𝑓(𝜏) ≥ 𝑓(𝛽)} is empty. 

Proof: Otherwise, suppose there exist a facet 𝛼 and a cofacet 𝛽  of 𝜏 such that 𝑓(𝛼) ≥ 𝑓(𝜏) ≥
𝑓(𝛽). There is a unique 𝜏′ ≠ 𝜏 such that 𝛼 < 𝜏′ < 𝛽. Since {𝛼 < 𝜎|𝑓(𝛼) ≥ 𝑓(𝜎)} has at most one 

element and 𝜏 is already in it, 𝑓(𝛼) < 𝑓(𝜏′). Similarly, 𝑓(𝛽) > 𝑓(𝜏′). It follows a contraction that 

𝑓(𝛼) < 𝑓(𝛽).  
Definition 5.4.  A critical point of a Morse function 𝑓 is a simplex 𝜏 ∈ 𝐾 such that both {𝛼 <

𝜏|𝑓(𝛼) ≥ 𝑓(𝜏)} and {𝜏 < 𝛽|𝑓(𝜏) ≥ 𝑓(𝛽)} are empty. 

Example.  The dimension function sending 𝜏 to dim𝜏 is a Morse function, all simplexes are critical 

points. 

We associate a vector field 𝑉(𝑓) to a Morse function 𝑓 involving all the non critical points: ∀𝜏 ∈
𝐾 non critical, we have either a unique facet 𝛼 of 𝜏 s.t. 𝑓(𝛼) ≥ 𝑓(𝜏) or a unique cofacet 𝛽 of 𝜏 s.t. 

𝑓(𝜏) ≥ 𝑓(𝛽), we then pick the pair {𝛼, 𝜏} or {𝜏, 𝛽}. Note that the 𝛼 or 𝛽 will also be non critical, so 

the pairs thus picked form a mutually disjoint collection. 

Proposition 5.5.  𝑉(𝑓) is a gradient field. Conversely, every gradient field 𝑉 coincides with 𝑉(𝑓) 

for some Morse function 𝑓. 

Proof: For the first statement, suppose that 

 𝛼1, 𝛽1, 𝛼2, 𝛽2, ⋯ , 𝛽𝑛 , 𝛼𝑛+1 = 𝛼1 (68) 

is a closed flow of 𝑉(𝑓). Since {𝛼𝑖 , 𝛽𝑖} is a pair, 𝑓(𝛼𝑖) ≥ 𝑓(𝛽𝑖). Since {𝛼 < 𝛽𝑖|𝑓(𝛼) ≥ 𝑓(𝛽𝑖)} has at 

most one element and 𝛼𝑖 is already in it, 𝑓(𝛼𝑖+1) < 𝑓(𝛽𝑖). It follows a contradiction that 𝑓(𝛼1) ≥

𝑓(𝛽1) > 𝑓(𝛼2) ≥ ⋯ > 𝑓(𝛼𝑛+1) = 𝑓(𝛼1). 

For the second statement, define a graph 𝒦 with 𝐾 being the vertex set, and two vertices 𝛼 and 𝛽 

are joint by an edge if 𝛼 < 𝛽. Make 𝒦 into a directed graph as follows: let 𝛼 → 𝛽 if {𝛼, 𝛽} is a pair 

in 𝑉, and 𝛽 → 𝛼 if else. We claim that 𝒦 is loopless, so that the topological sorting algorithm ([13]) 

gives a function 𝑓 on (the vertices of) 𝒦 decreasing along each edge, hence 𝑓 is a Morse function on 

𝐾 with 𝑉(𝑓) = 𝑉. To prove the claim, notice that along an edge 𝑒, the dimension of the simplexes 

increases by 1 if 𝑒 is a pair in 𝑉, and decreases by 1 if not. If follows that a loop (if exists) of length 

𝑛 must have exactly 
𝑛

2
 edges in 𝑉 and 

𝑛

2
 edges not in 𝑉. But there can not be adjacent edges in 𝑉, since 

the pairs in 𝑉 are mutually disjoint. So in the loop the edges in 𝑉 and not in 𝑉 appear alternatively. 

This is exactly a closed flow, contradicting to the assumption that 𝑉 is a gradient field. We conclude.  

Remark 5.6.  The analogy in the definition of 𝑉(𝑓) is that "critical points are where the gradient 

field vanishes". The Morse lemma in section 2 has no analogue here. As for the index, we can just 

take it to be the dimension of the corresponding simplex. Recall that "index of critical point = 
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dimension of cell". This slogan is justified by the next result, which is an analogue of the combination 

of the two fundamental theorems of Morse theory. 

5.2. Homology from discrete Morse function 

Theorem 5.7.  Suppose that a Morse function 𝑓 on 𝐾 has 𝑘 critical points of dimensions 𝜆1 ≤ ⋯ ≤

𝜆𝑘 respectively, then 𝐾 has the homotopy type of a cell complex 𝑒
𝜆

1 ∪ ⋯∪ 𝑒𝜆𝑘. 

Proof: We are going to use a simple fact: a simplex deformation retracts onto its horn. Thus if 𝛼 is a 

free facet of 𝛽 (meaning 𝛼 has no cofacet expect 𝛽), then 𝐾 deformation retracts onto 𝐾 − 𝛼 − 𝛽. 

We prove by induction on |𝐾|. If |𝐾| = 1, then 𝐾 is a singleton, the result is trivial. For the 

induction step, among all the top dimensional simplexes, let 𝜏 be one with maximal 𝑓 value. There 

are two cases: 

1. 𝜏 is critical. Then 𝐾 − 𝜏 is again a simplicial complex, and the critical points of 𝑓|𝐾−𝜏 are exactly 

those (except 𝜏) of 𝑓. By the inductive assumption, 𝐾 − 𝜏 ≃ 𝑒
𝜆

1 ∪ ⋯∪ 𝑒
𝜆
𝑘−1 . Since 𝜏 is a 𝜆𝑘-cell 

attached to 𝐾 − 𝜏 along the boundary, by the homotopy extension property ([10] proposition 0.16), 

𝐾 ≃ 𝑒
𝜆

1 ∪ ⋯∪ 𝑒𝜆𝑘 . 

2. 𝜏 is non critical. Then let 𝜎 be the facet of 𝜏 such that 𝑓(𝜎) ≥ 𝑓(𝜏). We claim that 𝜎 is a free facet 

of 𝜏, so that 𝐾 − 𝜏 − 𝜎 is again a simplicial complex, and the critical points of 𝑓|𝐾−𝜏−𝜎  are exactly 

those of 𝑓. Hence the result follows from the inductive assumption and the fact that 𝐾 − 𝜏 − 𝜎 ≃
𝐾. 

• To prove the claim, suppose 𝜏 ′ is another cofacet of 𝜎, then 𝜏 ′ is top dimensional, so 𝑓(𝜏 ′) ≤ 𝑓(𝜏) 

by the assumption on 𝜏 . But then {𝜎 < 𝛾|𝑓(𝜎) ≥ 𝑓(𝛾)} already has two elements 𝜏  and 𝜏 ′ , a 

contradiction! 

Not only we know 𝐾 is homotopy equivalent to 𝑒𝜆1 ∪ ⋯∪ 𝑒𝜆𝑘, we can also read off the gluing 

information of the latter from 𝑓. In fact, the corresponding cellular complex can be recovered from 

analyzing the gradient dynamics of 𝑓, and the homology groups 𝐻∗(𝐾) of (the underlying space of) 

𝐾 can be computed Morse theoretically. Let 𝑆𝑝 denote the set of the dimension-𝑝 critical points (i.e. 

dimension-𝑝 cells in the cell complex) and 𝐶𝑝 denote the free abelian group generated by 𝑆𝑝. For each 

critical point, we fix an orientation of the simplex. The boundary maps ∂: 𝐶∗ → 𝐶∗−1 are determined 

by the formula 

 ∂(𝑥) = ∑ 𝑛𝑥𝑦𝑦∈𝑆𝑝−1
𝑦,  𝑥 ∈ 𝑆𝑝 (69) 

where 𝑛𝑥𝑦 ∈ 𝐙 is a "signed counting" of the gradient flows from 𝑥 to 𝑦 defined as follows. By a 

gradient flow 𝛾 "from 𝑥 to 𝑦", we mean a gradient flow 

 𝛼1, 𝛽1, 𝛼2, 𝛽2, ⋯ , 𝛽𝑛 , 𝛼𝑛+1 (70) 

of 𝑉(𝑓) such that 𝛼1 < 𝑥 and 𝛼𝑛+1 = 𝑦. Since the orientations of a simplex and of a facet determine 

each other in a canonical way, we can "push the orientation" of 𝑥  along 𝛾  to 𝑦 . If the resulting 

orientation at the end agrees with the preexisting orientation of 𝑦, we set the indicator 𝑚(𝛾) = 1, 

otherwise we set 𝑚(𝛾) = −1. Finally, 𝑛𝑥𝑦 is the sum of 𝑚(𝛾) as 𝛾 ranges over all gradient flows 

from 𝑥 to 𝑦. 

Theorem 5.8.  ([12] theorem 7.3.) The boundary maps so defined make 

 ⋯ →
∂

𝐶𝑝+1 →
∂

𝐶𝑝 →
∂

𝐶𝑝−1 →
∂

⋯ (71) 
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into a chain complex, whose homology computes the homology of 𝐾. 

Remark 5.9.  We will not present a proof (see [14] chapter 8), instead we use a concrete example 

to illustrate the theory. This result is also an analogue of a concept in classical Morse theory known 

as the Morse-Smale-Witten complex ([7] section 3), though not mentioned in section 2. The 

homology is an important topological invariant of simplicial complexes, and has many applications 

to the real world. For example, in topological data analysis one can compute the persistent homology 

using discrete Morse theory ([14] chapter 5). 

Example.  Consider below a triangulation of the torus surface. 

 

Figure 2: The torus 𝑇2, with the opposite edges of the largest square identified. 

This simplicial complex has 9 vertices, 27 edges and 18 faces, labelled by integers from 1 to 54. 

This is viewed as a function 𝑓 with image {1,2, ⋯ ,54}, which can be verified to be a discrete Morse 

function with 4 critical points encircled in the figure. We describe the gradient field 𝑉(𝑓): it consists 

of 25 pairs labelled by (𝑖, 𝑖 + 1) that do not contain 1, 6, 11, 54. In fact, tracing the numbers in reverse, 

this is exactly a process that collapses the 25 pairs in order along gradient flow, so that the remaining 

is a cell complex with one 0-cell, two 1-cells and one 2-cell. As shown by the fundamental theorem, 

this recovers a cell decomposition of 𝑇2. To obtain the homology, we count the gradient flows: 

1. From 6 to 1, there are two flows 5 → 4 → 1 and 3 → 2 → 1 that cancel out in orientation. 

2. From 11 to 1, there are two flows 10 → 9 → 1 and 8 → 7 → 1 that cancel out in orientation. 

3. From 54 to 6, there are two flows 53 → 52 → 51 → 50 → 6 and 53 → 52 → ⋯ → 39 → 38 →
35 → 34 → 6 that cancel out in orientation. 

4. From 54 to 11, there are two flows 53 → 52 → ⋯ → 40 → 11  and 53 → ⋯ → 38 → 35 →
⋯ → 24 → 11 that cancel out in orientation. 

It follows that all the boundary maps in the chain complex are zero, hence 𝐻∗(𝑇
2) = 𝐶∗ and we 

have the homology groups of the torus: 

 𝐻2(𝑇
2) ≅ 𝐙,  𝐻1(𝑇

2) ≅ 𝐙 ⊕ 𝐙,  𝐻0(𝑇
2) ≅ 𝐙. (72) 
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6. Conclusion  

we gave a survey of both classical Morse theory and discrete Morse theory, and presented their 

applications. For the classical Morse theory, it can be applied to prove a theorem on the total curvature 

of knots. For the discrete Morse theory, we applied it to compute the simplicial homology of torus. 

We outlined the analogies between the two theories entitled "Morse theory", and examined the 

correspondence of the notions thereof. 
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