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Abstract: This article obtains nearly 18 years of precipitation data for Guangzhou from the 

National Centers for Environmental Information (NCEI) under the National Oceanic and 

Atmospheric Administration (NOAA) and conducts visualization analysis and modeling 

predictions using R software.Using the classic SARIMA model (the ARIMA model with 

seasonal components) as well as regression and residual ARIMA models to build and 

simulate the precipitation series.We also used Basic-bootstrap prediction, which involves 

resampling the residuals of the fitted model with replacement, using historical values to 

predict the future and obtain a model parameter, as well as Full-bootstrap prediction (which 

assumes that the residuals have uncertainty and that the estimated model coefficients 

themselves also have uncertainty).Therefore, not only are reasonable model residuals 

obtained through the bootstrap method, but multiple model parameters are also derived from 

this method to determine more reasonable model parameters, which are then used to forecast 

the next 12 periods for the fitted model. Comparing the results of the four prediction models, 

the Full-bootstrap model under the regression model showed the best predictive performance. 

The study found that there is no significant trend in precipitation changes over time, but short-

term fluctuations still exist. Although some extreme values appeared, they remain within a 

predictable range.Therefore, the relevant city government departments prone to extreme 

rainfall can make reasonable adjustments to drainage facilities based on local precipitation 

forecasts. 

Keywords: SARIMA model, precipitation, bootstrap method, seasonality, regression and 

residual ARIMA model, R language. 

1. Introduction 

Year after year, the frequency and impact of heavy rain disasters increase due to ongoing global 

climate change and urbanization. Disasters caused by heavy rain are abrupt, powerful natural events 

that cause major damage and losses to urban areas [1]. China has fewer than 3 trillion m³ of total 

water resources, yet only 0.22 thousand m³ of water resources are available per person, 0.25 times 

the average global level [2]. However, although Guangzhou has a large population base, its per capita 

water resources amount to only 0.2 times the national average, categorizing it as a region with 

extremely scarce water resources. 

In recent years, extreme precipitation events have become frequent in Guangzhou. On May 7, 2017, 

the city experienced a rare historical downpour, transitioning from heavy rain to torrential rain. In 
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Yongning Street, Zengcheng, the rainfall reached 382.6 millimeters in just three hours.In April 2024, 

the Guangzhou Climate and Agricultural Meteorology Center reported that the average monthly 

rainfall in the city reached 669.2 millimeters, which is an abnormal increase of 219.1% compared to 

the same period in previous years, breaking the historical record for rainfall during this time.The 

Lütian Lianma Meteorological Observation Station in Conghua District recorded a total rainfall of 

1491.3 millimeters in April, breaking the monthly rainfall record for all months in Guangzhou since 

1951.Against the backdrop of global warming, the tropical high pressure has been persistently shifting 

westward and intensifying, resulting in abundant moisture transport. The moisture conditions over 

Guangdong are very favorable, leading to intense and prolonged precipitation events this year, with 

overlapping affected areas, significantly increasing disaster risks and causing severe damage locally. 

This article first conducts a preliminary visual analysis of the sequence characteristics of 

precipitation in Guangzhou from 2006 to 2023, and performs data processing such as handling 

missing values and frequency transformation.Next, I will explain the research methods involved in 

this article, followed by modeling the sequence using two types of models: the classic ARIMA and 

regression functions. Finally, I will use two forecasting methods, Basic-bootstrap and Full-bootstrap, 

to predict the precipitation for the next year based on the two estimated models. 

According to the analysis, this article found that the regression model had the best Full bootstrap 

prediction performance, and the remaining three prediction results all had some deviation issues, 

especially in April when extreme precipitation occurred in Guangzhou this year. The two classic 

ARIMA prediction results were both low, so the model's estimation of precipitation extremes was 

inaccurate. It is considered that the problem of parameter cancellation in the MA coefficient during 

the process of the classic SARIMA model, as well as the problem of first-order seasonal differences, 

led to significant deviation in the prediction results. The reason why the regression model is generally 

better than the ARIMA model and the Basic bootstrap model has slightly inferior prediction 

performance is considered to be due to the shortcomings of the method itself, which is that the 

prediction method is not complete and scientific enough. During the bootstrap sampling process, only 

the residuals of the model are sampled, which has certain shortcomings in the sampling method. The 

Full bootstrap method just fills the gap in the sampling method of the former. 

2. Method 

2.1. Data Overview and Preprocessing 

2.1.1. Basic Information and Feature Analysis of Data 

This article collects daily precipitation data from the Guangzhou area from January 2006 to May 2024, 

measured in millimeters. The original data length is 6574, with a frequency of 365. After frequency 

conversion processing, the data length is 216, with a frequency of 12.The data came from the National 

Environmental Information Centre (NCEI) under the National Oceanic and Atmospheric 

Administration (NOAA).  

The original sequence has missing values, and there is no obvious pattern in the distribution of the 

missing data; it is believed that the occurrence of these missing values is random. Figure 1 shows the   

time series plot and ACF plot of the original sequence. In the left graph, it can be observed that the 

range of the data is quite large, overall it is relatively dispersed, and there are noticeable periodic 

fluctuations. The right image shows a waveform similar to sine and cosine, and there is no trend of 

attenuation. A preliminary judgment suggests that seasonality is one of the reasons for the strong 

long-term memory. 
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Figure 1: Daily frequency time series chart of the original sequence (left), Daily frequency ACF chart 

of the original sequence (top right).  

2.1.2. Missing Data Imputation and logarithmic, Frequency Transformation. 

For the handling of missing values, firstly, due to the special nature of precipitation values always 

being greater than or equal to 0, and the unpredictability of whether it rained on that day, the missing 

data is filled with 0. Secondly, there are a large number of values in Figure 1 that are around 0 and 

have large extreme values, resulting in scattered data overall. In subsequent ARIMA modeling, since 

the fitted results of the model randomly traverse the entire real number domain, precipitation data 

cannot be less than 0. In order to eliminate this asymmetry, logarithmic transformation is applied to 

the data. The transformed sequence distribution is significantly more concentrated, and even negative 

values are reasonable in the subsequent modeling and prediction process. The two ACF plots in 

Figure 2 also clearly show waveforms similar to sine and cosine functions. In order to study their 

seasonality, daily frequency data was converted into monthly frequency data. 

 

Figure 2: the daily frequency time series plot after filling in missing values (top left) and the daily 

frequency ACF plot (top right), the log-transformed daily frequency time series plot (bottom left), 

and the log-transformed daily frequency ACF plot (bottom right). 
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2.2. Research Method 

2.2.1. Classic SARIMA Model 

The ARIMA model is the abbreviation of autoregressive integral moving average model, which 

transforms non-stationary time series into stationary time series by differencing them, and then 

models them using autoregressive (AR) and moving average (MA) models. The general form of the 

ARIMA model is ARIMA (p, d, q), where p is the order of the autoregressive term, d is the differential 

order, and q is the order of the moving average term. Generally speaking, the seasonal parts of the 

series are characterized by (𝑃, 𝐷, 𝑄), which may be expressed as follows, and the non-seasonal 

components of the series are illustrated by (𝑝, 𝑑, 𝑞) in the SARIMA model, which is provided as 

𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠 [3]: 

 𝜙p
(𝐵)𝛷P(Bs)𝛻d𝛻

s

D
zt = 𝜃q(B)𝛩Q(BS)ℇt (1) 

2.2.2. Regression Model 

This article uses a regression model based on sine and cosine functions (commonly referred to as 

seasonal decomposition model or seasonal adjustment model), which can decompose time series data 

into trend components, seasonal components, random components, etc., effectively capturing 

seasonal patterns and improving prediction accuracy. 

In nonlinear regression models, growth curves are often an important model of study. Research 

indicates that regression prediction models based on trigonometric growth curves have a strong 

adaptability for fitting data, resulting in good fitting performance [4]. 

2.2.3. Basic Bootstrap Prediction 

When the models under comparison are layered, the asymptotic distributions of the recursive out-of-

sample forecast accuracy test statistics rely on stochastic integrals of Brownian motion. Because it is 

laborious to compute their asymptotic critical values, this frequently makes their practical 

implementation more difficult [5]. According to Monte Carlo simulations, the techniques work 

effectively with finite samples [6]. Only the residuals of the model are sampled with replacement, 

and historical values are used to predict the future, assuming that all uncertainties in the prediction 

come from white noise in the future. The coefficients of the prediction model are estimated using 

model coefficients and remain unchanged. Taking this article as an example, 

ARIMA(0,0,0)(0,1,1)(12): 

 {
𝛻12Xt = Zt

Zt = 𝜖t̂ − 0.9999998 𝜖t̂−12

 (2) 

Among them, 𝜖1̂to 𝜖2̂16 are model residuals. Use Bootstrap method to make predictions for the 

next 12 periods of the model. Predict based on residual estimation and historical data, using MAQ, 

ARP, and RWD functions. The development of simulation sequences in the next 12 periods - 

simulation 𝑥205, 𝑥206, . . . , 𝑥216 . According to the expression of the model, simulate the values 

𝑧205 , 𝑧206 , . . . , 𝑧216 of the MA (12) component, finally simulate the values 𝑥205, 𝑥206, . . . , 𝑥216,... of 

RW (12) component. 
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2.2.4. Full Bootstrap Prediction 

The sentence must end without a period. It is believed that residuals have uncertainty, and the 

estimated model parameters themselves also have uncertainty. Therefore, taking this article as an 

example, it is not only necessary to perform replacement sampling on the model residuals, but also 

to obtain 216 new samples by performing replacement sampling on the estimated model residuals 

with a sequence length of 216 times. Then, ARIMA modeling should be performed again on these 

samples to obtain more reasonable model coefficients. Perform a 12 period replacement sampling on 

the residuals of the new model and predict the values for the next 12 periods. 

2.3. Model Selection 

2.3.1. Classic SARIMA Model 

One benefit of the SARIMA approach is that it can finish linear datasets [7]. Sequence stationarity 

judgment - Based on the time sequence diagram of the logarithmic frequency sequence in Figure 3, 

it can be determined that the sequence has no trend, that is, there is no instability caused by random 

trends, and there are no unit roots, so ordinary differencing is not performed. However, due to the 

obvious sine and cosine like waveforms in the ACF graph in the upper right of Figure 3, there is 

seasonal instability, so seasonal differentiation is performed on the sequence. Due to the seasonality 

of the sequence, the ADF unit root test results are not reliable, so the "ADF unit root test" is no longer 

used to support the above analysis. 

As shown in the ACF diagram at the bottom right of Figure 3, the seasonality of the sequence after 

seasonal differentiation no longer exists, eliminating seasonal instability. The obvious first-order 

truncation of the season, the following modeling process first considers using ARIMA (0,0,0) (0,1,1) 

(12). (Note: The ACF chart clearly shows a first-order negative correlation between seasons, which 

will be discussed at the end of the ARIMA model.) 

 

Figure 3: Time series plot of the monthly logarithmic sequence (top left) and ACF plot of the 

logarithmic sequence (top right); time series plot of the seasonally differenced sequence (bottom left) 

and ACF plot after seasonal differencing (bottom right). 

Based on the above analysis, establish the model ARIMA (0,0,0) (0,1,1) (12) 
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 {
𝛻12Xt = Zt + 𝜃

Zt = 𝜖t − b1𝜖t−12

 (3) 

After verification, the residual is white noise, and the model passes the test. According to Table 1, 

the P-value of the MA coefficient is less than 0.05, which is significant, but the drift is not significant. 

Therefore, the model is improved and an ARIMA (0,0,0) (0,1,1) [12] model without drift term is 

established. The residual test of the improved model is white noise, and the model coefficients are 

significant. The MA coefficient here is -0.9999998, which is close to -1. There may be a problem of 

parameter cancellation, but it does not mean that the model is unusable in all cases. In some cases, 

such models may still be able to provide effective predictions, and the discussion on this issue is 

analyzed in the summary of this article. 

Table 1: Coefficient estimation results of ARIMA(0, 0, 0)(0, 1, 1)(12). 

 Estimated Value Standard Error P value 

𝑏1 -0.9999927 0.0661668 0.000 

𝜃 -0.0042736 0.0129475 0.741 

2.3.2. Regression Model - Based on Sine and Cosine Functions 

Linear regression stands as the prevalent statistical approach across numerous application domains, 

enabling the analysis of how a collection of explanatory variables influences a targeted response 

variable [8]. Firstly, use a regression function to fit the seasonality of the sequence, and use a 

trigonometric function that is also a periodic function to fit the seasonality. Simultaneously using both 

low-frequency and high-frequency trigonometric functions to achieve the goal of fitting complex 

periods. Based on experience, the maximum value of k in cos (
𝑘𝑡𝜋

6
) is usually considered to be 3. Use 

the LM function to establish a regression model. 

 Xt = 𝛼0 + 𝛼1t + 𝛽1cos(𝜔t) + 𝛾1sin(𝜔t) + 𝛽2cos(2𝜔t) + 𝛾2sin(2𝜔t) + 𝛽3cos(𝜔t) + 𝛾3sin(𝜔t) + 𝜖t (4) 

The subscripts 𝛽 and 𝛾 represent multiples and numbers of frequencies, respectively. 

In the coefficient test of the regression model with 7 explanatory variables, only the coefficients 

of the intercept term 𝛼0 and 𝛽1.1 (cosine function with k value of 1) are significant. After removing 

insignificant coefficients and fitting again, Table 2 shows the coefficients of the improved regression 

model, all of which are significant. Therefore, the formula is: 

 Xt = 4.55659 − 1.42866 cos(𝜔t) + 𝜖t (5) 

Seasonal modeling is completed, and the original sequence is subtracted from the regression model 

to obtain a sequence without seasonality. The ACF diagram in Figure 4 indicates that the sequence 

has no memory. Furthermore, white noise testing was performed on the sequence residuals, and it can 

be clearly seen in the right figure of Figure 4 that the P-values are all above the 0.05 threshold. The 

sequence residuals are white noise and no additional ARMA components need to be added. 

Table 2: Regression model coefficients after removing insignificant terms. 

 Estimated Value Standard Error t-Statistics P value 

𝛼0 4.556586 0.0677115 67.29415 0 

𝛽1.1 -1.428657 0.0957585 -14.91937 0 

Proceedings of  the 4th International  Conference on Computing Innovation and Applied Physics 
DOI:  10.54254/2753-8818/87/2025.20321 

57 



 

 

 

Figure 4: Time series plot of the seasonally adjusted series (left), ACF plot (middle), and P-value plot 

for white noise test (right). 

3. Predictions 

3.1. Basic Bootstrap Prediction 

3.1.1. Based on the Classic SARIMA Model 

Predict the precipitation for the next 12 periods, repeating the process 1000 times. The blue lines in 

Figure 5 represent the 97.5% upper bound, 2.5% lower bound, and mean of the 1000 predicted 

samples. The red line represents the latest actual precipitation data for the Guangzhou area from 

January to May 2024. The figure on the right shows that the majority of the actual data falls within 

the predicted range, but the actual precipitation in April exceeded the predicted range. The upper 

bound of the sample's 97.5% is 5.928503, and the actual value is 6.326672. The actual value exceeds 

its 97.5% upper bound, indicating that the model estimation is not accurate enough. Therefore, it is 

considered to improve and use the Full bootstrap model. 

 

Figure 5: Time series plot of the ARIMA model including the latest data, predicted mean, and upper 

and lower bounds (left) and details of the left plot (right). 

3.1.2. Based on Regression Model 

The prediction process is analogous to the classic ARIMA modeling prediction process mentioned 

above. Figure 6 also compares the predicted results with the actual data, and it is clear from the right 

graph that the real data falls entirely within the predicted range. After comparing the specific values 

predicted by the two basic bootstrap models, it was found that the upper bound of the regression 

model was significantly larger and the prediction results were better. The regression model provides 

a more accurate prediction of the range of future precipitation, but the method of keeping the 
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coefficients constant in Basic bootstrap prediction may result in the model's estimation not being the 

most scientific. Therefore, the more common Full bootstrap method will still be used for further 

prediction in the following text. 

 

Figure 6: Time series graph of the regression model including the latest data, predicted mean, and 

upper and lower bounds (left) and details of the left graph (right). 

3.2. Full Bootstrap Prediction 

3.2.1. Based on the Classic SARIMA Model 

The blue and red lines in Figure 7 represent the same content as above. It can be seen from the figure 

that the data for April still exceeds the predicted range. The comparison between Basic prediction 

and Full prediction of ARIMA model shows that the upper bound of 97.5% in April is higher and 

closer to the true value under the Full bootstrap method. But the true value still hasn't completely 

fallen within the predicted range. 

Therefore, it is preliminarily believed that the classical ARIMA model has poor prediction 

performance. Both prediction models exceeded the prediction interval in April, and although the MA 

coefficient of the models is significant, the value is close to -1, which is approximately believed to 

cause parameter cancellation. At the same time, as mentioned earlier, there was a situation of 

excessive seasonal differentiation during the first-order seasonal differentiation in the modeling 

process. Therefore, it is believed that the classical ARIMA model is not the best estimation model. 

 

Figure 7: Time series graph under full-bootstrap with the latest data and predicted mean, upper and 

lower bounds (left) and details of the left graph (right). 
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3.2.2. Based on Regression Model 

Table 3 shows the more reasonable new model coefficients estimated using the Full bootstrap 

prediction method, with the formula: 

 Xt = 4.600298 − 1.392016 cos(𝜔t) + 𝜖t̂ (6) 

The real value in Figure 8 completely falls within the prediction range. At the same time, 2.5% of 

the full bootstrap prediction result of the regression model is almost improved in the next month with 

more precipitation compared with the full bootstrap data of the ARIMA model. The prediction range 

is accurate, and the upper bound value is larger in the rainstorm prone months, which is more in line 

with the actual situation. Compared with the two prediction methods of the regression model, the Full 

bootstrap prediction results effectively and reasonably narrowed down the prediction range, making 

it the best among the four prediction results. The occurrence of floods and waterlogging disasters in 

April 2024 brought great inconvenience to the Guangzhou area. This model is also more reasonable 

for predicting in April. Based on reality, if the predicted value is far lower than the actual value, it is 

not conducive to the relevant government departments planning and constructing urban drainage 

systems, nor is it conducive to making emergency plans in advance for the disaster (Table 3). 

 

Figure 8: Time series graph under full-bootstrap with the latest data and predicted mean, along with 

upper and lower bounds (left) and details of the left graph (right). 

Table 3: Coefficients of the newly fitted regression model under full bootstrap. 

 Estimated Value Standard Error t-Statistics P value 

𝛼0 4.574778 0.0640267 71.45108 0 

𝛽1.1 -1.383895 0.0905475 -15.28365 0 

4. Conclusion 

The convergence of escalating urban populations and the persistent peril of climate change 

underscores a heightened societal vulnerability to the impacts of extreme precipitation events [9]. 

This article models and fits the precipitation in Guangzhou from 2006 to 2023 using classical ARIMA 

and regression function models, and predicts the precipitation for the next year using Basic bootstrap 

and Full bootstrap prediction methods. To aid in the planning of effective flood mitigation 

infrastructure, it is paramount to conduct an exhaustive examination of the temporal patterns and 

spatial correlations associated with extreme precipitation occurrences [10]. The aim is to provide 

effective information for relevant government departments to plan. 
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In the model selection stage, the ACF plot of the first-order seasonal difference sequence shows a 

first-order integer order truncation. After applying the classical ARIMA model of ARIMA (0,0,0) 

(0,1,1) (12) to this sequence, the residual test result of the sequence is white noise, so the model is 

determined as ARIMA (0,0,0) (0,1,1) (12). During the modeling process, there was a situation where 

the first-order seasonal difference occurred, and in the subsequent final model coefficient estimation 

results, it was found that the value of the MA coefficient b1 was close to -1, indicating a problem of 

parameter approximate cancellation. Consideration may be due to the model setting: the coefficient 

of the moving average term approaching -1 may indicate that the seasonal effects in the data are very 

strong and close to cyclical reversals. But this may also be a signal of overfitting in the model, as 

such extreme values are not commonly seen in real data. 

In the ARIMA model's prediction results, the Full bootstrap model's prediction results are closer 

to the true values based on the actual situation, and the prediction results are slightly better than the 

Basic bootstrap model. However, both methods have the problem of prediction interval bias, resulting 

in underestimation during the month of heavy rainfall in April. Considering that the MA coefficient 

is close to -1, it may lead to very unstable predicted values, and small errors may cause significant 

fluctuations in the predicted results. Therefore, the classical ARIMA model has poor fitting 

performance. 

The ARMA model of regression function and residuals is known to have seasonality according to 

the previous analysis. The regression function directly extracts the seasonal components of the 

sequence, and the residual sequence without seasonality is directly modeled using ARMA. The 

residual of the sequence extracted by the regression function in this article is white noise, so there is 

no residual ARMA modeling. The explanatory variables of the regression function were ultimately 

reduced from 7 to 1 based on significance. The prediction process also adopts two methods: Basic 

bootstrap and Full bootstrap. Compared with the classical ARIMA model, the regression model's 

predictions are more accurate, and the true values fall within the prediction interval. The lower bound 

range in Full bootstrap prediction is smaller and more accurate. 
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