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Abstract: Speech Emotion Recognition (SER)’s burgeoning significance within intelligent 

systems is underscored by its transformative impact across various fields, from human-

computer interaction, and virtual assistants to mental health monitoring. Over the rapid 

development of this technology in the past two decades, studies have continuously confronted 

and overcome kinds of real-world challenges, such as data scarcity, environmental noise, and 

cross-language differences. This survey focuses on recent innovations in SER, particularly 

deep learning architectures, and synthetic data augmentation, and addresses recent 

developments in cross-domain and multimodal SER techniques, which have expanded the 

applicability of SER to more diverse datasets. 
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1. Introduction 

Speech is one of humanity’s most unique abilities. Compared to written text or body language, spoken 

language conveys emotions more directly and immediately. Even when individuals from different 

corners of the globe face language barriers, the tone, intonation, and rhythm of speech can evoke 

emotions universally. As technology grows more integrated into daily life, there is an increasing need 

for intelligence systems to interact with humans in a more natural, emotionlike manner. As Rosalind 

Picard aptly noted, “We’re not going to build intelligent machines until we build, if not something 

we call emotion, then something that functions like our emotion systems” [1]. True intelligence, as 

she suggests, is that which closely resembles genuine human beings, with the expression of emotions 

through speech being one of the most challenging aspects to replicate. 

Traditional Speech Emotion Recognition (SER) involves several steps, including speech signal 

pre-processing, feature extraction, dimensionality reduction, and selecting the appropriate classifier 

for analyzing emotion categories [2]. Since the late 20th century, researchers have attempted to 

leverage various machine learning and deep learning techniques for SER. As early as 2002, Chang-

hyun Park et al.[3] applied recurrent neural networks (RNNs) to SER tasks, marking one of the earliest 

deep-learning explorations in this field. The introduction of Support Vector Machine (SVM) further 

advanced SER, with SVM outperforming radial basis function neural network, knearest-neighbor, 

and linear discriminant classifiers, achieving 85% accuracy because of its good discriminating ability 

[4]. 

In addition to these, Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs) 

were widely used in early SER tasks. While these traditional models performed well on small and 
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structured datasets, they often struggled with real-world scenarios involving noisy environments or 

more complex emotional nuances. 

2. Recent Innovations in SER 

2.1. Deep Learning Architectures  

Deep learning Architectures have significantly revolutionized the field of SER. In contrast to 

traditional machine learning approaches, which largely depend on handed extracted features like Mel-

Frequency Cepstral Coefficients (MFCC) or pitch, deep learning models can automatically derive 

pertinent features during training. 

A new method can effectively focus on useful information in speech features, using a 

convolutional neural network based on an attention mechanism and a bidirectional gated Recurrent 

unit (BiGRU) is proposed.[5] Introducing the attention mechanism aims to achieve the primary goal 

of the method, which is to enhance recognition accuracy by directing the system’s attention more 

towards the key features of speech. In the experiment phase, this method investigates the system 

recognition performance when the number of CNN layers changes, turns out that the number of CNN-

layer is less than 5, the recognition accuracy is steadily increased. [5] And it discovers that the BiGRU 

architecture outperforms the more commonly used BiLSTM in terms of both recognition accuracy 

and computational efficiency. 

Another innovative model is SERC-GCN (Speech Emotion Recognition in Conversation using 

Graph Convolutional Networks), which better predicts a speaker’s emotional state by incorporating 

conversational context, speaker interactions, and temporal dependencies between utterances [6]. This 

two-stage graph-based SER model is designed to classify a speaker’s emotional state in dyadic 

conversations. In the first stage, the model extracts speech features solely from utterances by 

converting these utterances into cyclic graphs, which are transformed through a two-layer GCN. In 

the second stage, a related conversation graph with vertices initialized using the utterance features 

from the first stage was created. And these conversation graphs capture context-sensitive and 

speakersensitive relationships through relational edges, which illustrate the dependencies between the 

speakers of the utterances. 

In addition, a novel approach introduced in [7] uses contrastive pretraining to improve SER 

performance, especially with unlabeled data. The idea behind contrastive learning is to differentiate 

between positive and negative pairs of data points based on intra-speaker clusters. The learning goal 

aims to enhance similarity among positive pairs while reducing it for negative pairs. In this approach, 

positive pairs consist of utterances sampled from the same intra-speaker cluster are likely reflecting 

the same emotional category, while negative examples are formed using different intra-speaker 

clusters from the same speaker, representing varying emotional categories. The model is based on 

wav2vec2.0 [8], including a feature extractor and a transformer encoder, but with a more compact 

design featuring only 6 transformer layers. And the experiment result shows the ability of this model 

to perform well on unlabeled data, indicating the potential to enhance the SER where labeled data is 

limited. 

2.2. Synthetic Data Augmentation 

The ongoing research of SER, remains a persistent challenge that there is a limited quantity of large, 

balanced, labeled, and high-quality datasets. Popular datasets such as RAVDESS [9] contain 7,356 

audio files across eight emotional categories but lacks sufficient coverage for certain subtle emotions 

like fear or disgust. Similarly, the IEMOCAP [10] contains 12 hours of audiovisual data featuring 

five sessions of two actors (one male and one female per session) engaging in conversations. However, 
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the imbalance in emotional categories often skews results toward more frequent emotions, 

highlighting the need for synthetic data to diversify and balance datasets. 

Synthetic Data Augmentation (SDA) offers a solution by artificially generating or transforming 

speech data, thereby expanding the size and emotional variety of available datasets. A recent study 

[11] introduces an innovative method that employs a state-of-the-art end-to-end speech emotion 

conversion model to generate synthetic data for training SER models. This method relies on two 

different models: a generative model to synthesize speech (speech-to-speech emotion conversion) 

and an emotion classification model from the raw audio waveform (fine-tuned wav2vec 2.0). It uses 

a sequence-tosequence (ES2S) model to translate the phonetic-content unit representations, which 

allows the problem to be treated as a spoken language translation problem, and the objective is to 

learn to map discrete speech representations between different emotions. The synthesized emotional 

speech is generated using a modified version of the HiFi-GAN vocoder, takes synthetic data, 

including phonetic-content units, predicted durations, F0, speaker embeddings, and emotion, to 

predict speech signal waveforms, forming synthetic data for training. This method also augments the 

RAVDESS and IEMOCAP datasets, improves the performance of wav2vec2.0 model fine-tuned with 

both synthetic and real data. 

Another innovative approach, presented in [12], enables emotional text-to-speech (TTS) synthesis 

on datasets without explicit emotion labels. The method uses a Cross-domain SER model to extract 

features and classify emotions. After using the SER model to assign the soft emotion labels to the 

TTS datasets, this approach uses a GST-based emotional TTS model to learn the emotion-related 

style and control the emotional expressiveness of the generated speech. Applying this method, the 

system can successfully generate synthetic speech with controlled emotional expressiveness while 

maintaining high-quality output. 

2.3. Biologically Inspired Methods 

Bio-inspired method is used to solve many complex problems easily by modeling the characteristics 

of biological species [13]. With the biologically inspired methods, offer models an alternative to 

conventional machine learning approaches, providing a more natural and adaptive way to process 

emotion recognition in speech. 

A recent method that directly operates on the speech signal combines the classical source-filter 

model of human speech production with the liquid state machine (LSM), a biologically inspired 

spiking neural network (SNN) [14]. In this method, the biological element LSM based on is biological 

cortical neurons. Then, its original LSM design with two separate reservoirs builds upon the motor 

theory of human speech perception. During the preprocessing phase, the speech signal is divided into 

2 parts: the source and the vocal tract, and both are fed into two separate neural reservoirs of spiking 

neurons within the LSM. And the output from these two reservoirs is reduced in dimensionallly in 

order to form more compact representations. A final classifier takes these reduced outputs, and 

determines which emotion the speaker is expressing based on the processed speech signal. 

2.4. Multimodal Approaches 

In recent years, multimodal approaches have gained increasing attention for enhancing the 

generalizability and resilience of speech emotion recognition. Traditional SER approaches are used 

to study on single language or environment, facing challenges when applied to emotional context are 

expressed in various data types. Multimodal Approaches can better solve these problems, and adapt 

to more complex and diverse needs. In the paper [15] presents a new approach integrating Automatic 

Speech Recognition (ASR) into SER to solve the common problem of SER’s lack of data in real-

world applications. The method utilizes several ASR models trained on different datasets. The model 
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is mainly made of 2 components: By combining ASR features, multimodal fusion of textual and 

auditory information improves SER performance. The first component contributes to enhance SER 

performance by incorporating ASR features, while the second component focuses on training a 

reliable joint model on labeled and unlabeled data. This study finds that ASR errors has a profound 

impact on SER performance, especially when the WER exceeds 25%. 

3. Comparative Results of Recent Techniques 

The recent advancements in Speech Emotion Recognition (SER) exhibit a diverse range of techniques, 

each aiming to improve recognition accuracy and adaptability in real-world scenarios. A key trend 

observed in the field is the integration of innovative architectures, such as attention mechanisms, 

biologically inspired models, and multimodal approaches, which have demonstrated substantial 

improvements in both performance and robustness. 

As shown in Table 1, one notable contribution is the ACNN + Multi-head Selfattention model 

used in the study Head Fusion: Improving the Accuracy and Robustness of SER. This model, tested 

on the IEMOCAP and RAVDESS datasets, achieved a clean data accuracy (UA) of 72.26% The 

inclusion of multi-head selfattention allows the model to focus on critical parts of the input speech, 

improving the detection of emotional cues across the signal. More importantly, this model showcases 

robust performance in noisy environments, with a slower degradation of accuracy when noise is 

introduced. This makes it particularly valuable for real-world applications, where speech signals are 

often distorted by environmental noise. By leveraging the self-attention mechanism, this model 

effectively captures emotional nuances across various conditions. 

In contrast, the Liquid State Machine (LSM) model proposed in Biologically Inspired Speech 

Emotion Recognition represents a shift towards bio-inspired methods. Tested on a custom emotional 

speech database, this model achieved a recognition rate of 82.35%. The LSM, with its spiking neurons 

designed to mimic biological cortical neurons, operates directly on raw speech data, bypassing 

traditional feature extraction. By dividing the speech signal into two components-source and vocal 

tract-LSM processes each through separate reservoirs, a design based on the motor theory of speech 

perception. This biologically inspired architecture offers a novel approach, emphasizing adaptability 

and cognitive realism. The high recognition rate suggests that biologically inspired models have 

strong potential in SER, especially in cases where traditional feature engineering may be insufficient. 

The GST-based TTS model combined with a Cross-domain SER model, as detailed in Emotion 

Controllable Speech Synthesis Using Emotion-Unlabeled Dataset, addresses a different challenge: 

the lack of emotion-labeled data. This method, tested on an emotion-unlabeled TTS dataset, achieved 

an emotion prediction accuracy of 78.75% for four emotion classes (our-4cls). It leverages a Global 

Style Token (GST)based approach to control emotional expressiveness in synthetic speech, reducing 

the reliance on labeled datasets. The cross-domain SER model further enhances performance by 

classifying emotions without the need for explicit emotion annotations. This approach is particularly 

beneficial in scenarios where collecting large amounts of labeled emotional data is impractical. 

Although the accuracy varies across emotion classes, this method highlights the potential of synthetic 

data and cross-domain learning in SER. 

The wav2vec2.0+ contrastive learning strategy employed in Revealing Emotional Clusters in 

Speaker Embeddings shows the effectiveness of contrastive learning and multi-task learning (MTL) 

in improving SER performance. On the IEMOCAP dataset, the model reached an unweighted 

accuracy (UAR) of 73.80%, while on CREMA-D, it achieved 83.01%. The contrastive pretraining 

strategy differentiates between similar and dissimilar speaker embeddings, enabling the model to 

cluster emotions more effectively. This technique is especially powerful for datasets with limited 

labeled emotional data, as it enhances the model’s ability to generalize by learning from unlabeled 
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examples. The combination of wav2vec2.0, a state-ofthe-art speech representation model, and MTL 

further boosts accuracy by simultaneously optimizing multiple objectives. 

In Towards Improving Speech Emotion Recognition Using Synthetic Data Augmentation, the use 

of wav2vec 2.0 with synthetic data augmentation demonstrates the impact of augmenting training 

data with synthetically generated emotional speech. By augmenting the IEMOCAP and RAVDESS 

datasets, the model improved UAR to 76.19% and 93.05%, respectively, when trained on both real 

and synthetic data. This method addresses the common challenge of limited data in SER by generating 

synthetic emotional speech through emotion conversion techniques. The results indicate that synthetic 

data augmentation can significantly enhance SER models, particularly in speaker-independent setups, 

where generalization to new speakers is critical. 

Tabel 1: Results comparison from several studies on Speech Emotion Recognition (SER) methods. 

Paper Model Dataset Accuracy Key features 

[18] 

ACNN+Multi-

head Self-

attention 

IEMOCAP, 

RAVDESS 

Clean data (SNR = clean, 

AF = 0): UA = 72.26% 

(1) Multi-head self-

attention; (2) Slower 

accuracy degradation 

under noise 

[14] 

Liquide State 

Machine with 

dual reservoirs 

Custom 

emotional 

speech 

database 

82.35% recognition rate 

(1) No feature 

extraction; (2) 

Biological elements: 

LSM's spiking neurons 

resemble biological 

cortical neurons; (3) 

Dual reservoirs 

[12] 

GST-based TTS 

model+Cross-

domain SER 

model 

Emotion-

unlabeled 

TTS 

dataset 

Emotion accuracy: 78.75% 

(our-4cls), 49.25% (full-

4cls), 36.75% (base-4cls); 

Arousal accuracy: 91.0%; 

Valence accuracy: 55.5% 

(1) GST-based approach 

for emotional speech 

synthesis; (2) Uses an 

MMD-based cross-

domain SER model; (3) 

Reduced need for 

emotion-annotated data 

[7] 

FTwav2vec2.0 

w/proposed 

MTL 

IEMOCAP, 

CREMA-D 

IEMOCAP UAR: 69.16% 

(contrastive), 73.80% 

(wav2vec2.0+MTL) 

CREMA-D UAR: 75.23% 

(contrastive), 83.01% 

(wav2vec2.0 + MTL) 

(1) Contrastive 

pretraining strategy; (2) 

Multi-task learning 

(MTL); (3) wav2vec2.0 

fine-tuning 

[11] 

wav2vec 2.0 + 

Synthetic Data 

Augmentation 

IEMOCAP, 

RAVDESS 

IEMOCAP UAR: 76.19% 

(Original + Synthetic, SD), 

66.06% (SI); RAVDESS 

UAR: 

93.05%(Original+Synthetic, 

SD), 81.29% (SI) 

(1) Synthetic data 

augmentation from 

emotion conversion; (2) 

Speaker-independent 

setup 

[19] 

ELM+Utterance-

level features, 

with SVM, RF, 

XGBoost, RVM, 

SGD 

Toronto 

Emotional 

Speech Set 

(TESS) 

Accuracy Range: 95.55% to 

100%; Increment in 

accuracy: 3.22% to 6.28%; 

Peak Accuracy: 100% 

(ELM + RF) 

(1) Utterance-level 

features combined with 

speech features ; (2) 

ELM + RF model 
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[5] 

CNN-BiGRU 

with attention 

mechanism 

CASIA, 

RAVDESS 

CASIA: 88.92% (CNN-

BiGRU + Attention); 

RAVDESS: 87.65% (CNN-

BiGRU + Attention); 5-

layer CNN Accuracy: 

88.92% 

(1) Attention 

mechanism improves 

recognition by focusing 

on key speech features; 

(2) BiGRU 

(Bidirectional Gated 

Recurrent Unit) 

[15] 

ASR-SER 

integration with 

cross-attention, 

W2V2 

IEMOCAP, 

MSP 

Podcast 

SER accuracy: 63.4% (ASR 

fusion) 

(1) ASR-SER 

integration; (2) Cross-

Attention Fusion Model 

[6] 

Two-stage GCN 

model with 

context, speaker, 

and temporal 

information 

IEMOCAP 

Micro-F1 (Utterance-only): 

40.3%; Micro-F1 

(Conversation): 51.5%; WA 

(Graph): 66.8% (Recency + 

Self-dependency); 

(1) Graph Convolutional 

Networks; (2) Combines 

utterance-level and 

conversation-level 

features; (3) Recency 

and Self-dependency 

 

Finally, the CNN-BiGRU model with attention mechanism, as explored in CNN-BiGRU Speech 

Emotion Recognition Based on Attention Mechanism, further reinforces the value of attention in SER. 

Tested on the CASIA and RAVDESS datasets, it achieved accuracies of 88.92% and 87.65%, 

respectively. The attention mechanism helps the model focus on key speech features, while the 

BiGRU architecture efficiently captures temporal dependencies. This combination ensures high 

recognition accuracy, making it a competitive approach in SER tasks. 

4. Future Challenges in SER 

As technology advances and innovations emerge, researchers continually devise new techniques to 

enhance and refine the Speech Emotion Recognition (SER) system. They aim to establish a model 

that yields higher accuracy and adapts effectively to real scenarios. While studies have accomplished 

numerous innovations and enhancements, SER is still facing with many known and unknown 

challenges. 

4.1. Data Scarcity and Quality 

One of the most persistent challenges in SER is the scarcity and quality of labeled emotional data. 

Accurately identifying emotions from spontaneous speech in real-world scenarios, especially in non-

labeled data, remains difficult [16]. While datasets such as RAVDESS and IEMOCAP provide 

valuable resources, they often lack the complexity and variability seen in natural speech, such as 

diverse languages, accents, and subtle emotional expressions. Models trained on these datasets may 

struggle to generalize effectively in real-world contexts, where linguistic diversity and emotional 

ambiguity are prevalent. As mentioned in the Synthetic Data Augmentation section, while synthetic 

data can help bridge this gap, future research needs to focus on acquiring higher-quality, more 

representative datasets that better capture the complexity of human emotions across various contexts 

and cultural nuances. This will require not only expanding the amount of data but also improving its 

depth, diversity, and labeling accuracy. 

Table 1: (continued). 
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4.2. Noise in SER 

Another key challenge in SER is the impact of noise in real-world environments. As artificial 

intelligence increasingly mimics human capabilities, the need for SER systems to function reliably in 

noisy environments becomes essential. Many studies included in this survey tested models on 

relatively clean, noise-free datasets, which do not reflect the noisy conditions encountered in real-

world scenarios. In practical applications, background noise can drastically reduce recognition 

accuracy by introducing distortions into the speech signal, leading to misclassifications [17]. 

Although some recent techniques—such as noise-robust feature extraction and classifier 

optimization—have shown promise in mitigating the effects of noise, they still fall short of achieving 

human-like performance in challenging acoustic conditions. To overcome this, future research must 

focus on developing more sophisticated methods for noise resistance, including the creation of more 

representative noisy datasets, the enhancement of noise-robust features, and improved speech 

enhancement techniques. These solutions will be crucial to advancing the field and making SER more 

viable for real-world use, particularly in applications such as call centers, healthcare, and mobile 

technology. 

4.3. C. Cross-Domain and Multimodal SER 

A major limitation of current SER models is their difficulty in adapting to different domains or 

environments, a challenge known as cross-domain transfer. Speech data collected in diverse settings, 

such as hospitals, call centers, or entertainment venues, exhibit vastly different properties. Models 

trained in one environment may struggle to generalize when applied to another, causing a significant 

drop in accuracy. This lack of cross-domain adaptability limits the widespread applicability of SER 

systems, which often require manual re-tuning or retraining to function effectively in new 

environments. 

Moreover, the challenge of integrating multiple modalities—such as combining audio with visual 

or contextual data—presents another significant hurdle. Multimodal SER has the potential to provide 

richer emotional insights by leveraging diverse sources of information, yet the complexity of 

combining these modalities often leads to suboptimal model performance. Many existing approaches 

still rely heavily on unimodal data, such as speech alone, and fail to fully exploit the advantages of 

multimodal inputs. 

5. Conclusion 

The goal of this paper is to offer a comprehensive survey on recent innovative techniques in speech 

emotion recognition. The paper first briefly introduces the context of Speech emotion recognition and 

the traditional SER models, then gives detailed summaries of several recent techniques that enhance 

the SER in different aspects. We reviewed a wide range of recent advancements in deep learning 

architectures, Synthetic Data Augmentation, biologically inspired methods, and multimodal 

approaches. And compared the results and the key features of these innovative approaches. While 

significant progress has been made, several challenges remain, including the limitation of existing 

datasets, handling noisy real-world applications, cross-domain adaptation. With the sustained 

development of SER, its potential applications in affective computing, healthcare, and 

humancomputer interaction gives us compelling reasons and beliefs that we should continuously 

dedicate to the further innovation in this field. 
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