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Abstract: Image recognition has always been a fundamental research task in the computer 

vision community, aimed at identifying the categories of objects in images and has been 

widely used in many fields, especially in autonomous driving. Early image recognition 

technologies were mostly based on machine learning, and their recognition speed and 

accuracy could not meet the application requirements of complex autonomous driving 

scenarios. With the great success of convolutional neural networks, image recognition 

technology based on deep learning has attracted increasing research interest. Taking the 

autonomous driving scenario as an example, this article introduces the latest research progress 

of image recognition technology, including representative methods and their basic pipelines. 

In addition, this paper also introduces the commonly used dataset in image recognition and 

discusses the existing problems of image recognition in autonomous driving tasks. Finally, 

this paper looks forward to the future development directions of this field, hoping bring some 

new insight to advance the further development of image recognition under autonomous 

driving scene. 
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1. Introduction 

As artificial intelligence and autonomous driving technologies advance quickly, the use of driverless 

cars has progressively moved out of the lab and into the real world. In the process of achieving fully 

autonomous driving, accurately identifying and understanding complex road environments is 

important in determining vehicle safety and intelligence. As one of the key technologies for 

autonomous driving, image recognition is responsible for acquiring and analyzing road information. 

Through visual sensors such as cameras, autonomous driving systems can detect objects on the road, 

traffic signs, pedestrians, vehicles, etc., in real-time, so as to make decisions and ensure driving safety. 

In recent years, breakthroughs in deep learning technology have significantly improved the 

accuracy and efficiency of image recognition. Methods such as convolutional neural networks (CNNs) 

have performed outstandingly in tasks such as object detection, road sign recognition, and pedestrian 

recognition for autonomous driving. However, the complex real-world driving environment, such as 

different weather conditions, light changes, and irregular road scenes, still poses a serious challenge 

to image recognition technology. In addition, the high requirements of autonomous driving for system 

real-time performance and stability also impose higher standards on image processing technology. 
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The purpose of this review is to systematically sort out the key applications, existing technologies, 

and challenges of image recognition in autonomous driving, and discuss future research directions 

and technological breakthroughs. We will analyze from multiple perspectives, such as the core tasks 

of image recognition, mainstream technical methods, typical datasets, and difficulties in practical 

applications, to provide a reference for future research and development. 

2. Recognition Tasks in Autonomous Driving 

2.1. Main Task 

The image recognition task in autonomous driving can be divided into multiple subtasks, each solving 

a different visual problem. Traditional methods often have difficulty directly addressing these 

complex tasks but applying deep learning has greatly improved their ability to solve them. The main 

subtasks include[1]: 

(1) Image Verification. Image verification determines whether the input image matches a reference 

image by calculating the distance between their feature vectors. Traditional methods were used in 

tasks like fingerprint or face recognition, while deep learning improves accuracy with triplet loss 

functions. 

(2) Object Detection. Object detection aims to locate objects of a certain category within an image. 

Traditional methods, such as Haar-like features with AdaBoost for face detection, have been 

surpassed by deep learning, which allows multi-class detection in a single network. 

(3) Image Classification. Image classification assigns objects in an image to predefined categories. 

Methods like bag-of-features (BoF) were commonly used, but deep learning now excels in large-scale 

classification tasks, surpassing human-level accuracy. 

(4) Comprehending the Scene. One of the main tasks of scene understanding is semantic 

segmentation, which aims to assign a category to each pixel in a picture. Deep learning has made this 

possible, but conventional approaches have had difficulty solving it.  

(5) Specific Object Recognition. Specific object recognition focuses on identifying a particular 

object using features such as SIFT. Deep learning further improves performance with methods like 

LIFT. 

2.2. Autonomous Driving Levels 

The Society of Automotive Engineers (SAE) suggested a standardized language, known as SAE-

J3016, in 2014 to address the inconsistent and confusing terminology used in the autonomous driving 

sector. SAE-J3016 specifies the Levels of Driving Automation from 0 to 5 [2]. Image recognition 

technology becomes more and more important as automation levels rise. 

(1) L0-L2 (Assisted Driving). At levels L0 to L2, the vehicle primarily provides driver assistance, 

with the driver still responsible for vehicle control and safety. Features like Lane Departure Warning 

(LDW), Automatic Emergency Braking (AEB), and Adaptive Cruise Control (ACC) rely on image 

recognition technology as a supporting component. While image recognition primarily helps the 

driver at these levels, systems are now able to recognize objects and situations with greater accuracy 

thanks to the incorporation of deep learning and enhanced sensor precision.  

(2) L3-L5 (High and Full Automation). At levels L3 and above, the system takes full control of 

the vehicle, especially at L4 and L5, where no human intervention is required in specific or all driving 

environments. At these levels, image recognition systems must not only handle real-time object 

detection and classification but also manage complex scene understanding and dynamic predictions 

to ensure safe navigation in complex traffic and environmental conditions. Deep learning has enabled 

breakthroughs in tasks such as object detection, pedestrian recognition, and scene segmentation by 

allowing models to learn complex data representations. As the level of autonomous driving increases, 
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image recognition not only needs to meet higher real-time and robustness requirements, but also be 

combined with other sensors (such as lidar, radar, etc.) to ensure recognition accuracy and system 

decision-making ability in complex environments. 

3. Image Recognition Technology 

3.1. Traditional Image Recognition Methods 

Traditional image recognition methods [3] rely on machine learning algorithms and manual feature 

extraction. These approaches include Support Vector Machines (SVM), K-Nearest Neighbors (KNN), 

and Decision Trees, which typically convert image data into one-dimensional vectors for processing. 

However, since images are inherently two-dimensional, this flattening process can lose important 

spatial relationships between pixels.  

(1) SVM Algorithm. SVM is a classical machine learning algorithm used for binary classification. 

In image recognition tasks, SVM often applies kernel methods (such as the Radial Basis Function, 

RBF) to handle non-linear classification problems. However, transforming images into vectors for 

SVM can result in the loss of spatial features crucial for accurate image recognition. 

(2) Feature Extraction and Template Matching. Techniques like histograms and shape detection 

are often used to classify images based on extracted features. However, this manual process requires 

significant expert knowledge and struggles to adapt to complex and varied environments. 

Despite their extensive use, traditional machine learning methods struggle with large-scale and 

complex image data, especially in real-time applications like autonomous driving, where the system 

must process vast amounts of visual information quickly and accurately. 

3.2. Deep Learning Methods 

Recent years have seen a significant increase in the efficiency and accuracy of picture identification 

because to deep learning, namely Convolutional Neural Networks (CNNs). Unlike traditional 

methods, deep learning can automatically extract features from images without human intervention. 

CNNs are capable of capturing spatial hierarchies and identifying complicated patterns through the 

use of several convolutional layers, pooling, and fully linked layers. 

(1) Convolutional Neural Networks (CNNs). CNNs are the backbone of deep learning in image 

recognition. They automatically extract local features through convolutional layers and reduce 

dimensionality via pooling layers, making the model both efficient and highly accurate. Classic 

models like LeNet and AlexNet have demonstrated excellent performance in tasks like handwritten 

digit recognition. 

(2) Object Detection Techniques. Two algorithms are mainly used in this field. A real-time object 

identification method called YOLO can identify and categorize several items in a picture at the same 

time. Because of its efficiency and speed, it is perfect for use in autonomous driving, where it is 

necessary to identify items like cars, pedestrians, and traffic signals quickly. A region proposal 

network (RPN) is utilized by the R-CNN family, which includes Faster R-CNN, to produce areas of 

interest, which are then classified. This approach offers high accuracy, though it can be 

computationally expensive compared to YOLO. 

3.3. Recent Advances in Image Recognition in Autonomous Driving 

The YOLO (You Only Look Once) family of models, in particular, has made considerable strides in 

deep learning recently, which have improved the accuracy and speed of vehicle and pedestrian 

detection in autonomous driving. The improved YOLOv4 model [4], which makes use of the 

CSPDarknet45_G backbone network and adds a DBG module made up of the activation functions 
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for GELU, Batch Normalization (BN), and DarknetConv2D, is one significant advancement. This 

improved structure enhances the generalization ability of the model and increases the detection 

accuracy, particularly for small objects such as pedestrians and traffic lights, even under complex 

weather conditions. The modified model achieves an impressive mean average precision (mAP) of 

90.45% and a recall of 94.37%, with a real-time processing capability of 50 frames per second. This 

balance of accuracy and speed is crucial for ensuring reliable and efficient image recognition in real-

world autonomous driving scenarios. 

Another area of advancement is the detection of lanes and traffic signs [5], which are essential for 

path planning and safety in autonomous vehicles. Deep learning-based lane detection systems have 

replaced more conventional computer vision approaches. Fully connected convolutional neural 

networks (CNNs) are one example of this. For example, models based on VGG-16 architecture have 

achieved lane detection accuracy of up to 98.58% when applied to datasets like the KITTI Road/Lane 

Detection Evaluation. In addition to lane detection, the German Traffic Sign Recognition Benchmark 

(GTSRB) dataset has been extensively used to train CNNs for traffic sign recognition, with models 

achieving an accuracy of over 95%. hese improvements in lane and traffic sign detection are critical 

for enabling self-driving cars to safely navigate through diverse driving environments. 

3.4. Limitations and Challenges of Deep Learning 

Despite its success, deep learning in image recognition faces several challenges: 

(1) Dependency on Data. Large volumes of labeled data are usually needed for deep learning 

models to reach high accuracy. In autonomous driving, collecting and annotating diverse and high-

quality datasets is time-consuming and costly. 

(2) Computational Resources. Deep learning model training is resource-intensive and frequently 

time- and computational-consuming, which can be problematic for real-time applications such as 

autonomous driving. 

Nonetheless, deep learning's ability to automatically extract and learn features from raw images 

has made it the dominant approach in modern image recognition, providing a strong foundation for 

visual perception in autonomous driving systems. 

4. Datasets in Autonomous Driving Image Recognition 

High-quality datasets are critical for training and evaluating image recognition models in autonomous 

driving. Below are some of the most commonly used datasets: 

The KITTI dataset [6] is one of the most widely used datasets in autonomous driving research. It 

offers a variety of data formats spanning urban, rural, and highway settings, such as RGB photos, 

depth maps, and LiDAR point clouds. The dataset includes 389 stereo image pairs, optical flow 

estimation data, and annotations for 3D object detection tasks. Since the data is captured from real-

world driving environments, KITTI is ideal for training deep learning models to handle complex road 

conditions. 

Cityscapes [7] is focused on semantic segmentation in urban environments. It offers 20,000 

roughly tagged photos and 5,000 carefully annotated photographs spanning a variety of traffic 

situations from 50 locations, mostly in Europe. Cityscapes has become the standard benchmark for 

pixel-level image labeling, particularly suited for training models to recognize pedestrians, vehicles, 

and traffic signs in complex city scenes. 

Waymo Open Dataset [8] is a large-scale dataset providing high-resolution data captured by 

cameras and LiDAR sensors mounted on autonomous vehicles. The dataset covers diverse and 

complex urban and suburban driving scenarios, supporting both 2D and 3D object detection and 
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tracking tasks. Waymo's dataset is significantly larger than most other datasets, offering around 12 

million 3D LiDAR object annotations and 9 million 2D image annotations. 

These datasets serve as valuable resources for training image recognition systems and developing 

robust models capable of detecting and classifying objects in various driving environments. 

5. Discussion 

5.1. Challenges 

Despite the availability of these high-quality datasets, image recognition in autonomous driving faces 

several challenges, especially in handling real-time, complex driving scenarios. 

(1) Recognition in Complex Environments. One of the greatest challenges for autonomous driving 

systems is maintaining high performance in object recognition under adverse weather conditions such 

as rain, fog, snow, and low visibility [9]. These environmental factors significantly impair the 

functioning of key sensors like cameras and LiDAR, which rely on clear line-of-sight to detect objects 

in the surrounding environment. Rain, for example, can distort the vision of both cameras and LiDAR. 

While light rain might not severely impact sensors, heavy rain causes signal attenuation and noise, 

reducing the accuracy of object detection. Similarly, fog leads to scattering effects that degrade both 

visual images and LiDAR point clouds. Dense fog can reduce detection range, resulting in missed or 

inaccurate object recognition, with some sensors only being able to detect objects at very close 

distances. Snow also poses unique challenges by creating voids in LiDAR point clouds due to snow 

swirl, which obstructs the sensor’s ability to properly identify objects. These environmental impacts 

necessitate advanced sensor fusion techniques that combine data from multiple sources, such as radar, 

thermal cameras, and LiDAR, to compensate for individual sensor weaknesses and improve 

recognition under challenging conditions. 

(2) Real-Time Processing Requirements. Autonomous driving requires real-time processing and 

reaction to the driving environment, meaning the image recognition system must quickly detect, 

classify, and make decisions. For example, when a pedestrian is detected crossing the road, the system 

needs to react in milliseconds to avoid potential accidents. To meet this challenge, efficient deep 

learning models, such as YOLO and SSD, are commonly applied in autonomous driving, as they can 

perform object detection with minimal computational cost. In addition, hardware accelerators like 

GPUs and TPUs are used to speed up the inference process of deep learning models, ensuring real-

time detection and decision-making even in high-speed driving scenarios. 

(3) Despite the rapid advancements in autonomous driving technologies, the widespread use of 

image recognition systems raises several important ethical and legal concerns. One of the primary 

challenges is privacy. Autonomous vehicles continuously capture vast amounts of data from their 

surroundings, including images of pedestrians, vehicles, and other sensitive information. Ensuring 

that this data is anonymized and securely handled is crucial for protecting personal privacy. Constant 

contact between self-driving cars and the environment or cloud servers further raises the possibility 

of privacy violations, including identity theft, tracking, and improper use of gathered data by third 

parties [10]. 

Another major ethical concern is decision-making transparency. Deep learning models' intricate 

decision-making procedures sometimes operate as "black boxes," making it challenging to 

comprehend how choices are formed in the moment. In the case of an accident, this lack of openness 

may become more troublesome. Accountability requires that autonomous systems' decision-making 

procedures be traceable and transparent. 

From a regulatory standpoint, legal frameworks for autonomous driving are still in development. 

As image recognition becomes more integrated into these systems, there is a growing need for stricter 

standards concerning transparency, accuracy, and reliability of the systems. Legal regulations must 
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clearly define liability in accidents, address data security issues, and ensure compliance with privacy 

laws. Additionally, establishing robust measures for cybersecurity is crucial to prevent attacks that 

could compromise the safety and functionality of autonomous vehicles. 

5.2. Future Directions and Outlook 

As deep learning algorithms advance, hardware capabilities improve, and more extensive datasets 

become available, the prospects for image recognition in autonomous driving are promising. With 

the development of specialized hardware like TPUs and ASICs, image recognition systems will be 

able to process complex driving scenarios more efficiently. In particular, real-time object detection 

and scene recognition will continue to improve in both speed and accuracy, especially in dynamic 

and high-speed driving environments. Advanced models like improved versions of YOLO and 

emerging architectures such as Transformers are expected to become more prevalent in the future. 

Moreover, the ongoing development of multisensor fusion will enable autonomous vehicles to 

combine data from cameras, LiDAR, radar, and other sensors, thereby enhancing environmental 

perception under various conditions, including challenging weather or lighting. Integrating 

reinforcement learning and transfer learning techniques can further improve the system's ability to 

learn from limited data and adapt to new driving environments, boosting its reliability in unfamiliar 

settings.  

On the data side, future datasets are expected to be more extensive, covering a wider range of 

driving scenarios, particularly rare and high-risk conditions. Techniques such as generative 

adversarial networks (GANs) can also generate synthetic data to help mitigate data scarcity issues 

and fill in gaps where real-world data is lacking. 

6. Conclusion 

Image recognition plays a vital role in enabling key functionalities in autonomous driving, including 

environmental perception, path planning, and obstacle avoidance. This paper has examined the 

current state of image recognition in autonomous driving, focusing on its requirements, technological 

overview, available datasets, challenges, and the latest advancements. While significant progress has 

been made, particularly in object detection, lane, and traffic sign recognition, image recognition still 

faces challenges such as dealing with complex environments, real-time processing demands, and data 

imbalance. However, with ongoing improvements in hardware capabilities, advanced deep learning 

models, and the integration of multisensor fusion, image recognition in autonomous driving is 

expected to achieve greater accuracy, robustness, and efficiency. At the same time, the ethical and 

regulatory challenges surrounding privacy, transparency, and accountability must not be overlooked. 

As these technologies evolve, ensuring that image recognition systems are not only effective but also 

ethically sound and legally compliant will be key to their widespread adoption. In conclusion, as the 

technology continues to evolve, image recognition will be a crucial driver in advancing autonomous 

driving to higher levels of automation, ultimately improving safety and contributing to the broader 

adoption of autonomous vehicles in everyday life. 
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